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A Class of Exact Solutions of Einstein's Field Equations
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The work of Keyl on the gravitational field occasioned by an axially symmetric distribution
of matter and charge is generalized to the case in which g44 and Q for an electrostatic 6eld are
functionally related, with or without spatial symmetry. It is shown that the most general
electrostatic field in which g44 and p are related-by an equation oF the form g44 ——-', (@+c)'can
be represented by a hne element of the form (ds)'-=-e "Ddx')2+(dx')'+(dx')2j+e~(dt)'.
Certain of the field equations are then identically satisfied while the remaining ones reduce to
a single equation for m. The substitution m= —2 1og(1+@) transforms this into Laplaces
equation for v, so that the solution can be expressed in terms of harmonic function.

l. INTRODUCTION

' 'N a well-known paper H. Weyl' showed that
~ ~ the gravitational 6eld in empty space caused

by any static axially symmetric distribution of
matter and charge can be represented by the line

element

(ds)' = s$(d—s)'+ (dr)' j—r's- (de)'+s" (dt)' (l)

with a suitable choice of coordinates. Using these
coordinates, which he calls "canonical coor-
dinates, " Acyl completely solved the problem
of the pure gravitational 6eld with axial sym-
metry and also obtained a particular class of
solutions for an axially symmetric electrostatic
6eld; QR1Tlcly, those involving R fUnctlonal rela-
tion between the electrostatic potential, p, and
the component g44 of the metric tensor.

In this paper the more general problem of any
electrostatic 6eld (with or without spatial sym-

metry) in which g4q and p are functionaHy re-
lated, has been considered. It is found that the
only type of functional relation that can exist
bctwccn g44 and Q ls of thc folITl

where A and 8 are arbitrary constants and
p/(ss. )& is the electrostatic potential in rela-
tivistic Lorentz units. If now the constants, A,
B, be so chosen that the right-hand side of (2)
becomes a perfect square, then the relation (2)
reduces to

'H. %'eyl, Ann. d. Physik |4j54, 117 (191'l).

It is then shown that the most general electm-
static 6eld in which g44 and qh are connected by
the relation (3) can be represented by the line
element

with R suitable choice of coordinates. Some of
the 6cld cqURtlons arc then ldeQtlcally satl86ed,
and the rcIYlalnlng onc8 I'cdUce to R slQgle equa"
tion for determining m. The substitution m=
—2 log(1+v) transforms this differential equa-
tion into Laplace's equation for the function e.
The solution can, therefore, be expressed in

terms of harmonic functions.
The solution thus obtRlncd ls, ln a scnsc, morc

general than that of acyl, since in this case there
need not be spatial symmetry of the 6eld. In
another sense, however, it is less general. For, the
functional relation (3) adopted here is a special
case of the most general relation (2) adopted by
Weyl in the case of axial symmetry.

The solution outlined above is worked out in

details in Sections 4 to 6. In Section 5 it has
been pointed out that the nature of the solution
is such that if the 6eld be due to several charged
bodies separated by empty space then to the
Newtonian approximation they remain in equi-
librium bccausc of their mutual grRvltRtlonR1

attraction and electrostatic repulsion.
In Section 7 Weyl'8 axially symmetric solu-

tions have been examined, and it has been shown

that in certain cases no solution of the 6eld
equations for empty space exists. A necessary
and sufFicicnt condition for the existence of static

axially symmetric solutions has also been ob-
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tained. It has been proved that static field is
possible only when the masses are in equilibrium
under the inHuence of one another. This brings
to relief a distinct superiority of the relativistic
theory over the older Newtonian theory.

In the last section an attempt has been made
to bring out the strong analogy between the old
and the new theories by establishing a few
simple theorems on the uniqueness of solutions
and dependence of solutions on boundary values.
The general boundary value problem for any
static field is, however, far from being solved.

2. THE FUNDAMENTAL EQUATIONS

As usual we represent the static held by the
line element

(ds)'=g.gB dx'+g44(dt)', (a, b=1, 2, 3) (5)

the coordinate system so chosen that g~4=g~4
=g34=0, and the metric tensor g;; is i.ndependent
of t. Since no magnetic field is present, the four-
potential has the components (0, 0, 0, P/(Ss. )~),
where P/(Sn. )& is the electrostatic potential in

relativisti~ Lorene units. The only surviving
components of the antisymmetrical tensor, Ii;;,
and its associate Ii'&, representing the electro-
magnetic 6eld-strengths, are, therefore,

8$
(Svr) &F4; ——

Bx'

(Sm)&F'"=e g"p„'(i=1, 2, 3)

where e" has been written for g44. From these the
components of the electromagnetic energy tensor
B;' are calculated by means of the formula

which corresponds to the classical equation
+2@ 0

In addition we have the seven field equations

G,,= —SsZ;; (z, j=1, 2, 3)

644 = —8mE44,

(&)

(8)

the remaining three equations G;4= —8mB;4 for
i=1, 2, 3 having been identically satisfied. The
eight equations, (6)—(8) form the set of funda-
mental equations of the electrostatic field.

where A and 8 are arbitrary constants. In order
to prove this we shall require only the two
Eqs. (6) and (8).

8
G44 ——— {44,a}+2{4a,4}{44,a}

Bx~

—{44,a} log( —g)&
Bx'~

8
(g'f~) l f 'f-g'—f~

2 Bx

3. SOLUTIONS INVOLVING A FUNCTIONAL
RELATION BETWEEN g44 AND @

In this paper we shall be mainly concerned
with those solutions of the field equations in
which g44 and @ are functionally related. First
we shall show that the only type of functional
relation that can exist between them is of the
form

g44 ~ +~'{I|+ g4'

p~'oP. +&g.~'P~P~

The gravitational tensor 6;g is calculated by the
formula

8
G,;= — {~j,a}+{ia, b} {jb, a}

Bx

8
gaff„.

2 Bx

where f is written for g44. Also

—8ÃZ44 = 2g

Therefore, by Eq. (8)

log(-g)', (9)

log( —g)'* —{fj,a}
Bx

+ log( —g)'*
Bx Bx

(g f~) f g f.f~-
Bx

The condition for the absence of electric
charge and current then comes out to be

log( —g)'=g"4.4»

(s "g"4~(-g)') =o.
Bx~

(6)
Since f is a function of @, this equation can be
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written as —8mB;; =e "@,Q, ——,'e "'g;,g"@.Qb,

(i, j=1, 2, 3), (15)
(g"(—g) 'W~)

BX —8~&44= gg '@aq4, (16)

where f'=dfjd@ and f"=d2f)dp' Eq.uation (6)
can be written as +-,'e"g w, log( —g) -'*. (17)

AX

=(f') '(1+f 'f" f")-g"( g)'-e.e~ (11)
G44 ——— (g"e wp) ——',e"g"w.wb

2 8x

Now Eqs. (11) and (12) can hold simultaneously
only if

On account of the relation (14), Eqs. (15), (16),
and (6) can be written as

—87rE = —'N VO ——g g ZO V8b

(1+f 'f" f")(f—'=f'If

that is, if 1 f"=—0. From this it follows that
—8m'E44 = &e~g~bm mb,

(i, j=1, 2, 3) (18)

(19)

f=g44 A—+Bp——+ ',qP- (e '*"g"w~(—g)') =o.
BX

(20)

is the only functional relation possible between f
and Q.

Since any metric approaches that of the special
relativity theory at great distances from matter
and charge, g44 must tend to unity at infinity
with the proper choice of the unit of time. And
if we choose the arbitrary constant in p so as to
make p vanish at infinity, then the above relation
may be written in the form

g44 =1+8/+ g4 .
From general considerations, solutions of this

type are expected to be a bit easier to obtain,
since the relation (13) makes the Eqs. (6) and
(8) identical, so that there is one equation less
to be satisfied. The utmost simplification is
expected to result from taking the right-hand
side of (13) to be a perfect square. The relation
(13) then reduces to

g44= 2(4 +~2)'

4. A CLASS OF EXACT SOLUTIONS

It has been possible to find the most general
solution of (6)—(8) involving the relation (14).
The relation (14) itself, however, restricts the
generality of the solutions to a great extent.

We proceed to obtain the expressions for the
various tensors in terms of g;;, m, and p with the
help of the formulas given in Section 2.

ds'= —e ~[(dx')'+(dx')'+(dx')']+e~(dt)' (21)

by suitable transformation of coordinates. In
order to do this, we introduce two sets of func-
tions ~g;; and g;, (i, j=1, 2, 3) defined by the
equations

g;, = —*g,;= —e—
g;, , (~, j=1, 2, 3)

whence
gi j 8g't2 etog'bg

*g;, is the metric tensor of the three-space in (5)
and g;; that of an associated three-space con-
formal to it. The contracted Riemann tensors
*G;; and 6;; of these two spaces in conformal
correspondence are connected by the equations

*6"=6"—-'ur, "—-'m mij ij 2, ij 4 i j

+g;,[——,'A, w+ —,'h~w], (22)
where

AiG) = g Webb, AP'K = g 'N ~

and Co, ;; is the second co-variant derivative of
the scalar function w in the associated space.

From (8), (17), (19), and (20) we find that
the field equations, (6) and (8), become identical
on account of the relation (14).

Next we shall show that the relation (14)
makes it possible to reduce the general static
line element (5) to the isotropic form
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G44 = ——,'e'"A2 .

The relation between the contracted Riemann Eq. (28) can be written as
tensors G;, (i,j =1, 2, 3) and *G;, of the four-
space and three-space in (5) is (29)

Further we have the relations'

*{ij,k} = &
—&{ij,k}

+-'[—w.b,"—w;8 "+w g "g"7

"{ij,a}w, = & '{ij,a}w,—w;w,+-', q;,Aiw. (24)

From Eqs. (22)—(24) we have the relations

G,;=6,;+-',w;w, —-', g;;h&w. (i, j=1, 2, 3). (25)

Equation (18) can also be written in the form

8irE;; =-',w;w—;——',q;,4,w. (i, j= 1, 2, 3) (26)

By the use of the expressions (25) and (26) for
G;; and B... the field equation (7) can now be
written as

G'; =*G'&+.w*~+-'w.w-~ .*{—V—,~}w.

="G;,+-,'*w„;+-,'ww;. (i, j=1,2, 3) (23)

Because of (19) and (29) the field equation (8)
now takes the form

——',e' 62w = —-', e'"hiw, or b.iw = -', Aiw. (30)

From (27) and (30) follows the interesting
result

Pw = —(wi +w2 +w3 ) (32)

G,, =O. (i, j=1, 2, 3). (31)

Since in a three-dimensional space the vanishing
of the contracted Riemann tensor implies the
vanishing of the Riemann tensor itself, we arrive
at the conclusion that tke associated three-space
is Euclidean. We are, therefore, justified in

adopting (21) as the line element of the most
general static field in which the relation (14)
holds. According to (30) the field equations will

then reduce to the single equation

The substitution,
G'i —2i'i[~~w —2~&w7=0 (i,j =1, 2, 3) (27)

(33)

(34)
8

G44= —— (e' g"wi)+-,'e' Aiw
2 Bx~

for the function v.
Also according to (14) and (33) the relation

between v and p ist9—2e'"q'wi, log( —g)
'*

Bx~ (35)~= —0/(@~~~).

w = —2 log(1+v),
The expression (17) for G44 can also be written

transforms it into Laplace's equation
in a very compact form

V'v =0

5. NATURE OF THE SOLUTION OBTAINED

The Newtonian approximation of the above
solutions is obtained by neglecting all powers of

+g'~wi, log(g)' . (28) i& higher than the first. We then have
Bx

g44:—8 = 1 —2v= 1 —20,
By use of the relations

Bg'2
= —' & {ak,i }g"—&

—
& {ck,j}q'~,

8x'

log(q)*'=' &{ia,a},

where 0 is the gravitational potential in gravi-
tational units. Also

y/(8s) i = av/2(ir)1.

The potential p in electrostatic units is, there-
fore,

Q'= &v,
Editor's note: for typographical reasons the Christos'el

symbols associated with the metric coefficients *g;; and
g;7- are indicated with the superposed signs * and ( ). 0= ay'. (36)
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From this we see that if the field be due to
several charged bodies separated by empty
space, then to the Newtonian approximation
they must remain in equilibrium under their
mutual interaction. In fact it is because of this
interesting property of the solutions that a
reduction of the field equations to Laplace's
equation has been possible.

6. VANISHING OF THE MATERIAL STRESSES FOR
A PROPER CHOICE OF THE INTERNAL

FIELD

In the Newtonian theory if the densities of
charge and matter bear the same constant pro-
portion everywhere, and if in the above-men-
tioned units the constant of proportionality is
unity, then owing to the exact balancing of the
gravitational and electric forces on every piece
of matter, the stresses in matter will vanish. It is
remarkable that such a result exactly holds in

the relativistic theory also. Of course, given an
external field in empty space the distribution of
matter and charge producing that field is far
from being uniquely determined. We shall show
below that, corresponding to the external solu-
tion obtained above, a particular internal solu-
tion can always be constructed so that the
stresses in matter may vanish at every point.
We choose the internal solution in the following
manner.

In the interior of matter: (i) there exists a
line element of the form (21), (ii) v is a solution
of Poisson's equation, (iii) g44 and @ are con-
nected by the relation (14), (iv) the first, second
(and whatever derivative may be required), of w

are continuous at the boundary surface, sepa-
rating matter from empty space.

The internal field should satisfy the equation

pre ssions

G;;=
—87fB;;=

G 4= ——8 Vvv

G = ——,'e"Zm '+e"V'm

G;. & ——,'g;&G= ——,'e"m,m;+~8 c~Zm '

(f j=1 2 3) (38)

—8mE, ~ = ——,'e"m;m, +~e"5;;Em '.

(i, j=1, 2, 3) (39)

Combining Eqs. (37)-(39) we arrive at the
interesting result

M;~=0, (i, j=1, 2, 3),

that is, the material stresses all vanish at every
point. But the situation is quite different in the
case of the component M4 which represents the
density of matter.

By (19), (29)

G44 —-'g44G = —e"V'm+ -'e"Zm '

—87f8&4 = —4'e"Zm, '.

Because of Eq. (37) we, therefore, have

—8~&,4= —e [V'm —-', Zw, '],
whence

V"v = —4m (1+@)'M'44.

For small v this reduces to Poisson's equation.
In empty space M4' ——0, and we get back
Laplace's Eq. (34).

7'. EXAMINATION OF WEYL'S AXIALLY
SYMMETRIC SOLUTIONS

G ——',g G= 8s(M„~+Ej—), (37) (A) The Case of a Pure Gravitational Field

where M;& is the material and Z& the electro-
magnetic energy tensor. Since Eqs. (25) and (29)
hold for any static field, and Eqs. (19) and (26)
follow from the assumption (iii) alone, they
continue to hold in this case also. On account of
the assumption (i) we can put

Weyl has shown that the most general static
axially symmetric gravitational field in empty
space can be represented by the line element

(ds) ' = —e"[(ds) '+ (dr) ']
r&s—

M(de) 2+ sg((Q) 2 (40)

6.=0, "=h", (', '=1, 2, 3) Weyl chooses the internal line element also in
z, g=

this form. We then have the following expres-
in (25), (26), (29), and (19) and obtain the ex- sions for the components of the material energy
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tensor:

8~T1' ———8x T2'

= 4e "(2u2/r+2w2/r+w12 w22),—(41)

8vT2 2S (ull+u22+Wll+W22+ Wl + 2W2 )

8~T4 s (wll+w22 ull u22

stituted in Eqs. (46) and (47). If a solution for
v can now be found satisfying Eqs. (46) and

(47), then Weyl's Eq. (44) will be automatically
satisfied in the empty regions of space. But the
converse is not true. A necessary and sufhcient
condition that a function v may exist satisfying
(46) and (47) is that the line integral

+2w, /r —-', w, ——,'w, ),

82rT1' ————82rT2'= ', e "(W—,W-2 Wl/r —u, /r)—

rI= (vlds+v2dr).
J

(48)

(42)

Weyl makes the assumption that the stress
component Ta' vanishes everywhere. This leads
to the two differential equations,

6W =Wll+W22+W2/r = 82rT4 8 (43)

7'v=—vll+v22 ————',(wl'+w2'), (v=u+w) (44)

for determining u and m. In empty space T4'=0,
and Eq. (43) reduces to Laplace's equation for
axial symmetry. Thi's equation is first solved for
m and the solution substituted in the right-hand
side of (44). The latter equation can then be
treated as a two-dimensional Poisson's equation
for the function v. The solution for v is made
unique by the condition that it vanishes on the
axis and at infinity. Thus we see that the two
assumptions, T3'=0 and T44=0, made by Weyl
enable us to find any desired solutions for u and
w which, when substituted in (41) and (42), will

determine the stress components T1', T2', and
T12 uniquely. In order that the solutions thus
obtained may be the correct solutions for empty
space, it is essential that T1', T2', and T1' should
vanish in addition to T3' and T4 . Weyl's
method of solution, in many cases, does not lead
to the vanishing of these components. In order,
therefore, to arrive at the correct solutions for
empty space, we set the left-hand sides of Eqs.
(41) to (42) equal to zero. The functions w and v

then satisfy the equations

(i) along a22y closed curve, A, which lies entirely
in empty space should vanish, and (ii) along any
curve, 8, which starts from the axis and ter-
minates on the axis and lies entirely in empty
space, should vanish.

First we consider curves of the type A which

may surround matter distributed in the shape of
a ring. By Stokes' theorem,

f' fI=
I (v12 v21)dS,

J J

where dS is an element of plane area in the
(r —s) half-plane enclosed by the curve, and

v12 tv 1/llr v21 4iv2/4i&.

v1, v2 are looked upon as two different functions
and not as the derivatives of a single function v.

By (46) and (47)

v12 v21 r~l ' ~~.

If the enclosed area is empty then AM =0 and,
therefore, I vanishes. If, however, the area
contains matter, then

and

I= 42r~ ~J~rw, ~d S—

= —2, , nv10dsdrd0

Am=0,

v1 = rQ115)22

v, = -'2r (w22 —w12). (47)

As before, we first integrate Eq. (45) by intro-
ducing an arbitrary axially symmetric density
distribution o-. This solution for m is then sub-

JJJ
the last integral having been taken over the
entire ring. Now zv1 is the component of force in

the s direction acting on the mass element rdv,
and m1 consists of two parts,

~1=~;,1+~e, &~
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where m;, i is the internal force attributable to
the remaining part of the ring and m, , q is the
resultant of external forces acting on the element
ad~. The contribution to the integral I due to
m;, i therefore vanishes, and we have

hw=e "(@&'+yP),

AQ =&qQi+ Nq$2.

(50)

(51)

The equations to be satisfied by m and p are,
therefore,

(49)

Thus we obtain as the necessary and sufficient

condition for the existence of v that the "re-
sultant force acting on the ring according to
classical calculations must vanish. "

Next we consider a curve of the type 8 which

starts from a point I' on the axis, terminates at
a point Q on the axis, and lies entirely in empty
space. After going from P to Q along the curve

if we go back to I' along the axis we complete a
circuit, and the above proof can be easily ex-

tended to this case also.
From this we conclude that solutions corre-

sponding to two spheres separated by empty
space do not exist, whereas solutions correspond-

ing to a sphere at the center of a circular ring do
exist.

We shall consider Weyl's solutions only, which
are of the type (13).The two equations, (50) and

(51), then become identical. Weyl introduces an
auxiliary function x defined by the equation

x=~"(1+&0+2@') 'A. (52)

We then have

~x=e "[ted wit—i w~A~—]
=(&+4) '[~w —e @~'—e @2'] (53)

Hence (50) and (51) reduce to Laplace's equation

~x =0.

Inside matter we take the auxiliary function y
to be a solution of Poisson's equation. The equa-
tions to be satis6ed by v are

(3) The Case of an Electrostatic Field

Weyl has shown that the most general axially

symmetric electrostatic field in empty space can

be represented by the line element (40). He
takes the internal line element also in this form

and obtains a class of solutions of the type (13).
As his solutions may not lead to the vanishing of
all the components of stress in empty space, we

proceed, as before, to investigate the conditions

for existence of solutions for strictly empty space.
The 6eld equations in this case are

vs~ —v~i=rwz~w+re [wakan we%

2Q g6p+ 2—w gh &PE]

=«[we(&+0) —2ei]&x

=«(&' —2)xi ~x

by (54) and (55)

by (53)

by (52).

Therefore, the line integral

v&
——~r(w, ' —w, ')+re-"(4,' —@2'). (55)

In this case,

SvZg' ——— SZv'2= ', e" "(@P-@2')—
= —,'e (2v2/r+wg' —wg'),

—Sv.Z '=-'e-" (yl'+@2')

=-'e "(V'v+-'w '+-'w ')

= ——,'e "(2'—7'v —-', wg' —-,'wg'),

We therefore arrive at the same condition for
existence of solution as before. From (56) we

draw the interesting conclusion thatif 8 = &V2,
the«t a solntio«t always exists ir«espective of the

Ckstribution of the masses. This is in agreement
with what has been said in Section (5).

—8mEg'= —8~82'= —a " "pi&2 If g44 and p are functionally related, then every
= —2e "(wxwm —vx/r). level-surface of g44 (thereby meaning a surface
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on which a44 is constant) is also a level-surface
of p. We shall now prove the proposition that if
there exists one surface S (either closed or
extending to infinity) on which a44 and p are
both constant, and if one of the two domains into
which this surface divides the entire space be
completely free from matter and charge, then
in this domain, D, every level-surface of g44 will

also be a level-surface of p, and therefore g44 and

@ will be connected by an equation of the type
(13).

To prove this we shall require only Eqs. (6)
and (8). Equation (8) can be written as

Lf '( a)'a'—f~j=f '( a)'a'—4.e~
Bx

with

r = L(x')'+ (x')'+ (x')']l = Lb "x'x'g'*

The origin of space-coordinates is chosen to be
outside the domain D, so that r is everywhere
positive in D Equ.ation (59) is then transformed
into

o' v[;i]+p'v[q+cv= 0, (62)

where

P' = 2s—'a'"s) )+b'

=2s 'ue '"(u"b x'/r)+b" , (63)'

c = s (u'"s [ i i+ b"'s [;])

Multiplying Eq. (6) by @ and subtracting from

Eq. (57), we have8, 8
Lf '( a)'a"-fbi 4-Lf '( a)'a"-4~]

ax X

r2

(6,;A, 6;;by xfx ) O'Sgx~

r
(64)

or
f '( —a) 'a'"4—-4~ = o

I:f '( —a)'a" (f—24')~1 =0
Bx

(58)

Equations (6) and (58) are of the form

where

O' ZC[&y]+O'I ~q =0,

~~k f—i( a)-',aik (60)

If '( —a)'a'"j
Bx'

(61)

u=@—A, or f A, or f —~$2 Bg —1, — —

ui;] = Bu/Bx', ui;i, i =8'u/i7x'Bx"

We now require the help of a theorem given

by Courant and Hilbert' on the uniqueness of
the solutions of linear elliptic differential equa-
tions. The proof, as given by these authors, is for
a finite domain only, but the following modi-
fication holds for both finite and infinite domains.

Ke make the substitution

N=sv, s= j.—8 "", @00
' R. Courant and D. Hilbert, Methoden der 3IIathe-

matiscben Pkysik (Julius Springer, Berlin, 1937), pp. 274—
276.

Now we choose the space coordinates in such
a way that the g;&'s approach Galilean values at
infinity. We then notice that: (1) the a'"'s tend
to b" at infinity, and (2) b', p', c all tend to zero
at infinity. Concerning the sign of c, which is very
important, we see first of all that the a'"'s form
the matrix of a positive definite quadratic form.
Therefore, the quantity u'"b, ,bi, x'x /r' in the
first term of (64) is everywhere positive in D and

approaches the value unity at infinity, and
hence possesses a.positive lower bound. Similarly
the coefficient of p, in the bracketed expression
in (64) tends to zero at infinity, and, therefore,
its absolute value possesses a positive upper
bound. Hence the quantity p, can be chosen so
large as to make this expression positive through-
out D. Since s is positive throughout D, it follows

that c is negative throughout D.
We have thus established the two main

requirements for the proof, namely, that u'~

should form the matrix of a positive definite
quadratic form and that c should be negative.
The proof now follows the same course as that
given by Courant and Hilbert, ' and we arrive
at the conclusion that if v (and therefore u)
vanishes on the boundary of D (and at infinity
if the domain be infinite) then v (and therefore u)
vanishes throughout D.
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DEDUCTIONS FROM THE ABOVE THEOREM

(1) First we apply the theorem to the function

u-f ,'y—' -By— 1—
If there exists a surface S on which f and @ are
both constant, then we can always choose the
constant, 8, so as to make I vanish on S. Hence
it follows that if one of the two domains into
which the entire space is divided by this surface
be empty, then in this domain u vanishes and,
therefore, f and @ are functionally related. That
is, f and @ have the same family of level-surfaces
in D. This is the theorem stated at the beginning
of this section.

(2) Applying the theorem to the function
u =p —A we draw similar conclusions.

(3) In the absence of an electric field we apply
the theorem to the function u=f A—and draw
similar conclusions. In this case it can be easily
shown that space-time is flat in D.
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