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A detailed discussion of the energy loss of negative mesotrons in matter is presented. The
energy range considered is from +2000 ev to the lowest quantized orbit of the mesotron. The
most important mechanism for energy loss is that of electron collisions except very near the
nucleus, where radiation losses are important.

The time for the over-all process is of the order of 10 "sec. in condensed matter and 10 ' sec.
in normal air. In chemical compounds the probability of capture near the various atoms is
roughly proportional to their atomic numbers.

1. INTRODUCTION

ECENTLY the significance of experimental
results' on the capture of negative mesotrons

in matter has been discussed from the point of
view of the information that it gives concerning
the interaction between mesotrons and nucleons.
The interaction of slow negative mesotrons with
matter has been described as consisting of two
steps first, one in which the mesotron is cap-
tured in the Bohr orbit with a radius of the order
of 10 " cm near the nucleus; second, a step in
which more typically nuclear interactions play a
role during which the mesotron is destroyed by
its collisions with the nearby nucleons. The
present paper will be primarily concerned with
the detailed description of the first step.

The chief purpose of a detailed description of
the capture process is to make sure that the
time required for it is short compared with the
natural decay time of the mesotron ( 2&(10 ~

sec.). Ke propose to discuss in particular how
the physical and chemical state of matter in-
Huences the capture process. In this connection
we shall investigate also the relative probabilities
of the capture of mesotrons near various types
of nuclei in case the slowing down material is
not a pure element.

Throughout the greater part of the capture
process the wave-length of the mesotron is short as
compared to the geometric dimensions of the field
in which this particle is moving. It is therefore
permissible in most of our arguments to consider
the motion of the mesotron as purely classical.

M. Conversi, E. Pancini, and O. Piccioni, Phys. Rev.
71, 209 (1947).'E. Fermi, E. Teller, and V. Weisskopf, Phys. Rev. 71,
314 (1947).

2. ENERGY LOSS OF ELECTRONS OVER 2000 EV

As long as the energy of the mesotron is more
than 2000 ev, the velocity of the mesotron is

greater than the velocity of the valence electrons.
The slowing down of the mesotrons can then be
treated according to the conventional methods
applicable to fast heavy particles. In the slowing
down of the mesotron the longest time is spent
in the state when the mesotron moves with
relativistic velocities. The consequences of the
decay of the mesotron during this phase of cosmic
radiation are well known and will not be dis-

cussed here. The time needed to slow a mesotron
from the relativistic 10' volts to 2000 ev is

about 10 ' to 10 " second in condensed matter,
or 1000 times as long in air. This part of the
slowing process is again not our primary concern.
It will be found that the time involved is con-

siderably longer than the time needed for the
later parts of the capture process. The proba-

bility of spontaneous decay during this phase,
which corresponds to a range in condensed

matter of a few centimeters, is only of the order
of 10 4. Consequently a negligible fraction of the

decays observed with the ordinary experimental
arrangements can be attributed to it.* Most of

this time of 10 " second is spent in the phases

when the mesotrons still have velocities close

to the light velocity. Actually the formula for

energy loss per unit time is

dS' 47re4NZ (b, q
(&)

~v
Here 8' is the energy of the mesotron, V its

* Decays during this phase are completely eliminated if
the observations are carried out by delayed coincidence.
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velocity, m the electron mass, X is the number of
atoms with atomic number Z per cubic centi-
meter; b, and b;„are the extreme values of
the collision parameters. The logarithmic factor
decreases during this interval of time from a
value of the order 10 to zero. The latter value is
reached when the mesotron velocity becomes
equal to the velocity of an electron. Thus the
contributions of successive electrons vanish.
Finally, the velocity of the mesotron drops
below that of the valence electrons. From then
on we shall discuss the process of further energy
loss in detail.

I=m'vo' V/l' '. t (2)

The collision cross section o. for collisions in
which the deHection is appreciable is, on the
other hand, of the order of magnitude:

0. = (e'/mv o') '. (3)

The energy transferred in collisions of this type
not forbidden by the Pauli principle will always
be positive and of the order of magnitude

W= @zap V.

3. LOSS OF ENERGY TO A DEGENERATE
ELECTRON GAS

When the energy of the mesotron has dropped
below 2000 ev, and its velocity is therefore less

than the velocity of the valence electrons, for-
mula (1) no longer represents a useful approxi-
mation, and the loss of energy to electrons can
better be approximated in the following way.

We consider the mesotron moving inside a
degenerate electron gas with a velocity V much
smaller than the maximum velocity vp of the
electrons. In this case we can estimate the
energy loss as follows: in an individual collision
between an electron and the mesotron, the
change in speed of the electron will be of the
order of magnitude U. Indeed for a head-on
collision it would be 2U. Since the electrons
belong to a degenerate gas, it is clear that all
the collisions for which the final velocity of the
electron lies inside the occupied zone of the
velocity space will be forbidden on account of
the Pauli principle. Only electrons with speeds
close to vp by amounts of the order of U will,
therefore, be capable of colliding. Their number

per unit volume is of the order of magnitude

V«vp (6)

that the mesotron should move slowly with re-
spect to the electrons. The second is due to the
fact that when a negative mesotron moves
through an electron gas, the density of electrons
near it is reduced by the electrostatic repulsion.
This rarefaction of the electrons near the meso-
tron effectively neutralizes its charge at distances
of the order:

(afi/mv o) ',

where c is the Bohr radius

A.'/me'.

From (2, 3, and 4) we can calculate the order of
magnitude of the energy loss per unit time:

—(d W//dt) = Wortvo =m'e4V'/fz'
=m'e4T/(pIt') =T/t„(5)

where T is the kinetic energy of the mesotron,
to pIt——'/m'e'=4 84.)&10 '~ sec. , and p is the mass
of the mesotron. We have set @=200m.

The difference in the velocity dependence of
the energy loss according to (1) and (5) which
hold, respectively, for high and low velocities of
the mesotron should be noticed. For high veloci-
ties the-energy loss per unit time is inversely
proportional to the velocity of the mesotron;
for low velocities it is directly proportional to the
square of the velocity. There is, therefore, a
maximum in the energy loss which is found near
the boundary of validity of the two formulae;
namely, for mesotron velocities of the order of
the electron velocity vp. One might wonder why
the energy loss (5) is independent of the density
of the degenerate electron gas through which
the mesotron moves. Actually the collisions occur
between the mesotrons and the fastest electrons,
and the collision cross section decreases as 1/vo'.
This strong dependence on vp just suffices to
cancel the effect of great electron density, great
energy loss per collision, and great relative
velocity of the colliding particles. Naturally, if

(5) were taken strictly, one would obtain the
absurd result that the energy loss remains un-

changed een when the density of the electrons
becomes extremely small.

Actually there are two reasons that limit the
validity of (5) for low electron density. One is

expressed by the condition
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The quantitative treatment of the electron-
mesotron collision can be carried out according
to the Born approximation method. This is
justified if the formula

e'/kvo &1 (9)

me'V' |-
8prkp ~p ~p &p

(cos8 —cos8') sin 8d8 sin 8'd 8'd p
X (11)

sin'(-,'P)

The meaning of the integration variables is
the fo11owing: 8 and 0' are the angles between
the directions of initial and final electron velocity
and the direction of the mesotron velocity; P is
the angle of defiection for the electron; and q is
given by

cosP =cos8 cos8'+ sin 8 sin 8' cos op.

holds. Now if the Born approximation is appli-
cable, the region in which the relevant collisions
take place has dimensions equal to the deBroglie
wave-length of the scattered particle. In order
that expression (5) be applicable we must de-
mand that this wave-length be less than the
length given in (7). It follows that

k/mvp & (ah/mvp)'* or mvp/fz) 1/a. (10)

The left-hand side of the last inequality is
approximately equal to the cube root of the
density of the electron gas. Condition (10)
means, therefore, that the density of the electron
gas must be such that, on the average, more
than one electron is found in a cube having a
side equal to the Bohr radius. Inequalities (9)
and (10) are identical in content. It is easy to
show that if they are not fulfilled (5) does not
apply, and the mesotron loses energy at a much
slower rate than the one given by (5). Conditions
(6) and (10) are independent, and the more
restrictive of the two will apply. Condition (10)
is usually fulfilled approximately in condensed
matter of not too small density. In the case of
gases, however, it will be satisfied only within
the atoms, and therefore the energy loss will be
confined to these regions.

Quantitatively, the energy loss of a slow
mesotron in an ideal degenerate electron gas is
expressed by the following integral:

dS' 4 m'e4V'

dt 3x A, '
ln

4'm in

i37&0
ln , (15)

3m. k' c
or finally,

d H/' 4 m'e4T 137vo
ln-

dt 3~ pk' c
(16)

The logarithm will be of a small numerical order
of magnitude and will have somewhat larger
values in the deep portions of the atom. For
estimates of the order of magnitude it will be
permissible to use formula (5).

The previous theory will be applicable to
those cases in which the electrons in the vicinity
of the mesotron can properly be described as a
degenerate gas. In particular, the theory will

break down within the E shells of the atoms,
since the electron density there is less than the
value corresponding to the degenerate gas. We
shall return to this question in the next section.
We shall have to give special consideration to
the case of insulators and gases where electrons
may be excited only by discontinuous amounts.
The case that most nearly approaches the ideal
conditions is that of the metals, which we shall
now discuss.

The integral diverges logarithmically near
/ =0. The divergence can be removed by taking
into account the fact that collisions involving a
small value of f occur at large distances where
the mesotron charge is screened.

Collisions at a distance greater than (7) will
not contribute, and one needs to consider only
momentum changes greater than

(Itmv o/a) &,

which is 5 divided by the length (7). From this
one finds that the integration need be carried
down only to a value

P;„=(fimvo/a) l(mvo)
= (e'/Avp) l = (c/137vp) l. (14)

One should notice that if (10) is fulfilled, P; is
small compared with unity, as it should be.
Eliminating the divergence with this prescrip-
tion, one ca.n evaluate (11) and find finally the
following estimate for the rate of energy loss:
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4. METALS

In order to calculate the energy loss as a
function of the mesotron energy, we have to
calculate the average value of the kinetic energy
T which is to be substituted in formula (5). In
calculating average values of 1, one makes use
of the fact that the probability of finding the
mesotron in a given volume element is weighted
by the square root of the kinetic energy that
the mesotron has at this position. The reason
for this weighting is that the volume in the
momentum space available to the mesotron is
proportional to

Ke shall use the potential obtained from the
statistical model

Z'~Pe' pp(x)

where we have set for the distance from the
nucleus r =xbZ —

& and the length b is

b= (9 pr'/128)& XBohr radius
=0.47&(10 ' cm. (20)

The function q has been tabulated. ' In some of
the following calculations we use the crude
approximation**

T&dT= T'dig. (17) y =0.4/x. (21)

The average kinetic energy is therefore:

(W —U)&dr

J~(W—U)'dr

WPdr+Jt ( —U)&dr

(18a)

where U is the potential energy and dv is the
volume element.

For high mesotron energy U will be negligible
compared with W, and T will be equal to lV.
As the energy approaches zero, namely, that
value for which the mesotron can no longer
freely pass from one atom to another, the average
kinetic energy becomes appreciably larger than
8" because U is negative. For S' negative, the
mesotron is bound to a definite atom. For nega-
tive values of energy the kinetic energy is of the
order of magnitude of the absolute value of 8",
as will be discussed later.

For positive 8' values one obtains a low limit
for 7' and the energy loss replacing (W—U) I by
the smaller expression W&+ (—U) & in the numer-
ator of the integral, and replacing (W—U)& by
the larger expression W'+( —U)& in the de-
nominator. The error caused by these substitu-
tions is a maximum when W is equal to the
absolute value of U, and is then a factor 2. We
write thus

Approximating a lattice cell by a sphere one
obtains F by integrating (18a) over the cell.
The second integral in the numerator can be
performed by partial integration using the differ-
ential equation' for y. One finds

X-~W'+4~sPI &ZLI —&(xp)+x«'(xp) jT= (22)
XQ

X '8'+4xebsf'Z &
~

q»x&dx
0

X 'W&+4mZe'b&(1 —0.8/. xp)r=
X '8"*+3.96eb"'Z ~x ' (23)

where xo is given by the relation:

1/X =47rb'x pP/3Z. (24)

Values of T as obtained from (23) are given in

Table I for graphite and iron. One finds that T
has a flat minimum at 7 ev and 20 ev, respec-
tively. This will be, therefore, the value of the
energy at which energy is lost at the slowest
rate. At higher energies Table I shows that T'

becomes less than g. This is because of the
approximation which we made in substituting
(18) by (18a). Actually 2') W always holds, and

we underestimate 7 if we use T=S" for high
values of W. From Table I and formula (5),
one can calculate, for the two cases in question,

8 E. Fermi, Zeits. f. Physik 48, 73 (1928}.**From x =0.5 up to almost x = 8 the quanti ty xp
remains between the limits 0.3 and 0.5.

Here N is the number of atoms per cubic centi-
meter, and xo is the value of x at the edge of
the cell. Using (21) we get
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Since at S'=0, T increases with decreasing S'we
may use (26) as a lower limit of T at negative
energies. We shall use for the energy-loss ex-

pression (5), and substitute for T expression (25)
or (26), whichever is the greater. Expression (26)
will be relevant from g =0 to —%=50 ev. The
time required to cross this energy region is of
the order of tp=4. 84X10—"sec. In the range
where T is estimated by (25), W as a function of
time is given by

—W= T(0)e~"" (27)

This formula is valid as long as the statistical
model is permissible, i.e., as long as the mesotron
moves outside of the radius of the E-shell. At
distances smaller than this radius the actual
electron density is less than the density obtained
from the statistical model. Nevertheless the
energy loss of the mesotron continues to proceed
according to the formulas (16), (5), and (27)
even when the mesotron is somewhat closer to
the nucleus than the radius of the X-shell. The
reason for this is that the energy loss of the
mesotron does not depend on the electron den-

the time needed for the mesotron to lose energy
from 2000 ev to zero. One finds 2.6 X10 '" sec. in

graphite and 2.2X10—"sec. in iron. Somewhat
longer times would be found in condensed matter
of lower density. As a practical average time for
crossing the interval from 2000 ev to zero we

take for all types of condensed matter about
3 X 10 sec.

We proceed now to the question of energy loss

when H/' is negative, when the mesotron can be
considered bound to a special atom. If the
energy is negative and its absolute value is

sufficiently large, it is a sufficient approximation
to set the kinetic energy

T=ni Wi, (25)

where 0. is a number of the order of unity.
(Actually n = 1 for a Coulomb field and n & 1 for
the statistical potential. ) Expression (25) will

lead to a very small loss of energy for small

absolute values of R. Actually at 8'=0 the
kinetic energy does not vanish, and may be
obtained from (23):

3.2e'Z4~'
T(0) =— (1—0,8/xo). (26)

bXp'

TABLE I. Average kinetic energy as a function of the
total energy.

W(ev)

0
5

10
20
30
50

100

r(ev)
Graphite Iron

36
23
24
27
32
45
83

86
62
56
55
57
65
95

d S' 8e4m'T (mao')
ln(

dt. 3ortih' 4 koi )
(28)

sity, and thus the failure of the statistical model

to predict the correct density within the X-shell
has no direct effect on the behavior of the
mesotron.

When the mesotron moves inside the E-shell
it is not permissible, however, to apply the
method of deriving formulas (16) and (5) which

we have given above. In a collision the energy
map V is exchanged, and a time not shorter than
t't/msoV is needed to describe such a collision.

During this time the mesotron moves through a
distance It/two. Our discussion so far has assumed

that during a collision the mesotron moves in a
straight line. When the mesotron moves along

the E-orbit of the atom its path has a radius of
curvature equal to k/neo. For orbits on or
within the X-shell it will be a better approxi-
mation to consider the time-dependent dipole

consisting of the mesotron and a unit positive

charge located on the nucleus. One may then

calculate, by applying perturbation theory to
the statistical model, the energy exchange be-

tween the mesotron and the electrons.
If one assumes that the mesotron moves on a

circular orbit one may evaluate the rate of energy
loss dW/dt The re.sult of the calculation is

identical with (16) provided that the minimum

momentum change of the electrons (Kimono/a)&

obtained from (7) is greater than the minimum

momentum change ftoi/so compatible with the

requirement that a mesotron with angular ve-

locity ~ exchanges energy with the electrons in

quanta 5+. At radii somewhat smaller than

the radius of the X-shell the inequality hoi/so

) (Amvo/a) & holds for not too light atoms. Then

(16) must be replaced by
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Expression (5) remains a satisfactory approxima-
tion as long as the logarithmic factor does not
become small compared to unity, i.e, , as long as
the energy bc' transferred to the electrons is
smaller than the maximum kinetic energy mv02/2

of the electrons. For mvp'&(Ace the perturbation
calculation gives

drop from r1 to r2

103 —0.117 to (32)
Z12/7

d W 2"'7'*'noe'r' (Ze'q l

3a& I pr~)
' (29)

where np is the electron density near the nucleus
and r is the radius of the circular orbit of the
mesotron. Expression (29) agrees with the results
of calculations on internal conversion, for the
non-relativistic case, provided that the energy of
the ejeced electron is great compared with the
energy of the X-electrons. 4 It is of interest to note
that (28) holds if the radius r of the mesotron
orbit is greater than

p C

fr2 rp = (r2 —rp )
4e4Z

78 16——
~p

Z12/? Z4
(33)

While the classical expression for the radiation by
an accelerated charge gives the time spent
between r2 and the lowest quantum orbit
r, =k'/Zpe',

r, (m/I )&rx =0=.171rx. (30)

Here r~ is the radius of the X-shell. For r&r1
expression (29) is valid.

For very small values of r, energy loss by
radiation is faster than energy loss due to
inter'action with electrons. For circular mesotron
orbits one finds by comparing (29) with the
radiated energy that radiation becomes predomi-
nant for r &r2, where

r2 4'~'(m/p——)&(IIc/e')'"Z '"r.
=(4.5/Z"") X10 "cm, (31)

where r, =5/mc is the Compton wave-length
divided by 2m.

From (29) one can calculate the time needed to

For heavy nuclei r1 becomes smaller than r&,

and there is no region in which (29) determines
the energy loss. Further consequences of high
Z-values are that rp becomes less than the nuclear
radius and that pair production begins to play a
role in the last steps of the slowing-down process.
All these effects shorten the time the mesotron
needs to get close to the nucleus.

For carbon and iron, Table II summarizes the
times (measured in units to ——4.84X 10 "sec.) the
mesotron needs to cross the energy regions indi-
cated in the first column of the table.

One sees that the slowing down time is less than
10 "sec. This is very short compared with the
lifetime of the mesotron, 2 X10 ' sec.

TABLE II. Summary of slowing-down times in graphite
and iron.

Energy range (ev)

2000~0
0~—Ze'/r,—Ze2/r1~ —Ze /y2—Ze2/y2~ —Ze'/yp

Graphite

5.4tp
5.3tp
4 6tp
3.6tp

Time

4.5t p

7.4tp
0.3tp
0.3tp

Iron

2000~—Ze'/rp
(total "slow" range)

18.9tp

9.2)&10 '4 sec.
12.5tp
6.1&&10 "sec.

See, e.g. , Rasetti, Elements of Nifclecr Physics (Prentice-
Hall, New York, 1936), pp. 134—139.

S. INSULATORS

The case of insulators diA'ers from that of
metals because the amount of energy that may be
delivered to electrons in a metal can be arbitrarily
small, whereas in an insulator it must be at least
as large as the gap between two Brillouin zones.
This usually amounts to several volts. The loss of
energy to electrons will be thereby reduced in
those cases in which energy is transferred in sma11

individual amounts.
In a collision the amount of energy transferred

to the electron is of the order of magnitude mvp U,
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and we can expect that Eq. (5) will hold only if

mvp V&G, (34)

where G is the "Brillouin gap,
"i.e. , the minimum

energy that the electrons can accept. In case (34)
is not fulfilled, the rate of energy loss will be
smaller. This limitation will necessitate a change
in formula (18) where the integral in the numer-
ator will no longer be extended to all portions of
space accessible to the mesotron but only to those
for which in addition (34) is fulfilled. For positive
W, the e8ect on d W/dt is most important at and
near 5'=0. For Z &~ 6 actual calculation based on
the statistical atom model shows that the rate of
energy loss is not changed in this critical region
by more than a factor —,'. The corresponding in-
crease in the slowing-down time is less than
10 '4 sec.

For positive energies, regions close to nuclei
where (34) is fulfilled will occasionally be visited
by the mesotron. For negative energies regions
close to the nucleus may be avoided if the
mesotron is captured into an almost circular.
orbit. Therefore the possibility arises of the
mesotron spending a long time in such a circular
orbit. We shall show that actually the mesotron
will spend in a circular orbit a time which is not
long compared to the other times we have ob-
tained in the slowing-down process.

Circular orbits of negative energy exist only at
a considerable depth within the atom. This can
be proved using the statistical potential (19).
Circular orbits of negative energy exist only
where xy(x) is an increasing function of x.***The
value of x rp(x) is zero at x =0, increases to a maxi-
mum reached at x=2.25, and decreases beyond
this point. Consequently, circular orbits of nega-
tive energy are to be found only within a distance
from the nucleus corresponding to x =2.25;
namely,

r = 2 25b/Z'. (35)

***This statement does not refer to circular orbits out-
side the core of an atom. In condensed matter there is
usually no room available for orbits of such very large
radius.

For a circular orbit at exactly this radius the
energy is equal to zero, and the kinetic energy of
the mesotron is equal to

0.09e'Z"'/b = 2.7Z'" ev. (36)

If a mesotron is captured into an orbit which is
not circular, its closest approach to the nucleus
will be even smaller than the distance given by
formula (35), and the maximum kinetic energy
will be larger than that given by (36). Applying
condition (34), we find that energy loss to the
electrons will be possible from at least one part of
the orbit if the condition

0.09e'Z"'/b ev & —',(p/m) ~G (37)
is fulfilled. If we set for G the fairly large value of
7 volts, we see that relation (37) is fulfilled if Z is
9 or greater Actu. ally relations (34) and (37) are
not to be taken in a quite strict sense because
head-on collisions between electrons and meso-
trons will give an energy exchange twice as large
as assumed in (34). If this is taken into account
an additional factor of —,

' appears in the right-hand
side of (34). If we again assume 7 volts for G the
limiting value of Z drops from 9 to 6.

Stable circular orbits of positive energy exist
for x values greater than 2.25. The condition of
stability for a circular orbit is:

y —x'y' —x'q "&0. (38)

This condition is fulfilled up to x=3.3, or.

r=3.3hz k. (39)

A mesotron moving on a circular orbit of this
radius has a smaller velocity than one moving on
the radius given by (35), and one may expect in-
creased difficulties in the energy exchange be-
tween mesotron and electron. Actually, in light
atoms the greatest stable circular radius (39)
divers from (35) by less than the uncertainty due
to the spread of the wave function of the mesotron.
At the same time the difference in angular
momenta between the greatest circular orbit and
(35) is small. For Z =6 this difference is less than
k. Thus a mesotron moving in a stable orbit of
positive energy will not lose energy at a much
smaller rate than will a mesotron whose wave
function has its maximum at the radius given
by (35).

We can conclude that the circular orbits will
hardly ever be too stable. Even in case they
should be formed around an element like lithium
or beryllium the total time of energy loss will
probably be less than the lifetime of a mesotron.

Furthermore, the actual size of the Brillouin
gap is affected by the localization of the mesotron
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on one lattice atom. Since, at least in the critical
cases, the mesotron is captured fairly far inside
the atom, the atom is effectively turned into an
element with atomic number (Z —1). If we were
dealing with an isolated atom, this would lower
the ionization energy of the atom and turn it into
the much smaller value which usually is called the
electron affinity of the atom of charge (Z —1).
Actually this electron affinity may even be zero.
In the special case of mesotron capture by the
hydrogen atom, it is found that when the
mesotron approaches the nucleus to a distance of
0.639 Bohr radii, the binding energy of the
electron bcomes zero. In the closed shell struc-
tures usually found in insulators, an electron
affinity of two or three volts is likely to remain.
As a consequence of this the mesotron, after it is
captured, may lose as a first step an energy
smaller than the Brillouin gap. After this loss the
atom in which the mesotron is now localized does
not have a closed shell, and further excitation
may still require less energy than the width of the
Brillouin gap. Of course, further ionizations
would tend to raise the ionization potential, but
the local electron deficiency will be promptly
filled by capturing electrons from neighbors.

A special situation arises when the mesotron is
captured on a hydrogen atom, as may happen for
instance in paraffin. In that case the hydrogen
and the mesotron circulating around it form a
small neutral system which will move along and
will readily permeate to any part of the lattice.
As a result one will expect that the mesotron will

eventually be caught in the field of a more highly
charged nucleus.

After the mesotron has attained negative
' energies of an absolute value greater than 100 ev,

the further energy loss proceeds in insulators as it
does in metals.

In conclusion we see that the total time needed
for energy loss in insulators is apt to be a little
longer than in metals, because of the difficulty in
bridging the Brillouin gap. There will be, how-
ever, no change in the order of magnitude of the
total time which the mesotron needs to reach its
lowest orbit.

amounts of energy. The lowest electronic excita-
tion energy, I, of a gas molecule plays the same
role as the Brillouin gap does in insulators.

For positive values of 8' the energy loss
proceeds according to (5) and. (18). The upper
limit of the integrand in the numerator is de-
termined by the condition

mop V= I.
The integral in the denominator is extended over
the whole space. As a result the average value of
the energy loss dW/C—h is reduced by the ratio of
gas density to insulator density. Under conditions
of normal temperature and density the energy
loss in a gas is about a thousand times smaller
than in a solid insulator. The time needed to slow
down the mesotrons from%'=2000 ev to 8"=0 is
approximately 3 0&10 "seconds.

For negative values of lV the mesotron is
localized on a specific molecule. As the energy
transfer to electrons proceeds, it is likely that
enough energy will be given to nuclear motion to
cause dissociation of the molecule on which the
mesotron is found. Thus we may confine our
attention to the atom which carries the mesotron
along. The energy loss of the mesotron causes
progressive ionization of this atom, and, as a
result, the minimum excitation energy I is in-
creased. This may lead to an eft'ective stoppage of
the energy loss if the mesotron happens to be
moving on a nearly circular orbit. The energy
loss may stop when the relation

is fulfilled. - Here co is the frequency of the
mesotron in a circular orbit.

Further energy loss of the mesotron may thus
be delayed until the ion carrying the mesotron
makes a collision with another molecule. Then a
substantial part of the ionic charge will be
neutralized, and the energy transfer from the
mesotron to the electron cloud will be resumed.
We assume that the excitation energy I of the
atom which carries the mesotron may be written
in the form

6. GASES I=Ki', (42)

In gases, as in insulators, electrons cannot
accept from the mesotron arbitrarily smal I

where i is the degree of ionization and X is a
constant. The total energy E needed to raise the
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ionization from zero to i is

(43)

We assume that between two collisions of the
mesotron-carrying atom the energy of the meso-
tron W will change by 8/2. We have then

(44)

where X is the number of collisions per unit time
~10"sec '.

The energy loss of the mesotron will be smallest
if the mesotron continues to move on circular
orbits. For the radius r of this orbit we write as
previously

r =x&Z-'.

Using (19), (21), and (41) we get

(45)

dt ' " dW ( dWq

"u.gndx ~g dx E dt i
1 t

5Z t3s2(2b) '[(0 34/x2) —
0. .045 j

dx
0.493Z*(eV)iX ix '

/X)*Z
=15.5] —

f(e V)
(5o)

heZ d (q) = 2.06Zx—' ev. (46)
plblx's dx E x)

From (42), (43), and (44) we now obtain

dS'
=0.493K% r(eU)iZ'x '. (47)

dt

If 8' is calculated for a circular orbit from the
statistical model one obtains

Z4/3e2
W= — d(xq)/dx. (48)

2bx

Here the approximation (21) is not sufficient. In
the region where circular orbits of negative
energy are possible we may use for the expres-
sion xp

xy =0.489 —0.025(x —2.25)'
+0.015(x—2.25)'. (49)

For x (0.5, expression (49) is not a good approxi-
mation. This region, however, contributes little
to the slowing-down time and (49) suffices, there-
fore, for our purpose.

We calculate the total time by integrating

A reasonable value of E is 5 ev. This gives

Z it6

&=35 (51)

The total time needed for the energy-loss
process at negative energies will therefore be of
the order of 10 ' second even if the mesotron
continues to move on circular orbits.

bW= )j [,'t(W i—U)]'ds/-to. (52)

Near lV=. O we get

5W=2.3eUZ* ln(xo/x; ) (53)

where x„„corresponds to the distance of mini-
mum approach. The energy given in (53) is small

enough so that it does not yet affect significantly
the numerator in (23). Thus the ratios of energy
losses are hardly affected by blV, and we may

7. CHEMICAL COMPOUNDS

It is of interest in experiments on the disap-
pearance of negative mesotrons in chemical com-
pounds to find out with what relative probability
the mesotron is captured by the different kinds
of atoms. We are led by crude estimates to the
conclusion that the capture probability is pro-
portional to the nuclear charge Z. This may be
seen as follows.

It is simplest to set the capture probability
proportional to the energy loss of the mesotrons
near the various atomic species. At low positive
mesotron energy, which is the relevant region for
our argument, the energy loss is given by an ex-
pression whose numerator contains the numerator
of (23). For W= 0 this is proportional to Z. The
denominator is a constant integral for all atomic
species and does not enter in the evaluation of the
ratio of energy losses.

The capture probability will actually be pro-
portional to the rate of energy loss only if the
ratio of these rates does not change too rapidly
near S'= 0. In particular it is necessary to demand
that this ratio should not be strongly altered by
the energy change due to a single passage of the
mesotron through an atom. For this energy loss
8W we may write



conclude that the ratios of capture probabilities
are proportional to Z.

8. CONCLUSION

The over-all conclusions can be summarized as
follows. In condensed substances, both con-
ductors and insulators, a negative mesotron is
captured in its orbit nearest to the nucleus in
about 10 " second. In a gas the corresponding

time is a little longer than is indicated by the
ratio of densities. In particular, in normal air it is
of the order of 10 ' sec. In both cases this time is
very short compared with the mesotron natural
lifetime of 2&&10 ' sec. so that the mode of
ultimate disappearance of the negative mesotron
is governed by the balance between natural decay
and typically nuclear phenomena leading to
mesotron disappearance.
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Some information has been obtained on the spin dependence of scattering of slav neutro»s
by Be, Al, and Bi by measuring the scattering cross section for f&1tered neutrons. '1he result
is that in none of these three cases does the sign of the scattering length change vrhen the spin
orientation is changed. But in the case of Be and Bi the magnitude of the scattering length
for one spin orientation may be up to tv ice as great as that for the other spin orientation, and
in the case of Al the variation may he by a factor of three.

S OME information on the spin dependence of
the scattering of slow neutrons can be ob-

tained by measuring the cross sections of
some microcrystalline substances for filtered
neutrons. "

Khan a slow neutron is scattered by an atom
having nuclear spin I, two values for the scat-
tering length' can be expected according to
whether the spin of the neutron is parallel or
antiparallel to I; these will be indicated by a+ and
c . If these two values are equal, there is no spin
dependence of the scattering. In this case inter-
ference phenomena are not influenced by the
spin, and the neutron waves scattered by the
atoms behave as fully coherent. When a+ and a
are different, the coherent scattering of the atom
is determined by an average scattering length:
(see reference 2, formula (6))

I I+1
8=— 0 +— C~.

2I+1 2I+1
' H. L. Anderson, F.. Fermi, and L. Marshall, Phys. Rev.

70, 815 (1946).'E. Fermi and L. Marshall, Phys. kev. 71, 666 (1947).

The remaining scattering behaves as incoherent
for interference phenomena.

In order to discuss the significance of coherent
and incoherent scattering it is necessary to dis-
tinguish between collisions in which the spin
orientation is not changed and those in which it
changes. The first type of collision is responsible
for coherent scattering, the second for incoherent.
The reason is that interference takes place only
when the scattering is due to the cooperative
action of all atoms. This is the case when there is
no spin change to indicate which atom has been
responsible for the scattering. If there is a spin
change, however, the scattering is attributed to
the individual action of that atom whose spin has
changed.

One can prove by elementary quantum me-

chanics that the coherent scattering cross section
lS

I I+1
&coherenl; =4& +—+ ~+

2I+1 2I+1


