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In conclusion we can say that the magnetic
deflection of a beam of charged particles in mag-
netized iron should be quantitatively observable
if high energy protons or deuterons are used

instead of mesons. ' A modification of the gener-

ally accepted result

may be expected if there are short range forces
modifying interpenetration of proton and elec-
tron. The Coulomb force alone will give such an
effect, but it appears barely at the threshold of
observation.

I wish to express my thanks at this point to
Dr. John Eldriclge, Dr. J. R. Dunning, and Dr.
H. A. Bethe for valuable discussions.
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In order to account for the measured magnetic moment of the triton it is necessary to
assume that the wave function in the ground state is a linear combination of '5, 'P, 4P, and
4D functions. An attempt is made to determine the amplitudes of these functions from the
magnetic moment on the assumption that the intrinsic nucleon moments are additive and
relativistic eGects are negligible. With certain reasonable assumptions concerning the nature
of the wave functions, it is found that the relative probabilities for finding the system in the
'P, 'P, and 'D states satisfy the relation shown by the curves in Fig. 1. Wherever the results
would otherwise be arbitrary, the wave functions have been chosen in such a way as to mini-
mize the amount of P state, with the exception that only the lowest one-particle configurations
have been considered. If the amplitude of the 'S state is taken to be as large as possible, the
wave function contains no 4D state, 8 percent 4P state, and 17 percent 'P state. A wave function
of this form would seem to indicate that there is a spin-orbit coupling other than the tensor
interaction acting among nuclear particles. In the other extreme case that the wave function
contains a maximum of the 'D function, the 25 state probability is zero, the 4D probability is
22 percent, the 4P is 30 percent, and the 'P is 48 percent. If the wave function of He' has the
same form as that of H', the He' moment would be expected to lie on one of the curves shown

in Fig. 2.

1. INTRODUCTION

HE recent measurements" of the magnetic
moment of the triton give a value about

6.7 percent greater than that of the proton. If
the ground state of the triton were a pure '5;
state, it would be expected that the moment
would be equal to the proton moment. It is
believed, of course, that the ground state is not
a pure '5 state but contains an admixture of
'I', 4I', and 'D states. ' A theory based on simpli-
fying assumptions leads4 to the conclusion that

*This work has been carried out under the auspices of
the Atomic Energy Commission. It was completed and
submitted for declassification on March 14, 1947.
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Phys. Rev. F1, 373 and 551 (1947).

the presence of these states should result in a
reduction of the moment instead of the observed
increase. However, it has been pointed out~ that
cross terms between the various states in the
expression for the magnetic moment have been
neglected in the simple theory. These may be
positive and could, therefore, account for the
large moment.

It is the purpose of this paper to obtain a
general expression for the magnetic moment in

terms of the amplitudes of the various wave
functions and thereby to gain some information
concerning the nature of the ground state wave

' E. Gerjuoy and J.~ Schwinger, Phys. Rev. 61, 138
(1942).
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I R I TO 5 M 0 i&i E N 'j. 313

function of the triton. The expression for the
moment will be found to consist of a sum of
terms of three different types. The first are the
diagonal elements which are uniquely given in

terms of the constant amplitudes of the wave
functions. The second are cross terms which
involve overlap integrals between the "radial"
parts of the wave functions. These "radial" wave
functions actually are not purely radial but are
also functions of the cosine, q, of the angle
between the vector connecting the two neutrons
and the vector connecting the proton to the
center of mass of the two neutrons.

The third set of terms consists of cross terms
involving overlap integrals between one radial
function and the derivative with respect to g of
another such function. These may be very large
if the wave functions contain very high con-
figurations, that is, if the individual particles
have very high orbital angular momenta. How-
ever, it seems likely that such high configurations
do not occur in the ground state, since in the
ground state the wave function adjusts itself in
such a way as to minimize the kinetic energy of
the system. For that reason, it will be assumed
in the final analysis that these cross terms vanish,
or, more specifically, that the radial functions
do not depend on q. This assumption eliminates
a great deal of the arbitrariness from the results.

Considering then terms of only the first two
types, it is found that the observed moment can
be accounted for only if the D state probability
is less than that of either the 'P or 4P states.
This conclusion appears to be at variance with
current ideas concerning the nature of the triton
wave function. ~ If it is accepted that the inter-
action term responsible for the mixing of states
is the tensor interaction, then the 4D state would
be directly coupled to the 'S state but the P
states would not be. Therefore, it might be
expected that the D state probability would be
larger than the P probabilities.

This expectation is based on the premise that
the wave function is predominately a 'S state.
There is the possibility that the wave function
contains little or no 'S state; that is, that the
advantage gained through the large average
value of the tensor interaction in the P and D
states might be large enough to over-compensate
the correspondingly large kinetic energy, in

which case the energy would be a minimum for
a small S state probability.

Further information concerning these ques-
tions may be obtained experimentally by means
of a measurement of the moment of He'. This
paper includes a discussion of the relation be-
tween the moment of He' and the various
possible mixtures of states which are consistent
with the observed moment of H'.

In this discussion, no consideration is given to
the possibility that the intrinsic moments of the
neutron and proton are not additive. Also, the
relativistic correction to the triton moment is
ignored. '
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2. THE WAUE FUNCTIONS

The possible forms of the triton wave func-
tions, with respect to their dependence on the
spins of the particles, have been given by Gerjuoy
and Schwinger. '%e denote by y, the unit vector
in the direction of the distance between the two
neutrons and r, the unit vector in the direction
of the distance from the center of gravity of the
neutrons to the proton. If 03 is the Pauli spin
operator for the proton and e~2 ——(~&—eg) /2,
where e~ and e2 are the Paul& operators for the
two neutrons, then the wave functions have the
following form:
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The function P is given by

4 =(4~V2) '(Xi+X —X2 X2'X8-,

+1) and over the magnitude of the distance
between the neutrons and the magnitude of the
distance from the center of the neutrons to the
proton.

The wave function in the ground state of the
triton is expected to be a linear combination of
the nine functions given in Eq. (1); that is,

where the x are the spin wave functions of the
indicated particles. The functions f, are functions
of the distances corresponding to r and y, and
they are also even functions of the quantity
q= (r y). For simplicity, they will be described
as "radial" functions. The extra factors (r g)
which are displayed in these equations, but not
in those tabulated by Gerjuoy and Schwinger,
are introduced in order to satisfy the Pauli
principle for the two neutrons. The normalization
conditions for the radial functions take the form

(3a)

The coefficients, n, , and the form of the func-
tions, f, , could only be determined by solving the
Schroedinger equation for the three-body prob-
lem. It is our purpose to express the magnetic
moment of the triton in terms of the n, and
certain integrals over the f, Then .we can hope
to get some idea concerning the quantities nj
and f, from the observed moment. . The magnetic
moment of the nucleus is given by

V=8.(+, ~8'&')+I.(+, I ~i'+~2']+)

+(+, 1-8*+), (5)

l~ v'(1-v') If. I'=1,

—
~~(1 —c') if I'=1.

Jf q (1 q') If81

'-J" (1+3v2)v2lf7l'=1

2J"(3+V') If8I'=1,

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)

(3h)

where I ~' is the s'-component of the orbital
angular momentum of the proton, p~ is the
magnetic moment of the proton, and p„ is the
magnetic moment of the neutron. In this ex-
pression, the wave function, 0, is taken to be
that function for which the magnetic quantum
number of the total angular momentum is +-';.
By making use of Eq. (4), the magnetic moment
can be expressed in terms of the matrix elements
of the spin and orbital angular moment opera-
tors. Thus

88= P n, *n8{88„(jl0.8*lb)

+~-(j I~i +~2*I&)+(jll- 'I &) I, (6)

where the j, f8 refer to the wave functions p, , p8.
In the next section it will be shown that a
considerable fraction of these matrix elements
vanish, so that this expression is not quite so
formidable as it looks on first sight.

3. THE MATRIX ELEMENTS

8 ]"(1 a')'V' If8 I' =—1 (3i)

The integrals indicated in these conditions are
to be taken over the variable q (limits: —1 to

In evaluating the matrix elements which
appear in Eq. (6), it is convenient first to deter-
mine which of the elements vanish. The only
diagonal elements that would be expected to
vanish are those corresponding to the mixing of
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two 5 states by an. orbital angular momentum
operator. Thus:

('SI I.2'I'S) =0,

where the indicated '5 states refer to an arbitrary
linear combination of the functions f, and p2.

If the states to be mixed are orthogonal in the
space coordinates, then the matrix element of
the spin operators vanishes, since the spin
operator will not remove the space orthogonality.
Similarly, the matrix elements of the orbital
angular momentum vanish if the functions are
orthogonal in spin. It follows that:

(2S
I
& .z 2I2) —0 (2S &,z 4Q) —0

('S 0' 4D) =0, (2P 0.,' 4D) =0, (8)
(4P

I
(r '

I

4D) = 0

where j = 1, 2, 3. Also:

((IL2*lm) =-', (llI. I222). (14)

The functions p2 and p4 are both antisymmetric
under interchange of r and y, so they satisfy the
condition for the validity of Eq. (14). In addi-
tion, p2 and p2 are orthogonal, so that the matrix
element of the s-component of the orbital angular
moment vanishes, since both functions are
proper functions of this operator:

where x, y, s are the components of r and t, g, f,
those of p. The two terms in Eq. (13)clearly have
the same matrix element. between two wave func-
tions, both of which are either symmetric or anti-
symmetric under interchange of r and g. Thus
the matrix element of either term is one-half the
matrix element of L'. It follows that for two such
functions, p2 and p

(2S L ' 4P) =0 (2S I. 'I4D) =0
(2I' L2 4I') =0, (-I L2*I4D) =o. (9)

(sIL I6) =o.

Then, according to Eq. (14),

(15)

It is now possible to resort to symmetry
arguments to show that other elements vanish.
The operators, 0 and L2', do not involve y (see
Eq. (12)), so they are unchanged by the tra, ns-

formation g~ —Io. Therefore, if the functions to
be mixed by the matrix element have opposite
symmetry under this transformation, the element
vanishes. A study of the functions given in Eq.
(1) leads to the new results:

(1I~'12)=o, (31~2'14) =o, (3I~, ls)=o, (lo)

and

(1II2*I4)=0, (2IL2*I3) =0, (3IL4*I4) =0. (11)

It will be noted that, apart from the factors
f2, each of the functions p, . p2 is either sym-
metric or antisymmetric under interchange of r
and y. It has already been pointed out' that use
can be made of this property, since the operator
I.3' is given, in units of A, by

(s IL,*
I 6) =o. (16)

(I IL zl I ) = ( pILzl Q) 2/9 (17)

Similarly,

('I'IL2*I'I') =2('&IL'I'&) = —1/9 (18)

The situation is not quite so simple for the 4D

functions. p2 is antisymmetric and f2, p2, f2 are
symmetric under the operation being considered.
Therefore, there are cross terms between p2 and
the other three functions which depend on the
more detailed properties of the functions. The
other terms can be evaluated by the above
method. If 4D' denotes an arbitrary linear
combination of p2, p2, and p2, then:

Equation (14) may also be used to evaluate
the diagonal elements of L~'. Considering hrst
the 'P functions, both are seen to be antisym-
metric under interchange of r and y, so any
linear combination has the same property. Thus

while the s-component of the total angular
momentum is given by

(6IL 'I 6) = ('D' IL 'I'D')
= (4D' lL, *

I
4D') = 1/3. (19)

It is also a simple matter to evaluate the

$ t

~ .&3. diagonal elements of o-,' iri the quartet states,
since these functions are symmetric in o &', o2',
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and 0'3 . I herefofe, v

('P
I o,*

I
'P) = g'(4P

I
5*

I
'P) = 5/9 (20)

('D
I
~ *I'D) = 1('D

I
~'I'D) = —1/3. (21)

The values of the diagonal elements of the
spin matrices in the states Pi and $3 may be
obtained immediately by noting that both func-
tions are antisymmetric for interchange of o-~'

and cr2'. Therefore,

(1Ioi*+0g*I1)=(3lai*+02*I3)=0. (22)

(8IL~*I5) = . I (3+a")f8"f~
18i ~

i~I (1 9 )f9 f&
18i ~

+— q(1 q')—'fg*fi', (26e)

5
On the other hand, the sum of the three 0;*must (6I +i*I f) =—J' iI (1 rl )fa—fi
be equal to twice the average value of 5', or

(1l~ 'I1) =2('~l~'I'~) =1 2+- "a'(I q')f~*—fi' (2«)9)
(3loa*l3) =2('PIS'I'P) = —1/3. (24)

All other matrix elements may be obtained by
direct computation. Since the required calcula-
tion is tedious and not at all illuminating, it will
not be presented here. The results are:

2
(6IL "Ig) =-

„~
V(1 —iI')f~*f~'

1
(6IL3'l~) = —— "rl'(1 rl')f~"f9— (26h)

(41~3' l4) = s,

(2l- +."I»=4/3,

(4l,*+,*I4)= —4!9,
(25)

where fi is the derivative of f; with respect to g.

4. THE MAGNETIC MOMENT

(51~3*I4)= s)~(1 v')fn*f4, —

(5 I
«*+~2*I4) = —3~"(1—e')fr*f4

0.'3=C3 I, 0!4=@4 I,

In terms of these matrix elements, the mag-
netic moment is given by Eq. (6). In order to
bring out explicitly the symmetry character of
the wave functions, we set

+9 =CQD)

for the spin elements. The elements of the ur =as'P, oboe=a j3, Oi7=aiD, ns=&SD, (27)
orbital angular momentum operator are:

(3 II-3*I1) =—.„(1 a') sf~'f ', —
9' ~

(41L-'I2) =—.II (I q')f4*(fi+gf—~'),
3s ~

(26a) where 5' is the probability of finding the system
in the '5 state ('P)' that of finding it in the 'P
state, etc. The numbers 5, 2I', 'I', and D are
chosen to be real. They must satisfy the normal-

1zatlon condltlon

2
(VII-~*I5) =—.

i
q'f7'f:

+2+2+2+4+2+D2

The a~., also must be normalized as follows;

——
I g& —q' ~'s'

9i ~

' The factor 2 arises from the fact that the Pauli operator,
o', is twice the spin.

Ilail�'+

I ~2
I'=1

In3I'+ I«I'=1

Ia I'=1,

(30)

(31)
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IasI'+ IavI'+ IasI'+ IasI'

+-'s8. 4a7*asjl gsfp~fs

a—*a j"(1 V'—)~ f *f

—
as*as jt(1 —gs)q'fs*fs = 1. (32)

(RI I denotes the real part of the quantity con-
tained in the bracket. Equation (32) has a
relatively complicated form because the functions
Pr, Ps, and fs are not orthogonal to one another.

In terms of the coef6cients defined by Eq.
(27), the magnetic moment is:

+a4 as) (1 —V')f4*(fs+Vf')

+—O'P8 2av'as 2
I

q'f7*fr
9

j~q(1 q')f7 fs

+as*as I (3+re')fs*fs

—2 g 1 —
g

as «Q (1 rf)fs fs

I = w. Ias I'~-'(-~, r.)-
3

——'P'"I ~.—s Ia4I'(~ —
t ») j

3

2 2+- 'P'(5t 21 .) —O'(2t .+—t
—„)

9 3

2
+—'P' ——4P'+ O'+ v (3-3)

9 9 3

where p, contains the cross terms. This last
quantity is given by

2
P, =—O'6t as*a7 5 I ps(1 —g')fs*fy

9

+2j a'"(1 V')fs*f~'—.

+2as asjIg(1 &2)fs fs

Here, s{ I is the imaginary part of the expres-
sion in the bracket.

The expression Eq. (34) is so complicated that;
some assumptions concerning the wave function
must be made in order to simplify it. We assume
that the functions fs are independent of q or

fs' =0. (35)

This assumption appears to be reasonable, since
the'wave function of the ground state will have
such a form that the kinetic energy of the system
is as small as possible. Therefore, it should be a
very smooth function, in which case Eq. (35)
wouM be approximately valid.

The functions fs also depend on the magnitudes
of the distances between the particles. In ac-
cordance with our assumption that these func-
tions are smooth, it seems reasonable to assume
that they all have about the same shape.
Therefore, we take

as as) 0 (1 Q)fs fs '

jt f;*fs=
1

If I'
I
fsl' . (36)

+—(p„—p ) 'PsP61 as*a ~I(1 q')fs fs—3"
2 1

+—'PSd —as*a,j~(1—q')g fs*f,'
3 3

According to the well-known Schwartz inequal-

ity, this equation gives an upper limit on the
magnitudes of the integrals involved. Conse-
quently, the magnitudes of the coefhcients of
the cross terms in the expression for the magnetic
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moment are no greater than the values given by
Eq. (36), so the estimates obtained below of the
amount of admixed 'P, 4P, and 4D states are
lower limits.

If we now set
+x =xi +~ye) (37)

t:he cross terms in the magnetic moment become

2 5 g7
p, ,= D' (x8x7+y8y&) (x8x9+y8y9)

3v3 g7 2

8&2
+ (~.—) .) 'P 'P(x8«+y8y4)

9

2+5
+—4PD

9
(xvy8 —x8y9) + (x8y8 —x8y8)

Q7

Q7
(x,y9 —x8y9) . (38)

10

Here, use has been made of the normalization
conditions given by Eq. (3) as well as the
assumption Eq. (36). The normalization condi-
tion expressed by Eq. (32) now has the form

g

Z (x'+y')+ (»x8+y7y8) —(»x9+y9y9)
7=6 7

g7
(x8x9+y8y9) 1 (39)

5

The magnetic moment is still given by Eq. (33),
with

~
a9

~

9 =x99+y9' and
~

a4
~

'= x49+y,9. The
constants, x;, y;, are to be chosen in such a
manner that they satisfy the conditions of Eqs.
(29) to (31) a.nd Eq. (39), and that they give the
correct value of the magnetic moment, i.e. ,'

p = 1.067@„. (40)

The eighteen constants are clearly not deter-
mined by these five conditions, so some further
assumptions may be made in order to make the
final results somewhat more specific.

The fact that the coefficient in Eq. (40) is
larger than unity does lead to a considerable
limitation on the choice of the constants, since
the diagonal terms in Eq. (33) tend to reduce
the moment below the proton moment. There-
fore, it is necessary to take the non-diagonal
terms to be positive and rather large. In order

to minimize the negative diagonal terms in

Eq. (33) we are led to choose

a, =0, ~a4~9=1. (41)

Since it seems likely that the amount of S
state will be as large as possible, we might
require that the constants x;, y; be chosen in
such a way as to lead to the largest possible
value of S'. There is also some reason to guess
that the D state probability will be large com-
pared to the 'P and 4P probabilities. ' Although
it will be found that this condition cannot be
satisfied, we will choose the values of the con-
stants in such a way as to make D' as large as
possible just to see how closely we can approach
the desired result. No simple analytical method
was found for choosing the constants x, , y; in
such a way that D' would turn out to be a
maximum. For this purpose, it is desirable to
make the coefficients of the terms containing D
in Eq. (38) as large as is consistent with Eq. (39).
It was found by examination that the maximum
amount of D state resulted when

x6=y6=xv=y& =xg—-yg—-0,
XQ

—X4 — yg)

ys=y4=xs.
(42)

where we have taken p„=2.79 and p„/p„
= —0.685. The values of 'P' 'P' and D' which
are given by this equation are shown in Fig. 1.
It should be emphasized that these are not the
only possible combinations of these constants
which will agree with the triton moment because
the choice of the x;, y; which has been made is
rather special.

It is to be noted that the S state probability
will be a maximum for D'=0, 4P'=8 percent
and 'P'=17 percent. D' is never as large as 'P',
and it is at most equal to 4P' in spite of the
fact that the coefficients x;, y; have been chosen
in such a way as to lead to as large a value of D'
as possible. The largest value of D' is 22 percent
with 'P'=30 percent and 'P'=48 percent. In
this case the wave function contains no S state.

With these values of the constants, the relation
between the amplitudes of the P and D states
which is given by Eq. (40) is

2 12'P'P+0. 178. 4PD L0.509P9-
+1.254P'+0 759D9] = 0.067, (43)
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It is generally believed that the properties of
the wave function of He' are the same as those
of the wave functions of the triton. Therefore,
the conclusions drawn here concerning the ad-
mixture of states in the triton may be assumed
to hold also for He'. This makes it possible to
make certain predictions concerning the mag-
netic moment of He'. lt has been shown that
the moment of He' is given in terms of the
moment of H' by the relation'

85

I I I I l I

20%

p(He')+p(H') =p„+p„—2(g, + p„—-', )
X (3D' —4P'+2'P')/3. (44)

The consequences of this equation are demon-
strated in Fig. 2 which shows the relation be-
tween the moment of He' and the amounts of
'P, 4P, and 4D states which satisfy the relation-
ship shown in Fig. 1. These are not the only
possible values for the He' moment, since certain
specific assumptions have been made concerning.
the wave function in order to obtain Fig. 1. The
value of the He' moment to be expected on the
basis of the 4 percent of 4D state and 0 percent
P state found by Gerjuoy and Schwinger' is
p(He')/p„= —0.763, a value which seems to be
well out of the range of possibilities allowed by
the considerations put forth here. ' Therefore, a
measurement of the moment of He' should prove
to be a definitive experiment for distinguishing
between the two cases. If the results are in

agreement with expectations, it would then be
possible to obtain another relation between the
probabilities of the various states by taking the
horizontal intercept of the observed moment
with the various curves in Fig. 2.

5. CONCLUSION

The conclusion that the amount of D function
is small compared to the amount of .P function

' The Gerjuoy-Schwinger assumption of a small amount
of 4D function and. even smaller amounts of the I' functions
is not consistent with the results obtained here because
of the condition, Eq. (35). However, if the average value
of fj.' happens to be large enough, in contrast to the
requirement of Eq. (35), the term Fq. {26a) would give a
contribution to the moment suf6cient to account for the
measured value even if the 'I', 4I', and 'D probabilities
are small. In this sense the measurement of the moment
of He' might be considered as a test of the assumption
expressed by Eq. (35). A large average value of f&.

' would
be rather surprising, since the usual assumption that f~
be a function of (rl22+rlp+r232), where r „ is the distance
between particles m and m, would lead to fl'=0.

/' 30%

40
D
Cl

4 55
Ol
IL

30

I I I I 1 I I l I I I

0 2 4 6 8 IQ I2 l4 16 i8 20 22 24
0 (percent)

FIG. 1. Relation between 'P, '.P, and 'D state proba-
bilities required to account for experimental moment of
the triton. The special assumptions made in obtaining
these curves are expressed by Eqs. (35), (41), and (42).

in the ground state of the triton is somewhat
surprising if one believes that the tensor inter-
action is responsible for the admixture of states
since, then, it would appear that the D state
should play a predominant. role. It is possible,
of course, that this conclusion is a consequence
of erroneous assumptions concerning the nature
of the radial wave functions f; The der. ivatives
of these functions have been neglected, and it.
can be seen that important terms could be
introduced if the derivatives were not negligible.
However, it has been found that the values of
fi.„' required to make these terms appreciable are
quite large. To assume that it has such a large
value would imply that the wave functions
consist of products of one particle wave functions
corresponding to high orbital angular momenta
of the individual particles. This seems most
unlikely. For the present, it seems reasonable to
drop such terms.

There appear to be two essentially different
wave functions of the triton which are consistent
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with the measured magnetic moment. The
amount of 5 state may be large and the amount
of D state very small or zero. In this case, one
might be forced to assume that a spin-orbit cou-
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FIG. 2. The magnetic moment of He' in units of the
proton moment. These curves have been obtained on the
assumption that the relations shown in Fig. 1 apply also
to He'.

pling plays an important role in determining nu-

clear structure. The other alternative is that there
is little or no S state. This would imply that the
tensor interaction has a sufficiently high average
value to compensate the increase in kinetic energy
which would appear for such a wave function.
There would probably still be some difficulty in
understanding the saturation of nuclear forces. A
better understanding of this point could be
obtained by carrying through a calculation of
the binding energy of the triton on the assump-
tion that there is little or no S state.

The possibility that the simple theory is
entirely wrong should not be overlooked. The
intrinsic moments of the neutrons and proton
may be sufhciently perturbed by their mutual
interaction to account for an appreciable fraction
of the difference between the triton moment and
the proton moment. Finally, relativistic correc-
tions to the triton moment would be expected'
and these may not be negligible compared to the
eA'ects under consideration.

The numerical work required for the con-
struction of Figs. 1 and 2 was carried out by S,
Moszkowski.


