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In the projective theory of relativity, if, instead of the projective metric G4g of index 2N, one
uses the restricted metric yag(=Gag/Goo) of index zero, one is led to a formal unification of the
gravitational and electromagnetic fields of the general theory of relativity. The present paper
discusses the case of the general metric Gqg. It is shown that a natural four-dimensional, gauge
invariant variational principle, involving the curvature scalar of Gag, yields field equations
unifying the gravitational and vector meson fields, the range of the meson force being deter-
mined by the inverse length (12)}N. Reasons are given for supposing that an extension to

conformal geometry could prove of interest.

I. INTRODUCTION

HE projective theory of relativity? was

proposed in order to give a four-dimen-
sional significance to the five-dimensional theory,
initiated by Kaluza® and developed by Klein,?
which led to a formal unification of the gravita-
tional and electromagnetic fields of the general
theory of relativity. The projective formalism
developed by Veblen,’ was used by Veblen and
Hoffmann in P. R. in 1930. In 1932 an equivalent
formalism in terms of homogeneous coordinates
in space-time was given by van Danzig.® The
use of homogeneous coordinates was further
discussed by Pauli,” whose formulation of the
projective theory brought out similarities be-
tween it and the 1931 theory of Einstein and
Mayer.? The relationship between the Einstein-
Mayer theory and the projective theory had
also been discussed by other writers.?

1 On leave from Queens College, Flushing, New York.

20. Veblen and B. Hoffmann, Phys. Rev. 36, 810 (1930) ;
we shall refer to this paper as P. R.

3 Th. Kaluza, Sitz. Preuss. Akad. Wiss. 54, 966 (1921).
(1;2(%.) Klein, Zeits. f. Physik 37, 895 (1926); ibid. 46, 188

50. Veblen, J. Lond. Math. Soc. 42, 140 (1929); Quart.
J. Math. (Oxford) 1, 60 (1930).

8 D. van Danzig, Math. Ann. 106, 400 (1932); J. A.
Schouten and D. van Danzig, Zeits. f. Physik 78, 639
(1932). Van Danzig pointed out that his homogeneous
coordinates X* were related to the variables x® of Veblen's
formalism by the transformation

x0—>X0=¢2 yosXa=ezlya (a=1, 2, 3,4).
This amounted to a transition from an affine representa-
tion in which portions of space-time are pictured as cross
sections of systems of parallel lines in a five-dimensional
space to an affine representation in which the lines meet in
a point.

?W. Pauli, Ann. d. Physik 18, 305 (1933).

8 A. Einstein and W. Mayer, Sitz. Preuss. Akad. Wiss.
25, 541 (1931).

*J. A. Schouten and D. van Danzig, Proc. Amsterdam
34, 1398 (1931); O. Veblen, Projektive Relativititstheorie

In the present paper, the original formalism of
the projective theory is adhered to. Though less
symmetric, it seems to the writer more direct
than the formalism used by van Danzig, Schou-
ten, and Pauli; especially in regard to the ques-
tion of the index (called the excess in the van
Danzig treatment), which is.fundamental for the
present discussion. Indeed, the reciprocal of the
index has here the significance that, to within a
numerical factor, it is the range of the meson
force.

Since the ideas and basic formulas of the
projective theory of relativity have been fully
described in the literature,'® they will not be
repeated in detail here. It is convenient, however,
to list the following items:

Latin indices have the range 1, 2, 3, 4, and
Greek indices the range 0, 1, 2, 3, 4.

In four dimensions, a projective tensor T, %
has 5* components of the form exp(Nx®) T8 (x%),
where N is a constant called the index, and x°
is a gauge variable which undergoes trans-
formations of the type

x'0=x"+log[p(x*) ]. (1

Under a transformation of coordinates and
gauge variable, T%,..%- transforms as

Ix®

ox'8

/
aeee dx'=

Ts... To..  (x(x). (2)

The fundamental symmetric projective tensor

(Julius Springer, Berlin, 1933), Chap. VIII; B. Hoffmann,
Phys. Rev. 43, 615 (1933).

10 See for instance P. R., or the book ‘‘Projektive Rela-
tivititstheorie” by O. Veblen, cited in reference 9, where
(tihe gleometrical implications are developed in considerable

etail.
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Gag is of index 2N. Because
dx°/9x'*=0, 3)

the component Ggo is a projective scalar. It is
denoted by @2, so that & is a projective scalar of
index N. ‘
The zero index projective tensor, yag, is defined
by
Yapg=Gag/Goo= Gap/ P (4)

Because of (3), the components a0 of a5 form a
‘projective vector. It is denoted by ¢ The
components ¢, of ¢, acquire an added gradient
under a change of the gauge variable (1) and are
identified in P. R. with the electromagnetic
four-potential. We may remark here that they
do not have this significance in the present paper.
The zero index projective tensor, gu.s, defined

by
8o ="Yop — PaPB &)

has
2a0=0. (6)

It follows from (3) that g is an affine tensor.
It is identified with the Riemannian metric of
Einstein’s general theory of relativity. The anti-
symmetric tensor ¢ (which turns out to be
affine) is defined by

1 a‘ﬂa a‘Pb
= 2-2), @
2\ox* 9x*/
with
e=g"¢a and P=g"¢"oqu.  (8)

The curvature tensor formed from 7. is
denoted by Bgys*. Also Bgs=Bgs;* and B= ¥#3Bgs.
The corresponding tensors formed from gq are
denoted by Reca®, Rea, R.

In P. R. the field equations based on the
projective tensor of zero index are obtained from
the variational principle.

P f B(y)tdx'datdaidnt =0, (9)

by variation of y.g, the variations dv.s vanishing
at the boundary of the region of integration.
Since B is of zero index, and y=g¢ (see P. R. p.
815), the variational integral in (9) is an affine
scalar.

The field equations resulting from (9) may be
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expressed in the form

Top=Tap— paipsl' =0, (10)

where

(11)

Since T, is a projective tensor of index zero,
Teb, Ty, and Ty are affine tensors. Thus the
fifteen equations (10) separate naturally into the
affine sets

Pas=Bas—5YapB, T=7%Tap.

Tab= (Rab —_ %gabR)

+2(g% bt 8% ¢% %) =0, (12)
T0a5¢ab,b= ’ (13)

Here the comma denotes the affine covariant
derivative with respect to gs. Equation (14) is
an algebraic consequence of (12); it is obtained
by multiplying (12) by g and summing over a
and b. Thus there are only fourteen algebraically
independent field equations. This is important,
because with ve=1 there are only fourteen
independent quantities 7.5, and fifteen inde-
pendent field equations would give an over-
determination of the field.

The field equations (12) and (13) are precisely
those of the general theory of relativity for the
case of a field of gravitation and electromagnet-
ism in the absence of matter. Equation (12)
equates the gravitational stress-energy-momen-
tum tensor to that of the electromagnetic part of
the field, while Eq. (13), together with the
definition of ¢, gives the Maxwell equations in
their general relativity form.

In this way the projective theory of relativity
provided a unification of the gravitational and
electromagnetic fields in the general theory of
relativity.

II. VARTATIONAL PRINCIPLE BASED ON G

An attempt was made in P. R. to use field
equations based on the general projective metric
Gos of index 2N. The field equations there
discussed were of the type (10), with the curva-
ture tensor formed from G instead of vas. Like.
their prototype, these equations were related by
one algebraic identity, but they were not derived
from a variational principle. Their form was
complicated and though a relativistic Schrodinger
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equation for the quantity ®%° could be found in
the field equations, the possible physical signifi-
cance of the field equations was obscure.

Let Pgys¢ be the projective curvature tensor
formed from G.g, and let its contractions be Pg;
and P, where

P=GRPg, (15)

Using the five-dimensional representation, it
would be natural to consider field equations
resulting from the variational principle
5 f P(G)Matdx'dx®dnidxt =0, (16)

under variations of the Gas. Because of the

integration over x°, the integral in (16) is gauge

invariant. When the field equations are separated

into their affine sets, fourteen are identical with

those given explicitly in P. R. on page 820,

while the fifteenth can be expressed in the form

of a relativistic Schrodinger equation for the

quantity ®, with an addition to the usual mass

term. This fifteenth equation cannot be regarded

as giving a scalar field in addition to the gravi-

tational and electromagnetic fields, however,

since, as in P. R., the quantity ® enters the
field equations only in the combination 6,= (¢,

— N9 log®/0x%). The physical significance of

the equations remains obscure.

Now the projective theory of relativity is a
four-dimensional theory. It is therefore of inter-
est to consider a variational principle based on a
quadruple integral over space and time. In this
case there will be no integration with respect to
the gauge variable x° so that if we wish the
variational integral to be gauge invariant we
must have it a scalar of zero index, and thus
affine.

Since Gggis of index 2V, G*f is of index (—2N).
The Christoffel symbols formed from G,z are of
“index zero. So is the projective curvature tensor,
Pg,;, formed from them, and also the generalized
Ricci tensor, Pg;, obtained by contraction. This
means that the projective curvature scalar P is
of index (—2N). Also, because Gu is of index
2N, its determinant, G, is of index 10V.

Hence the integrand, P(G)} in (16) is of
index. 3NV.

The simplest way to convert it into a quantity
of zero index is to use the projective scalar ® of
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index NV which is contained in Gug. By using &
we do not bring into the variational integral any
quantities other than components of G, and
their first and second derivatives.

Therefore, we propose to consider the following
gauge invariant, four-dimensional variational
principle :

6f{P(G)5/(I>3}dx‘dx2(lx3dx“=(). 1

We shall show that, whether we vary Gag or vag,
the resulting field equations, though not identi-
cal, are physically equivalent.

If, following the usage of Veblen, we write

P=~P. (18)
so that P is of zero index, we have, by (15),
P=a—2pP, (19)
Also, by (4),
G=2310% =g, (20)

Hence the wvariational principle (17) can be
written in the alternative form
BfP(g)%dxldedxsdx“:O. (21

Later a slight modification of (17) and (21) will
be introduced.

III. LEMMAS CONCERNED WITH THE
VARIATION

Because of the &2 factor in (17), the method
of Palatini® is not applicable to the present
variation. Obtaining the field equations in their
general, projective tensor form is thus difficult.
But since we are interested mainly in the affine
subsets of the projective field equations, the
problem may be avoided by using the following
lemmas:

Lemma I

After making the usual Green’s theorem trans-
formations of the calculus of variations .and
discarding terms because the variations of Gag
vanish at the boundary, let

8 f Kdx'dxdx3dxt = fT“ﬁBGuﬂdxldx%x“dx“, (22)

1t A, Palatini, Rend. del Circolo Matematico di Palermo
XLIII, 205 (1919).
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under variations of Gus, so that the field equa-
tions resulting from

6dex’dx2dx3dx"=() (23)
are, on multiplying by Gy to make them of
zero index,

G T =0. (24)

Let indices of 7"* be lowered by v.s. Then the
affine equations /

GooT*?=0, (25)
GooT*=0, (26)
GooVepT* =G =0, (27)

are the Euler conditions for (22) under variations
of gw, ¢a, and logGoo, respectively.

Proof of Lemma 1
By (4) and (5), we have

Gap=GooYap = Goo(gap+ 0app). (28)

So
0Gap=Go0(8gup~+ Cad 08+ 080 0a) +YapdGoo-

Also, by (6) and the fact that po=7v0=1, we
have

(29)

5ga0=0, 5§00=0. (30)

Therefore, by (22), and using the fact that 7%

must be symmetric,

B f Kdx'dx*dxidxt = f TG (pdxc dx?dx’dx?

= fT"ﬁ 1Go0(6gap+20adep)
, +vapbG oo} dx'dx?daPdxct
= f (GooT6gap+2Go0 1™ pabpn
+Goo Ty apd logGoo)dx'dx?dxid
= f (GooTbgas+ 2G0T *6 b
+GQQT5 logGoo)dxldedx3dx4,
since

Tab‘ﬁa = Tab'YaO =T

Thus variation of g alone yields (25), varia-
tion of ¢, alone yields (26), and variation of
logGgo alone yields (27).

2 Note that this equation involves T, rather than T.
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Lemma II

After making the usual Green's theorem
transformations of the calculus of variations and
discarding - terms because the variations of 7.4
vanish at the boundary, let

) f Kdx'\dx*dx*dxt = f ToBoyapdx'dx?dxidx’, (31)

under variations of vy.s. Then the field equations
resulting from

) I‘deldxzdx%x“ =0 (32)
will be _ B
Tob — 52608 T = 0. (33)
where o
T = TPy . (34)
Also, the affine equations
Tab=(), (35)
T’Oa =0, (36)

will be the Euler -conditions for (32) under
variations of gm, ¢, respectively, while the
fifteenth affine equation,

Too— T':O, (37)

of the set (33) will be an algebraic consequence
of (35).

Proof of Lemma 11

That the field equations are (33) rather than
just T*f=0, is due to the fact that yoo=1 always.
For, since 8v9o=0, we may infer from (32) and

(31) only that® _
T = 5026f W,

where W is some function of x*; and contraction
by means of vas shows that W= T.

The proof that (35), (36) result from variation
of gu, ¢a, respectively, is so similar to the proof
in Lemma I it need not be given in detail.

That (37) is an algebraic consequence of (35)
follows from P. R. page 820, footnote 7. Thus,
in the present notation,

T ="as T = (gup+ ¢atps) T
= (gaptYa0v80) T% = gas T+ va0yp0 T
=gab T+ Too.

8 See P. R., p. 818.
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Therefore,

Too— T=gu T (38)
From (38), we see incidentally that (27) can be
reduced to GoT0o=0 by algebraic manipulation
of it and (25).

Lemma III

The field equations (25) are identical with the
field equations (35), and the field equations (26)
are identical with the field equations (36).

Proof of Lemma 111

Equations (25) and (35) are each the result of
varying g in (22) (which is the same as (32)).
Equations (26) and (36) are each the result of
varying ¢,.

IV. THE AFFINE FIELD EQUATIONS

By Lemmas I, I1, and III, we see that varying
Gap vields fifteen field equations without an
algebraic identity between them, while varying
vas yields fifteen equations, of which only four-
teen are algebraically independent. Further, we
see that, so far as these fourteen equations are
concerned, it does not matter whether we vary
Gap OF vas. It will appear in the course of the
work that, though there is no algebraic relation
between the fifteen field equations obtained by
varying Gag, there is a simple differential relation
which in effect reduces them to fourteen inde-
pendent equations equivalent to those obtained
by varying vg.

To perform the variations, we use the value of

P as calculated by Veblen,* namely,
P=B—8N@ ,+12N2(1+6°0,),  (39)

where the comma denotes the covariant deriva-
tive with respect to g, and

(40)
(41)

OaE ‘Pa""bm

®,=N"19 logd/9x=.

6 (9ad) f (9)¥dx'dx?dxidxt = f (1g%%) (g)}ogardx'dx?dx’dxt.
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Since =1 and ¢o=1, we have 0,=0. Therefore,
because of (3), 6, is an affine vector. It will be
recalled that ¢, is not affine, being altered by an
additive gradient under a change of the gauge
variable. This added gradient is just cancelled
by the alteration induced in &, by the change
of gauge, with the result that 6, is left unaffected.

Because of (39), the variational principle (17),
in the form (21), becomes

6f{B—8N0"',a+12N2(1 +6°6,)} (2)*}
Xdxldx?dx*dxt=0. (42)

By the familiar formula for the contracted
covariant derivative of a contravariant vector,
we have

<
#.0() =— (20"}

9x°

Therefore, since variations vanish at the bound-
ary, Green's theorem shows that the second term
of the integrand in (42) will contribute nothing
to the field equations. '

The part B(g)? of the integrand is the same as
the integrand of (9), the result of varying which
is already known. This leaves only the term
12N2(1460,) (g)* needing special attention.

We shall use the following well-known for-
mulas:

Since g*%gy, = 8,°

2508 = — g™0gs.,

or
6gcd —_ _g‘wgbdagabf (43)
Also
6g = (8ga») (g8™),
so that
8(2) = %(2)g"dgas- (44)

Performing the needed variations, we have in
turn:

(45)

% Quart. J. Math. (Oxford) 1, 60 (1930), Eq. (5.17) for the case n=4, and Eqgs. (5.6), (5.3).
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Also
5<aab)f0“0a(g)*dx1dx2dx3dx4=5(oab> f (02658 (g) V) dx'dx2dx3dx?
= f (6a65) (8g*+ 5 gtge4g.a) () dx'dxdu’dn?
= f (6a65) (—gog*+5g°¢°?) (¢) Yogoadx'dx?dxd
- f (= 009+ 3g°4096,) () 16goadac'da’dndt, (46)
Again,
Sceay f 0°04(2) tdx'dx dx*dx? = §(ea) f 2°(0a—Pa) (0r — Bs) (g) M dx?dxdxt

- f 2090y — By) da(0) At

- f 200(g) o pudr'd’dadn’ @n
and finally, by (40) and (41),

1 0 lOgGoo 190 IOgG
6(1ogaoo>fO“Ba(g)*dxldx%lx‘*dx“=6(1ogGoo)fg“”(<pa~-— )( p ———

2N 9x° 2N oxP

1 9 logG 1 8(6 logGoo)
_ f zgab(%___ °°)( N ik )(g)*dx‘dxzdx"‘dx“
2N oxe

1 3(8 logGoo)
= f (__gabea(g)'})_dxldxzdﬁdx‘

dx?

) (g)¥dx'dx2dx3dx?

( )*(a b{"gabo © %})(m logGuode'dac*dxdxt
g X

=f (}\;ou,a)@%a logGoodadatdx’dict. (48)

In combining the results (45), (46), (47), and (48) with the known results for the part B(g)} in
(42), we must allow for a minus sign that occurs in the latter:

afB(g)deldxzdx?'dx“: f Tus(g)ovPdxtdxdxdxt = — f Tf(g)}5yapdxldx?dxidxt, by (43).

Thus the fifteen field equations arising from variation of G.s have the affine form

(R®—3g"R) — 6 N'g+2(g°¢*oat 1" ap) — 12N(0°6°— §g6°0.) =0, (49)
0%y +24 N2 =0, (50)
6° ,=0. (51)

The field equations arising from variation of y.s are, as we have seen, equivalent to the affine
sets (49), (50). The fifteenth equation, (51), is, however, a direct consequence of (50). For, taking
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the divergence of Eq. (64) we have

«;ab, bat 24N20a' a

But, because ¢* is antisymmetric, we have

L o((@'e)

BANESH HOFFMANN

0. (52)

@w,h:' - T
(@F ot
and so .
R {a<g>w} 1 8x(g)'e)
Jba =T e (e
(2)* dx* dxb (g)}  9x°9xP

and this vanishes because of the antisymmetry of ¢?. Therefore (52) reduces to (51).
Thus the fifteen field equations arising from variation of Ges place upon the field quantities ge, 6q
exactly the same restrictions as are imposed by the field equations arising from variation of yag.

Since ¢q is defined with a 1 factor, let us write

dps Opp 00, 36,
Oap = 2 P =~ e (53)
dxb  Jxe  Ixb  Ix¢
Then the field equations (49), (50) become
(Rab - %g“bk) 6N2gub A+ .é_(gcagucebd+ }Igabecdgdc) 12N2(6m,9b égabgcgc) - (), (54)
89 4+ 12N26 = 0. (55)
Taking g, to be of signature (— — —+), and V? to be positive, we see that, except for the term

(—6.N?%ge?), these are the classical (i.e., unquantized) field equations for a vector meson and gravita-

tional field in the general theory of relativity.

Though the term (—6N?%®) has the appear-
ance of a cosmological term, it is of quite the
wrong order of magnitude for such a term. For if
(55) is to represent a vector meson field in the
galilean case, 12N? must be of the order of
magnitude 10% cm™2, while the usual cosmologi-
cal constant, being of the order of magnitude of
the reciprocal of the square of the radius of the
universe, is more like 1075 ¢cm™2. The presence
of the term (—6N?%g*®) would mean that, for the
case 6,=0, there would be a solution for g
pertaining to a space-time of constant negative
curvature, the radius of curvature being of the
order of magnitude of the range of nuclear forces.

It is easy to remove the term (—6N?%??) from
the field equations. If one replaces the variational
principle (21) by

6f (P—12N?)(g)¥dx'dx?dx*dxt=0, (56)

the resulting field equations are identical with
those obtained from (21), except that the term

(—6N?g®) no longer appears in (54).1% Despite
the presence of the projective scalar ® in the
fundamental projective tensor G.g, there is no
rigorous scalar meson field equation in the field
equations of the present paper; the scalar &
enters only in the combination denoted by #..

15 If one retains the (—6N%gq) term and makes the
usual approximation for weak gravitational fields of
assuming that only gy differs significantly from its galilean
value, one finds, for the case 8,=0, that g satisfies the
scalar meson equation. This result is of dubious significance,
however, since the rigorous solution for the static spheri-
cally symmetric case is known and g4 does not there have
the form of a meson potential, nor is the weak field approxi-
mation there justified for small values of the radial coordi-
nate. Thus though gi might appear as a scalar meson
outside the nucleus the indications are that it would not
so appear inside.

I have tried to find a rigorous solution for the static,
spherically symmetric case, with 8,70, with or without
the (—6N2g,) term, but the field equations, after promising
manipulation, became too complicated to solve. In an
endeavor to assess the effect of the gravitational field on
the singularities of the meson field, I arbitrarily replaced
the vector meson field by a scalar meson field in the hope
that this would yield a rigorous solution. Surprisingly, the
field equations proved more recalcitrant than those per-
taining to the case of the vector meson, and no rigorous
solution was forthcoming.
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This is especially curious in view of the discovery
by many writers! that in terms of a five-dimen-
sional, or of a homogeneous four-dimensional
formalism, in the galilean case, the vector and
scalar (or pseudo-scalar) meson fields fit naturally
together as a single unit. The electromagnetic
field, too, is absent from the present field equa-
tions, unless we set N=0, in which case the
whole character of the field equations is changed,
there being fifteen independent equations for
fifteen field quantities which have the signifi-
cance of gravitational and electromagnetic fields
and a new scalar field. There is, however, no
longer a fundamental length in the theory."

It may be that a broader geometrical base is
needed than the projective geometry affords. It
has long been known, for instance, that the
Maxwell equations may be regarded as belonging
to conformal geometry.’® An indication of the
possibilities residing in the conformal geometry
may be seen in the following brief calculation,
which is expressed in galilean terms:

Let ¢. be a projective vector of index N, and
write .

Pap=0¢a/02F —J5/dx". (87)
Consider the equation
¢ap, 8= 0. (58)
This combines the two equations
Pab, b+ a0 =0, (59)
©ob, 5 =0. (60)

The second of these is a consequence of the first,
for @ab,ba=0, and so ¢,0,0,=0, which implies (60)
The first equation, (59), can be written

‘!’ab.h'{“Ng((pn,’“N‘]‘ﬁO,m) =() (61)

which is a vector meson equation for the vector

16 See, for example, C. Mdller, Proc. Copenhagen 18
(1941). J. K. Lubariski and L. Rosenfeld, Physica 9, 117
(1942). A. Pais, Physica 9, 267 (1942). K. C. Wang and
K. C. Cheng, Phys, Rev. 70, 516 (1946).

17 Setting N=0 does not bring us back to the field
equations of P.R., formed from yqg because yoo=1 while,
when N=0, Gy is "a scalar function of xe.

BE, Cunnmgham Proc. Lond. Math. Soc. 8, 77 (1910).
H. Bateman, Proc. Lond. Math. Soc. 8, 223, 469 (1910);
21, 256 (1920). H. Weyl, Sitz. Preuss. Akad. Wiss. 465
(1918). J. A. Schouten and J. Haantjes, Physica 1, 869
(1934). Compare also, D. van Danzig, Proc. Camb. Phil.
Soc. 30, 421 (1934).
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(¢a—N"100.4). It will be noted that this closely
parallels the situation in the present paper, the
scalar meson being absent, and the scalar ¢,
being absorbed in the vector meson part.

Now let us go over to a restricted form of the
general conformal geometry developed by E.
Cartan, H. Weyl, J. M. Thomas, T. Y. Thomas,
0. Veblen, and others,’® namely, the case in
which U,° is independent of the space-time
coordinates. In this case 9 logU,°/9x* vanishes,
and it is possible to express the transformation
matrix U,° (¢, 7=0, 1, 2, 3, 4, 5) in the form of
a constant multiple of a Jacobian matrix for a
transformation involving six variables x°.

Let ¢, be a conformal vector, having an
index NV, but not containing the variable x5, and
write

Car=0¢,/dx™—dp./0x°. (62)

Then the equation
Por, 7= 0 (63)

yields Eqgs. (59), (60) above, and in addition the
equation

Poa, a = Oa (645)

or

@5+ N2p;=0,

which is a meson equation for the scalar g5, the
N in this equation being the same inverse length
as in the vector meson equation (61) above.

Since a second-rank symmetric conformal
tensor contains not only a symmetric projective
tensor of the second rank, but also a projective
vector and a scalar, it is possible that the gravi-
tational, electromagnetic, vector meson, and
scalar meson fields (and perhaps a further scalar
field?®) may together form a single geometric
object belonging to the general conformal geom-
etry, and that the field equations governing
them may find unitary expression within that
geometry.

I wish to thank Professor O. Veblen, and Dr.
A. Pais for many stimulating discussions and
suggestions.

19 See, for example, Chapter [V of the book Differential
Invariants of Generalised Spaces (Cambridge, 1934), by
T. Y. Thomas. I use here the formalism of O. Veblen,
Proc. Nat. Acad. Sci. 21, 168 (1935).

20 Compare, for instance, E. C. G. Stueckelberg, Helv.
Phys. Acta 14, 51 (1941).



