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The Vector Meson Field and Projective Relativity
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In the projective theory of relativity, if, instead of the projective metric G p of index 2N, one
uses the restricted metric y p(—=G p/G00) of index zero, one is led to a formal unification of the
gravitational and electromagnetic fields of the general theory of relativity. The present paper
discusses the case of the general metric G„p. It is shown that a natural four-dimensional, gauge
invariant variational principle, involving the curvature scalar of G„p, yields field equations
unifying the gravitational and vector meson fields, the range of the meson force being deter-
mined by the inverse length (12)&N. Reasons are given for supposing that an extension to
conformal geometry could prove of interest.

I, INTRODUCTION

HE projective theory of relativity' was
proposed in order to give a four-dimen-

sional significance to the five-dimensional theory,
initiated by Kaluza' and developed by Klein, '
which led to a formal unification of the gravita-
tional and electromagnetic fields of the general
theory of relativity. The projective formalism
developed by Veblen, ' was used by Veblen and
Hoffmann in P. R. in 1930. In 1932 an equivalent
formalism in terms of homogeneous coordinates
in space-time was given by van Danzig. 6 The
use of homogeneous coordinates was further
discussed by Pauli, 7 whose formulation of the
projective theory brought out similarities be-
tween it and the 1931 theory of Einstein and
Mayer. ' The relationship between the Einstein-
Mayer theory and the projective theory had
also been discussed by other writers. '

' On leave from Queens College, Flushing, New York.' O. Veblen and B.Hoffmann, Phys. Rev. 36, 810 (1930) -;

we shall refer to this paper as P. R.' Th. Kaluza, Sitz. Preuss. Akad. Wiss. 54, 966 (1921).
4 O. Klein, Zeits. f. Physik 37, 895 (1926); ibid. 46, 188

(1927).' O. Veblen, J. Lond. Math. Soc. 42, 140 (1929); Quart.
J. Math. (Oxford) 1, 60 (1930).

6 D. van Danzig, Math. Ann, 106, 400 (1932); J. A.
Schouten and D. van Danzig, Zeits. f. Physik 78, 639
(1932). Van Danzig pointed out that his homogeneous
coordinates X~ were related to the variables x of Veblen's
formalism by the transformation

gO~XO —exo ga~Xa —exo&a (a —1 2 3 4)
This amounted to a transition from an affine representa-
tion in which portions of space-time are pictured as cross
sections of systems of parallel lines in a five-dimensional
space to an affine representation in which the lines meet in
a point.

~ W. Pauli, Ann. d. Physik 18, 305 (1933).
A. Einstein and W. Mayer, Sitz. Preuss. Akad. Wiss.

25, 541 (1931).' J. A. Schouten and D. van Danzig, Proc. Amsterdam
34, 1398 (1931); O. Veblen, Projektive Relativitatstheorie
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In the present paper, the original formalism of
the projective theory is adhered to. Though less
symmetric, it seems to the writer more direct
than the formalism used by van Danzig, Schou-
ten, and Pauli; especially in regard to the ques-
tion of the index (called the excess in the van
Danzig treatment), which is fundamental for the
present discussion. Indeed, the reciprocal of the
index has here the significance that, to within a
numerical factor, it is the range of the meson
force,

Since the ideas and basic formulas of the
projective theory of relativity have been fully
described in the literature, " they will not be
repeated in detail here. It is convenient, however,
to list the following items:

Latin indices have the range 1, 2, 3, 4, and
Greek indices the range 0, 1, 2, 3, 4.

In four dimensions, a projective tensor Tp. ..""
has 5" components of the form exp(Xx') Tg."..'(x'),
where N is a constant called the index, and x'
is a gauge variable which undergoes 'trans-
formations of the type

x"=x'+logLp(x') ]. (~)

Under a transformation of coordinates and
gauge variable, Tp. .. ".transforms as

~o ~ o Bx Bx ~ ~

T'p. .. (x') = Tg. .. (x(x')). (2)
Bx& Bx'p

The fundamental symmetric projective tensor

(Julius Springer, Berlin, 1933), Chap. VIII; B. Hoffmann,
Phys. Rev. 43, 615 (1933).

"See for instance P. R., or the book "Projektive Rela-
tivitatstkeorie" by O. Veblen, cited in reference 9, where

- the geometrical implications are developed in considerable
detail.
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G p is of index 2N. Because

Bx%8x' =0,

expressed in the form

~~P =~aP PafiPP~ =0 (10)

the component G00 is a projective scalar. It is
denoted by 4', so that 4 is a projective scalar of
index N.

The zero index projective tensor, y p, is defined

by

where
I ap —g~p 2 P~pB P =P F~p,

Since T p is a projective tensor of index zero,
T ', To', and T00 are affine tensors. Thus the
fifteen equations (10) separate naturally into the
affine sets

It follows from (3) that g i, is an affine tensor.
It is identified with the Riemannian metric of
Einstein's general theory of relativity. The anti-
symmetric tensor q, i, (which turns out to be
affine) is defined by

with

1 f 8 Ps Drab l

2&ax' ax )

b
—

g ~ b and (pab —gacgbd

The curvature tensor formed from y p is

denoted by Bp»". Also Bp&=Bp & and B=pp'Bp&.

The corresponding tensors formed from g,b are
denoted by Rb,d, Rbd, R.

In P. R. the field equations based on the
projective tensor of zero index are obtained from
the variational principle.

Sent

B(r)~4x'dx'dx dx' = 0 (9)

by variation of y p, the variations by p vanishing
at the boundary of the region of integration.
Since 8 is of zero index, and y=g (see P. R. p.
815), the variational integral in (9) is an affine

scalar.
The field equations resulting from (9) may be

Because of (3), the components y 0 of y, s form a
projective vector. It is denoted by p . The
components y, of q„acquire an added gradient
under a change of the gauge variable (1) and are
identified in P. . R. with the electromagnetic
four-potential. Ke may remark here that they
do not have this significance in the present paper.

The zero index projective tensor, g p, defined

by
gap = pap pa pp

has
g 0=0.

T a = (R' ——-'g'sR)

P a —+ab 0

~00=~ =0.
(13)

II. VARIATIONAL PRINCIPLE BASED ON G p

An attempt was made in P. R. to use field

equations based on the general projective metric

G„p of 'index 2N. The field equations there
discussed were of the type (10), with the curva-

ture tensor formed from G p instead of y p. Like.
their prototype, these equations were related by
one algebraic identity, but they were not derived

from a variational principle. Their form was

complicated and though a relativistic Schrodinger

Here the comma denotes the affine covariant
derivative with respect to g i, . Equation (14) is

an algebraic consequence of (12); it is obtained

by multiplying (12) by g, i, and summing over a
and b. Thus there are only fourteen algebraically
independent field equations. This is important,
because with goo = 1 there are only fourteen
independent quantities y p, and fifteen inde-

pendent field equations would give an over-
determination of the field.

The field equations (12) and (13) are precisely
those of the general theory of relativity for the
case of a field of gravitation and electromagnet-
ism in the absence of matter. Equation (12)
equates the gravitational stress-energy-momen-
tum tensor to that of the electromagnetic part of
the field, while Eq. (13), together with the
definition of q b, gives the Maxwell equations in

their general relativity form.
In this way the projective theory of relativity

provided a unification of the gravitational and
electromagnetic fields in the general theory of
relativity.



equation for the quantity C~l' could be found in

the held equations, the possible physical signih-
cance of the held equations was obscure.

Let I'p~y be the projective curvature tensor
folmcd fI'oII1 6 p, Rnd Let its contfRctlons be Ppf.,

Rnd I, where

index 3f which is contained in G p. By using 4
we do not bring into the variational integral any
quantities other than components of G p and
their first and second derivatives.

Therefore, we pmpose to consider the following

gRugc lnval idnt, foul -dimensional variational.

pl inc iplc:

Using the five-dimensional represen ta tion, it.

would bc I1Rtul al to consldcl field equations
resulting fmm the variational principle

il I P(G) ldx'dx'dx'dx'dx'=0 (16)

under variations of the Q p. Because of the
integration over x', the integral in (16) is gauge
invariant. When the field equations are separated
into their afhne sets, fourteen are identical with
those glvcn cxpllcltly ln P. R. on pRgc 820,
while the fifteenth can be expressed in the form
of a relativistic Schrodinger equation for the
quantity C, with an addition to the usual mass
term. This fifteenth equation cannot be regarded
as giving a scalar held in addition to the gravi-
tational and electmmagnetic held s, however,
since, as in P. R., the quantity C enters the
field equations only in the combination 8,—= (q,

N'8 log—c/Bx'). The physical significance of
the equations remains obscure.

Now the projective theory of relativity is a
four-dimensional theory. It is therefore of inter-
est to consider a variational principle based on a
quadruple integral over space and time. In this
case there will be no integration with respect to
the gauge variable x', so that if we wish the
variational integral to be gauge invariant we
must have it a scalar of zero index, and thus
Rffine.

Since G & is of index 2N, G«& is of index (—2X).
The Christoffel symbols formed from G p are of
index zero. So is the projective curvature tensor,
I'p~~", formed from them, and also the generalized
Ricci tensor, I'p~, obtained by contraction. This
means that the projective curvature scalar I' is
of index (—2X). Also, because G p is of index
2N, its determinant, 6, is of index 10K.

Hence the integrand, P(G)T, in (16) is of
index 3X.

The simplest way to convert it into a quantity
of zero index is to use the projective scalar C of

6 ~ 'P(G)'/4'}dx'dx'dx'dx"=0
J

(17)

Hence the variational principle (17) can be
written in the alternative form

b)~i P(g) ~dx'dx'dx'dx'= 0

Later a slight modification of (17) and (21) will

be introduced.

III. LEMMAS CONCERNED WITH THE
VAMATION

Because of the C ~ factor in (17), the method
of Palatini" is not applicable to the present
variation. Obtaining the held equations in their
general, projective tensor form is thus difficult.
But since we are interested mainly in the affine
subsets of the pmjective held equations, the
problem may be avoided by using the following

lemm Rs:

After making the usual Green's theoreIn trans-
formations of the calculus of variations and
discarding terms because the variations of 6 p

vanish at the boundary, let

8 t Xdx"dx'dx'dx'= T i'8G pdx'dx'dx'dx4, (22)

"A. Palatini, Rend. del Circolo Matematico di Palermo
XLIII, 205 (1919).

We shall show that, whether we vary G„p or y p,

the resulting field equa'tions, though not identi-
cal, are physically equivalent,

If, following the usage of Veblen, we write

jp ~apjp

so that Pis of ze.ro index, we have, by (15),
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under variations of G„p, so that the field equa-
tions resulting from

Lemma. II

After making the usual Green's theorem
transformations of the calculus of variations and
discarding terms because the variations of y ~

vanish at the boundary, let

f
Xdx'dx'dx'dx' =0 (23)

are, on multiplying by Cpp to make them of
zero 1Ildex,

CzppT ~ = 0. (24) J
44 i

Edx'dx'dx'dx'= f"Phy pdx'dx'dx'dx' (3l)

Let indices of T & be lowered by y p, Then the
a%ne equations

(25)GQQT '=0,

Gpp~p

Goo+aT =GQQT

(32)Xdx'dx'dx'dx4 = 0
0(26)

will be
,
27 (33)l™~—S;SPT=O.

under variations of y p. Then the field equations
resulting from

where
are the Euler conditions for (22) under variations
of g,b, p„and logGQQ, respectively.

T—= T ~y p.

Proof of Lemma I

By (4) and (5), we have

Also, the aAine equations

Tab —0

T e 0 (36)

will be the Euler conditions for (32) under
G.p = GooV.p

= Goo(g.p+ Oo. v p) (2.&)

variations of g b, y„respectively, while the
fifteenth affine equation

Also, by (6) and the fact that 4oo=poo=1, we
have

Tpp —T=0, (37)

~g.o =0, ~q o=0.

Therefore, by (22), and using the fact that T P

must be symmetric,

(3O) of the set (33) will be an algebraic consequence
of (35).

f'
h Xdx'dx'dxodx4 = i T pfIG pdx'dx'dx'dx'

= Jl T {Goo(bg.p+2O bqop)

+p pbGoo}dx'dx'dx'dx4

= JI (CxOo I"'bg, O+2GoO7' "P bPO

+GooT Py ph IogGoo)dx'dx'dx'dx4

i=-

J
(Goo7""bg.o+2Goo7 o'&O o

+GooTh logGoo)dx'dx'dx dx',
S1nCe

Trpb~ Tab~ 7" b

Thus variation of g,o alone yields (25), varia-
tion of 4oo alone yields (26), and variation of
logGoo alone yieMs (27).

"Note that this equation involves T, rather than Too.

Proof of Lemma II

That the field equations are (33) rather than
just T & =0, is due to the fact that ppp = 1 always.
For, since 8yoo=O, we may infer from (32) and

(31) only that"
T &=bp bp&$',

where S' is some function of x; and contraction
by means of y p shows that W= T. .

The proof that (35), (36) result froin variation
of g,b, y, respectively, is so similar to the proof
in I emma I it need not be given in detail.

That (37) is an algebraic consequence of (35)
follows from P. R. page 820, footnote 7. Thus,
in the present notation,

T = ~-p 7'= (g-p+ ~«~p) T'
= (ga +'pa Y)0 YTpo= geo 7 + Yao YpoI'

gabT + TQQ ~

"See P. R., p. 818.
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Therefore,

Tpp —T=g bT (38)

Lemma III

The field equations (25) are identical with the
6eld equations (35), and the field equations (26)
are identical with the field equations (36).

Proof of lemma III

From (38), we see incidentally that (27) can be
reduced to GppTpp=0 by algebraic manipulation
of it and (25).

Since Cp ——j. and yp=1, we have 8p=0. Therefore,
because of (3), 8, is an affine vector. It will be
recalled that p is not. affine, being altered by an
additive gradient under a change of the gauge
variable. This added gradient is just cancelled
by the alteration induced in 4 by the change
of gauge, with the result that 8, is left unaffected.

Because of (39), the variational principle (17),
in the form (21), becomes

8 ~}B—8N8', .+12N'(1+8'8.) } (g) &

Xdx'dx'dx'dx4=0. (42)

. 8
8', .(g)'= {g'8'}.

axIV. THE AFFINE FIELD EQUATIONS

Equations (25) and (35) are each the result of . By the familiar formula for the contracted
varying g,& in (22) (which is the same as (32)) covariant derivative of a contravariant vector,
Equations (26) and (36) are each the result of
varying q, .

By Lemmas I, I I, and I II, we see that varying
G p yields fifteen field equations without an
algebraic identity between them, while varying

y p yields fifteen equations, of which only four-
teen are algebraically independent. Further, we
see that, so far as these fourteen equations are
concerned, it does not matter whether we vary
0 e or y e. It will appear in the course of the
work that, though there is no algebraic relation
between the fifteen field equations obtained by
varying 6 p, there is a simple differential relation
which in e6'ect reduces them to fourteen inde-
pendent equations equivalent to those obtained
by varying y p.

To perform the variations, we use the value 'of

P as calculated by Veblen, "namely,
or

gb.~g'= -g'~gb.

ggCJ — gCCgM $g (43)

Therefore, since variations vanish at the bound-

ary, Green's theorem shows that the second term
of the integrand in (42) will contribute nothing
to the field equations.

The part B(g)& of the integrand is the same as
the integrand of (9), the result of varying which

is already known. This leaves only the term
12N'(1+8'8,) (g) & needing special attention.

We shall use the following well-known for-
mulas:

Since g"gb, = b,'

P =8 8N8;, +12N'(—1+8 8 ) (39) Also

8g= (bg.i)(gg"),
where the comma denotes the covariant deriva-
tive with respect to g,b, and

so that
8(g)' =

2 (g)'g"8g.'.
g =—p —4

4 N'8 log—=c j8x

(40)
Performing the needed variations, we have in

(41) turn:

(45)

' Quart. J. Math. (Oxford) 1, 60 (1930), Eq. (5.17) for the case w =4, and Eqs. (5.6), (5.3).
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8(g~)
J

I 8'8, (g) &dx'dx'dx'dx' = b( )J
(8 8 g '(g) &)dx'dx'dx'dx'

= ~(e &b)(&g"+'g"-g"bgd)(g)'dx'dx'dx'dx'

= ~ (e.eb) ( g"g"—+ 'g'g-') (g) &og ddx'dx'dx'dx'

=Jt( ~'—~'+ 'g"-&'& )(g)'bg ddx'dx'dx'dx' (46)

~«a) Jt(l'(l. «) dx'dx'dx'dx'= )~«.) ~g'(o)a C'.) (—e, @b)(—g) odx)dx'dxodx'

and finally, by (40) and (4l, ),

= JI 2g" (o)b —@b)Boo (g) &d dxdxdx'x

t 28'(g) ~()(o dx'dx'dx'dx'

( 1 () logGoo& ( 1 8 logG)
~ "")J"t)e.(g)'d 'd"d 'd '=~("")Jtg'1 &.— 1(g)bdx'dx'dxodx'

ax. 2& 2Z gxb )
1 &logGooy p 1 a(blogGoo)y

1(g)&dx'dx'dxodx'
a ~ )), 2x a )

&f' 1 &~(blogGoo)= '1 ——g"&a(g)'1 dx'dxdxdxb

1 t'8 —g'8. (g)' l(g)'& logGoAX'dx'dxodx'
(g)& &Bxb N ).

=
J 1

—&;. 1(g)'~ logG«dx'dx'dx'dx'(x ')
Iil combining tile results (45) (4Q) (4'7) and (48) with the kn()wn results for th 'a t g( ))

(42); we must allow for a minus sign that occurs in the latter:

8Jt B(g)~dx dx dx dx = tI p(g)'8p ddx dx dx dx = — I d(g)~8+ pdx dx dx dx by (43)

Thus the 6fteen 6eld equations arising from variation of G p have the af6ne form

(gab )gab+) 6+Rgab+2(gad+a +b + igab+c +d ) 12PP(gagb 1gabgce ) 0

q' t, +24¹8=0
r

8',.=0.

(49)

(50)

The 6eld equations arising from variation of q p are, as we have seen, equivalent to the af6ne
sets (49), (50). The. fifteenth equation, (51), is, however, a direct consequence of (50). For; taking
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the divergence of Eq. (64) we have

+ah +24+20a 0

But, bccausc y ls antlsymmetric, wc hQvc

and this vanishes because of the antisyrnmetry of y'. Therefore (52) reduces to (51).
Thus the fifteen field equations arising from variation of 6 p place upon- the field quantities g b, 0,

exactly the same restrictions as are imposed by the field equations arising from variation of y p.

Since p,b is dehned with a -', factor, let us write

8 Pb 80~ 88b

Bx' Bx 8xb Bx"

Tlien the field equations (49), (50) become

(8' '=- —,'.g 'R) -= 6iV'g" +-'(g' 8" 0'd+-'g"8'de" ) —12N'(8'|l' =- —.', g"8'8,) = 0,

8"'b+12Ã'0 =0 (55)

Taking g, i, to be of signature ( ———+), and N' to be positive, we see that, except for the term

( —6N g"), these are the classical (i.e. , unquantized) field equations for a vector meson and gravita-
tional field in the general theory of relativity.

Though the term (—6N'g'~) has the appear-
ance of a cosmological term, it is of quite the
wrong order of magnitude for such a term. For if
(55) is to represent a vector meson field in the
galilean case, 12Ã' must be of the order of
magnitude 10"cm ', while the usual cosmologi-
cal constant, being of the order of magnitude of
the reciprocal of the square of the radius of the
universe, is more like 10 " cm '. The presence
of the term (—6N'g'') would mean that, for the
case 8,=0, there would be a solution for g,b

pertaining to a space-time of constant negative
curvature, the radius of curvature being of the
order of magnitude of the range of nuclear forces.

It is easy to remove the term (—6N'g") from
the field equations. If one replaces the variational
principle (21) by

8 t (P—12N')(g)ldx'dx'dx'dx'=0 (56)

the resulting held equations are identical with
those obtained from (21), except that the term

( —6N'g'~) no longer appears in (54).'~ Despite
the presence of the projective scalar 4 in the
fundamental projective tensor G„p, there is no
rigorous scalar meson field equation in the field

equations of the present paper; the scalar 4
enters only in the combination denoted by 0,

"If one retains the (—6N'g b) term and makes the
usual approximation for weak gravitational fields of
assuming that only g44 differs significantly from its galilean
value, one finds, for the case 6 =0, that g44 satisfies the

' scalar meson equation. This result is of dubious significance,
however, since the rigorous solution for the static spheri-
cally symmetric case is known and g44 does not there have
the form of a meson potential, nor is the weak field approxi-
mation there justified for small values of the radial coordi-
nate. Thus though g44 might appear as a scalar meson
outside the nucleus the indications are tha, t it would not
so appear inside.

I have tried to find a rigorous solution for the static,
spherically symmetric case, with 8, /0, with or without
the (—6N'g b) term, but the field equations, after promising
manipulation, became too complicated to solve. In an
endeavor to assess the effect of the gravitational field on
the singularities of the meson field, I arbitrarily replaced
the vector meson field by a scalar meson field in the hope
that this would yield a rigorous solution. Surprisingly, the
field equations proved more recalcitrant than those per-
taining to the case of the vector meson, and no rigorous
solution was forthcoming. .
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This is especially curious in view of the discovery
by many writers" that in terms of a five-dimen-
sional, or of a homogeneous four-dimensional
formalism, in the galilean case, the vector and
scalar (or pseudo-scalar) meson fields fit naturally
together as a single unit. The electromagnetic
field, too, is absent from the present field equa-
tions, unless we set X= 0, in which case the
whole character of the field equations is changed,
there being fifteen independent equations for
fifteen field quantities which have the signifi-
cance of gravitational and electr'omagnetic fields
and a new scalar field. There is, however, no
longer a fundamental length in the theory. "

It may be that a broader geometrical base is
needed than the projective geometry affords. It
has long been known, for instance, that the
Maxwell equations may be regarded as belonging
to conformal geometry. " An indication of the
possibilities residing in the conformal geometry
may be seen in the following brief calculation,
which is expressed in galilean terms:

Let p be a projective vector of.index N, and
write

p.p
= 8 p. /BxP fl pp/B—x . (57)

(.onsider the equation

(58)

This combines the two equations

Jab, b+ Pao, 0

+Ob, b

(59)

which is a vector lneson equation for the vector

"See, for example, C. Mdller, Proc. Copenhagen 18
(1941).J. K. Lubanski and L. Rosenfeld, Physica 9, 117
(1942). A. Pais, Physica 9, 267 (1942). K. C. Wang and
K. C. Cheng, Phys. Rev. 70, 516 (1946).

17 Setting N =0 does not bring us back to the held
equations of P.R., formed from y~p because y00=1 while,
when N=O, G00 is a scalar function of x'.

'g E. Cunningham, Proc. Lond. Math. Soc. 8, 77 (1910).
H. Hateman, Proc. Lond. Math. Soc. 8, 223, 469 (1910);
21, 256 (1920). H. Weyl, Sitz. Preuss. Akad. Kiss. 465
(1918).J. A. Schouten and J. Haantjes, Physica 1, 869
(1934). Compare also, D. van Danzig, Proc. Camb. Phil.
Soc. 30, 421 (1934).

The second of these is a consequence of the first,
for y,~, i„,=0, and so ~p, o, o, =0, which implies (60).
The first equation, (59), can be written

(p, g b+E'((p, Ã'(po „)==0, —

(y —X 'yo, ,). It will be noted tha. t this closely
parallels the situation in the present paper, the
scalar meson being absent, and the scalar
being absorbed in the vector meson part.

Now let us go over to a restricted form of the
general conformal geometry developed by E.
Cartan, H. Weyl, J. M. Thomas, T. Y. Thomas,
0. Veblen, and others, " namely, the case in
which Uo' is independent of the space-time
coordinates. In this case 8 log Upo/Bx' vanishes,
and it is possible to express the transformation
matrix U, ' (0, r =0, 1, 2, 3, 4, 5) in the form of
a constant multiple of a Jacobian matrix for a
transformation involving six variables x .

Let p, be a conformal vector, having an
index N, but not containing the variable xs, and
write

q „=8 y./ax' —a p, /ax'.

Then the equation
go7, v =0

(62)

(63)

yields Eqs. (59), (60) above, and in addition the
equation

Vs, =o,
or

v s, bb+&'v s=o,

which is a meson equation for the scalar ps, the
X in this equation being the same inverse length
as in the vector meson equation (61) above.

Since a second-rank symmetric conformal
tensor contains not only a symmetric projective
tensor of the second rank, but also a projective
vector and a scalar, it is possible that the gravi-
tational, electromagnetic, vector meson, and
scalar meson fields (and perhaps a further scalar
field" ) may together form a single geometric
object belonging to the general conformal geom-

etry, and that; the field equations governing
them may find unitary expression within that
geometry,

I wish to thank Professor 0. Veblen, and Dr.
A. Pais for many stimulating discussions and
suggestions.

"See, for example, Chapter IV of the book Differential
lnvariants of Generalised SPaces (Cambridge, 1934), by
'I. Y. Thomas. I use here the formalism of O. Veblen,
Proc. Nat. Acad. Sci. 21, 168 (1935).

'0 Compare, for instance, F.. C. G. Stueckelberg, Helv.
Phys. Acta 14, 51 (1941).


