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The Milne Problem for a Large Plane Slab with Constant Source and Anisotropic
Scattering*
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Formulas are derived for the asymptotic neutron density and the neutron current emerging
from an infinite plane slab whose thickness is large compared to the scattering mean free path.
It is supposed that the slab sustains a uniform source of neutrons. The neutrons suffer capture
in addition to scattering. The scattering is assumed to take place in accordance with the law:
(1/4~)(1+.3f~p, ) where f~ is a constant, and p, is the cosine of the angle of scattering. Expressions
for the asymptotic neutron density in the slab and the emerging current, in the limiting case of
isotropic scattering, are also given.

1. INTRODUCTION

E consider the following problem: an infi-
~

~

nite plane slab of material of half-thick-
ness d, bounded by vacuum on both sides, con-
tains a source of neutrons uniformly distributed
throughout the slab. The neutrons are scattered
anisotropically' without change of energy and
also suffer capture; The half-thickness, d, is as-
sumed large compared to the scattering mean free
path. We wish to obtain expressions for (a) the
asymptotic neutron density inside the slab (i.e. ,

the neutron density at distances large compared
to a scattering mean free path from either face),
and (b) the neutron current leaving either face.

The transport equation governing the distribu-
tion of neutrons in the slab in the case of linear
scattering and with constant neutron produc-
tion 1s:

Bg(s, p) 1 0

+0'(s ~) =—LA(s)+~foul'i(s) j+—(1)
BS 20 2

In Eq. (1), the origin of the s-axis is taken on one
face of the slab, p, is the cosine of the angle be-
tween the direction of the neutron velocity and
the positive s-axis, f(s, p)dp is the number of
neutrons per unit volume at the point s with
direction cosine between y and p, +dp, 0 is the
ratio of .the scattering mean free path to the total
mean free path, g0 is the number of neutrons pro-
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Project Technical Series as part of the contribution of the
Los Alamos Laboratory of the University of California.
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We work with linear scattering, i.e., the scattering

function is assumed to be expressible in terms of the zero
and first harmonics; the generalization to a higher number
of harmonics is also possible.

1

4 i(s) =J" dliu4'(s, ii) (1b)

The quantity $0(s) is the neutron density and the
negative of Pi(s) is the neutron current. The
total mean free path has been taken as the unit
of length and the neutron velocity set equal to
unity. Equation (1) is to be solved subject to the
boundary conditions:

P(0, y) =0 for p)0, (A)

(8)Bfo(s) /Bs =0 at s =d.

Condition (A) follows because the vacuum does
not return any neutrons, condition (8) because
of the symmetry of the problem. Ke shall use the
asymptotic part of the solution for $0(s) in (8)
since the half-thickness d has been assumed large
compared to the scattering mean path.

2. GENERAL SOLUTION

We solve Eq. (1) by the standard Wiener-
Hopf' procedure. Taking the Laplace transform

~ Cf. N. Wiener and E. Hopf, Berliner Ber. Math. Phys.
Klasse 696 (1931); see also E. Hopf, "Mathematical
Problems of Radiative Equilibrium, " Cambridge Tract
No. 31 (1934); O. Halpern, R. Lueneburg, and O. Clark,
Phys. Rev. 53, 173 (1938); E. A. Schuchard and E. A;
Uehling, Phys. Rev. 58, 611 (1.940).

duced per unit volume (assumed constant), fi is
a measure of the deviation of the scattering func-
tion from isotropy, and, finally, &0(s) and P&(s)
are the zero and first moments of the neutron dis-
tribution function, namely:

1

A(s) = J~ dA'(s IJ)
—1
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of both sides of Fq. (I ), we get:

(I+ ru)@(s, u)

gp=—[4p(s)+3f,pd, (s)]+ +p—g(0, y), (2)
20 2s

where

Expressing II(s) in terms of It(s):
o's'X(s) —o (o —1)s-'

II(s) =-
os'+3(o. —1)fg

we may transform Eq. (6) into:

y(s, g) = use-'y(e, p),
p where

C (s)E (s) = G(s),

1

d o(s) =
) dye(s, p),

—I

1

p&(s) =)I dppp(s, y).

Integrating both sides of (2) over dp from —1
to 1, we find:

1 —0 gp
s4&(s) = (to(s)+—+ ll dump(0, u) (3)

0 s

where we have made use of boundary condition
(A). On substitution for @&(s) into (2), division by
(1+su) and integration over du from —1 to 1,
Eq. (2) is transformed into:

tanh 's 3'(a —1) ( tanh 's)
A(s) 1- +-

0'S o's"-E s

ohio 3f~ ( tanh —'sy tanh 's
I+

s o's' E s ) os

3f&g+(0) ( tanh-'sq
+g+(s)+

os' k s )

C (s) = [s@o(s)+ogo][os'+3(o 1)—f~]
3fio[—og+(0') +ohio], (7a)

G(s) = Lsg, (s)+ogo][os +3(o 1)f,—]
3fg(o —1)[sg+—(0) +o go]. (7b)

In Eq. (7), C (s) is analytic in the plane Re(s) )v

(where v is the positive root of X(s)), G(s) is
analytic in the half-plane Re(s) &1, ancl X(s) is
analytic in the strip

~

Re(s)
~
&1.

Just as in the case of no capture, ' it can be
shown that in the strip

~
Re(s)

~
&1, X(s) has two

zeros, namely, +v, and approaches unity as
~s~~~. We may, therefore, adopt the usual
device of defining a function:

(s' —1 l
r(s) =

( iX(s).
Es' —v')

The function logr(s) is analytic and single-valued
in the strip ~Re(s)

~
&1, provided a particular de-

termination of the logarithm is chosen, ' and
approaches zero as ~sl~~ in the strip. The
usual decomposition then follows:

In Eq. (4), we have written:

u11 (0, u)
g+(s) = du-

(1+sy)
so that

p

g+(o) =)" dt u4(o, ~);
—1

where
r(s) = r+(s)/r (s),

1 f
e+'" logr(u)

r+(s) =exp ~l du-
2si ~e;„(u—s) s

r
e+'"

log r(u)
r (s) =exp du

2x.i o;„(u—s)

(8a)

where

X(s) =1—

&&[sg+(0)+ ~o]+[sg+(s)+ ~o] (~)

tanh 's 3f&(o —1) f' tanh 's)—+-
os o's' E s )

H(s) = (s —tanh 's)/s.

g+(0) represents the negative of the neutron cur-
rent Howing into vacuum.

Equation (4) can be rewritten in the form:

[sA(s) +ohioÃ(s) =3f~/os'II(s)

and ~Re(s)
~

&P with v&/&1. Introducing (8)
ancl (8a) into (7) yields:

(s' —~'-) 1 (s —1)
&I (s) —- = —G(s).

(s+1) r (s) r+(s)
(9)

The left-hand side of Eq. (9) is analytic in the
half-plane Re(s)) v and the right-hand side is
analytic in the half-plane Re(s) &P. Since there is

' The determination log1 =0 is chosen.
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a region of overlap, each side is the analytic con-
tinuation of the other. Examination of the be-
havior of the two sides of (9) as IsI~~ in the
plane shows that they approach infinity as Is I '.
By an extension of Liouville's theorem, it follows
that each side may be equated to a polynomial of
order three. We therefore write:

The problem is now to evaluate the C's. From
(10) it is evident that Cs ———G(0)/r+(0), which
is zero, since G(0) =0 (cf. (7b)) and r+(0) is finite.
C~ is also zero as can be seen by writing

CtsjC2S2+ C2S2 = (s —1)G(s)/r+(s),

differentiating both sides with respect to s and
setting s =0. Hence:(gs s2)

C (S) = Cs+ CtS+ C2S'+ C»'
(s+1)r (s) G(S) =S2(C2+ C») r~(S)/(S —1).

= (~ —1)G(2)/r+(~)

where Cp, C~, C~, and Cs are constants.

(1o)
Inserting (7b) for G(s) and rearranging terms,
we 6nd:

~"(C2+ C») r+(~)+3ft(~ 1)I:~a—+(0)+~f12](~ 1)—
[~a+(~)+~a]=—

(~—1)[~~'+3(~—1)fi]

o'S 3f2[2'+(0) +&&]
Ps(S) = — +—

~(2' —I'){Cs+Cst) r+( I)

Fmm (12) it would follow that [sg+(s)+~|72] has write down the expression for ps(s) given by (10)
poles at s= +I' where' t'=i[3ft(1 —1/o)]'*; since and (7a) and find the contribution to the Laplace
this is impossible, it follows that the numerator inverse from the poles. For @s(s), we have:
of the right-hand side of (12) must vanish for
s=g and s= —f, i.e.,

~[Ca+(0)+~as](f 1) = o—, (1-3 i)

(C2 Cst ) r+—( &)—
r (s)s(s+1)(C +Css)+— (1 ~)

o(&-'—I') (&' —v')

—o [—I'R+(0) +o'92](—I' —1) = 0.

Equations (13a) and (13b) yield values for
C3, namely:

(13b) The contribution to ps(s) (the Laplace inverse of
@s(s)) from the poles is:

C2 and
0'gp

Ii'o(S) ssvmp =
(o —1)

with

a+(0) (~—+Pi)+.Vs(~+lilt )
C3= (14b)

(~2 P2)

~= (2~) '[r+(l)+r+( —I)]
I

P=(2~) 'I r+(I) —r+( —I)].

+ [r (v)(1+v)e"*
2o (v' —I 2)

+(1 v)e "'r ( —v)]-—
+ [(1+v)e"'r (v)

2o (v' —I 2)

Equations (14a) and (14b) express C2 and Cs in

terms of the unknown constant g+(0); that is as
it should be since we still must take into account
boundary condition (B).To determine g+(0), we
find the asymptotic solution for fs(s) and then
impose the boundary condition (8).

To And the asymptotic solution for Ps(s), we

—(1 —v)e-"*r {—v) i (16)

We may rewrite (16) in the form:

O'Qp

fs(s)„, ,=— +C2A (v, I') cosh[v(s+ss)]
0

+CsvA{v, I) sinh[v(s+ss)], (17)

' ll f& (0, I' is real; however,
I
I'I (I so that the pole still

cannot exist.
'The branch-point contribution yields the non-asymp-

totic part of the solution.
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where

A(v I) = [(I—v') r-(v) r-( —v) 3c/o(v' —f') (17a)

1 (1+v) r (v)
sp =—log

2v (1—v)r (—v)

The boundary condition (8) applied to (17) now

yields:
Cp+ Cpv coth[v(d+so) j=0. (18)

Using the definitions (14a) and (14b) for Cp and
Cp, Eq. (18) permits us to solve for g+(0) with
the result:

I (~+I/I ) v—'(~+&I ) «nh[v(d+zo) j I

g~(0) = oqp
I( +~I-) —-'I'(-+&II.) t-h[ (d+")jI

(19)

Equations (17), (17a), (17b), and (19) constitute
the asymptotic solution for the neutron density in
the slab; the negative of (19)is the current leaving
the z =0 face of the slab. The quantities r (v) and
r ( v) can—be evaluated by converting their con-
tour integral representations into real integrals.

3. LIMITING CASE OF ISOTRONIC SCATTERING

It is interesting to mention the limiting case of
isotropic scattering; allowing fi and therefore I
to approach zero, the asymptotic solution for
Po&f&(z) becomes:

fo (z)ssvmp = (&r/(&r 1))I//0

+A (vp) cosh[vo(d —z) j, (20)

/
S+'" logr&'&(u) l

r+&'&(s) =exp ~— du ', (23a)
I 2orp s//&;ss (u s)

1 -s+'" log r & "& (u)
r &"&(s) =exp

i
du—,(23b)

2&ro & /&;m (u —s)

where

r"(s) = L(s' —1)/(s' —vo') 1

&((I —(os) ' tanh 's). (23c)

From (23b) it is possible to show that

Lr+""(o)/r+"'(o) 3 = zo —1

where

A(vo) =
—0 Qp

cosh[vp(d+zp&'&)]

)s/2
zp= —

J
3

dx
sin'x 1 —x cotx

= 0.7104 . (24)

vp
' tanh 'vp = &, (22a)

(1+vo)r ' (vo)
zo ' =(»o) ' log — . (22b)

(1 —vo) r-"'(—vo)

The term [r+'&'&(0)/r+&"'&(0)] in Eq. (21)is the
logarithmic derivative of r+&'&(s) evaluated at
s=0. The definitions of r+&'&(s) and r &'&(s) are:

2(1—vo')

[1—o (1 —vp') j(o —1)

The emerging current g+&'&(0) becomes:

g+ ' (0) = o&fojvo ' tanh[vo(d+zo&'&) j
—1 —

L +""(0)/ +'*'(o)jI (21)

In Eqs. (20) and (21) the quantities vp and zp&"

are defined by:

The simplest case of all is the case of isotropic
scattering and no capture. In this case, the cur-
rent becomes (&fpd) while the asymptotic neutron
density Pp&'& is:

go&'&(z) s,„,= —o&foz'+A [so+ zo "&j (25)

A = 3gpd,

zp"' = zp+ (15zp' —1)/30d

with zo defined by (24).
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