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The De6ection of Charged Particles in a Ferromagnetic Medium
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The deAection is recomputed which a beam of charged particles will undergo when pene-
trating a ferromagnetic medium whose magnetism is due to electronic spins. The extreme
importance of the "interior of the electron" for the effective magnetic field b is brought out
by a quantum calculation which is analogous to mell-known classical considerations. Only
if the interpenetration of beam particle and electron has random probability will one 6nd
b=S. Otherwise deviations are to be expected which can be estimated in special cases. A
section is added which develops the conditions under which magnetic deflection can be observed
in competition with multiple scattering. Very high energy protons and deuterons offer the
best possibilities (see Fig. 2).

' "N recent years, experiments have come to the
~ - fore' in which the magnetic deflection of a
hearn inside a magnet plays a role. Such experi-
ments involve the question of the magnitude of
the "eRective held" inside a polarized medium.
Such a held has to be specified in terms of a
process. In the case which is to be studied in this
paper a fast charged particle traverses a piece
of magnetized matter and experiences a very
large number of small magnetic dcHections. The
resultant effect can be described in terms of an
"effective magnetic field" b by the formula.

F = (se/c) v X1,
where F is the force on a beam particle, I its
charge, Rnd v its velocity.

There is one simple statement we can make
about b. If the velocity of the beam particles is
increased sufficiently so that their paths can be
considered to be straight lines, then b will

approach the magnetic induction 8

This is a consequence of the generally accepted
theory that all magnetic dipoles are in na, ture
equivalent to circulating currents. That this
view is correct for the Dirae electron has been
shown by Wcizsacker. '

Many people believe that (2) is not just a
limiting relation, but a generally valid equation.

~ The greater part of this work was carried out at the
University of Iowa, Iowa City, Iowa.

F. Rase'tt1, Phys. Rev. 66q j. (1944)~

~ C. F. v. Weizsacker, Ann. d. Physik IT, 869 (j.933).

The cRsc RgRlnst this supposltlon hRS bccrl very
well stated by Swann. ' His considerations,
although expressed in classical language, are
valid in quantum mechanics also. They can bc
expressed as follows; If the magnetization of a
ferromagnet is orbital in nature then there is
little doubt that (2) will hold under very wide
conditions. However, the more common case is
that of ferromagnetism arising from the electron
spin. In other words, the magnetization M
originates in dipoles which are very small even
on an atomic scale. The 6cld which they produce
varies over a very wide range of magnitudes and
even the sign of its component along M is vari-
able, with regions of very large negative and
posltlvc coIltllbutloIls Rd]olnlng neaI' the clcc-
tron. This situation is schematically represented
in Fig. 1. The quantity 1 defined through (1) is
an average value of this true field for R beam
particle. It is well known that the extreme fields
in the neighborhood of a small dipole enter
decisively in the determination of such an
average. The one simple result mentioned earlier,
glvlng b=3, results from thc RverRglng process
only if there is no force capable of favoring or
hindering the interpenetration of the two par-
ticles. In addition, it is necessary for a statistical
average that each beam particle enter several
times the "interior" of an electron. Such inter-
penetration does not pose any problems of
pllnclplc ln present day physlcR1 theory, but lt
does remain a practical question in each indi-
vidual case. Among the forces which might enter
into play there is of course the Coulomb force

'%. F. G. Swann, Phys. Rev. 49, 574 (1936).
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between the two charges. In addition, there is the
possibility of short range forces which might not
otherwise be observable.

2. CALCULATION OF THE AVERAGE FIELD b

Since ferromagnetism is associated with the
electron spin we must use Dirac wave functions
for the electron. For the beam particles, no
structure will be assumed except the possession
of a charge. This is not so much an assumption
as a definition of what we wish to call the mag-
netic deflection of a charged particle.

The calculation which follows differs from the
standard in that it computes the expectation
value of a force rather than an energy. The force
is the force F in Eq. (1).Reading the latter as an
operator equation, we can see that finding the
expectation value of the force F is equivalent to
finding the expectation value of the Field b,
provided the velocity is an approximate constant
of the motion; this must necessarily be so if we
want to observe a small deflection at all. The
correct operator for b can be obtained from two
independent approaches. Either we take the law
of Biot-Savart and make the substitution for the
electron velocity w

where n„o.„, n, are the three Dirac matrices; or
else we take the Breit Hamiltonian, translate it
into classical language, compute the magnetic
part of the force, and translate back into quan-
tum language. Either approach gives the same
result. The operator giving the field b(r) at the
position r equals

Here the summation extends over all ferromag-
netic electrons in the magnet. In order to obtain
the expectation value of (3) we require the
knowledge of the spinor wave function

P(ri, r2, rs, r„;r),

where r stands for the Cartesian coordinates of a
beam particle, and ri, r2, are the Cartesian
and spin coordinates of the ferromagnetic
electrons.

In looking for a reasonable approximation to
P we can first convince ourselves that a product

(M

FrG. 1. A schematic picture of the magnetic field inside a
ferromagnet.

wave function

Pi(ri, r)$2(r2, r)gs(ra, r) f (r, r)x(r)

is adequate. The reason is that the ferromag-
netic electrons are inner shell electrons and can
be assumed to be localized and independent of
each other in their Cartesian coordinates. For
their spins, on the other hand, we may assume
complete coupling with a pre-assigned field direc-
tion. This justifies the product assumption and
shows that the individual factors P„differ from
each other only in the location of their origin.
The result should be anti-symmetrized, of
course, but as this will have no effect on an
interaction of the type (3) we can dispense with
it. The factor x(r) at the end is added for con-
venience. It is essentially a modified plane wave
which is normalized over the whole ferromagnet.
The functions P, can then be considered nor-
malized in their first coordinate.

Kith this. type of wave function, the calcula-
tion is reduced to a two-body problem. Ke get
for the expectation value 1 of (3)
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The sum extends over all atoms of the ferro-
magnet.

It is useful at this point to use the Darwin-
PRull approximation to the corlect DlIRc wave
functions. ' In this approximation we introduce
a Schrodinger wave function of the type

and then get the spinor components in the fol-
lowing way

To facilitate further discussion we shall define
as the true magnetization M(r, r') the following
quantity

M(r, r') k=(e/i/2mc) P„(p„'q„,

where k is a unit vector in the s-direction.
M(r, r') gives the magnetization at the point r
Because of the assumption of perfect ferromag-
netism, it has the same direction everywhere and
can be treated as a scalar if convenient. Its mag-
nitude varies periodically in the crystal lattice
and depends on the location r' of the beam par-
ticle as a parameter. W'ith the help of dehnition
(10), Eq. (9) takes the form

n„~(r, r') =—
2tpc Bs I,(r, r') =c~&(M(r, r')

u„~(r, r') =0,

u„4(r, r') =q„.

Substitution of these values into (4) yields

b=
J

p(1' )dt

which is a well-known relationship of classical
electrodynamics. ~ Using (11) and neglecting (8),
we get (6) in the form

p (v XM) y(r' —r)
(12)

~n ~a

In addition to (10) we shall introduce several
averages of this true magnetization M. The first
will be called the atomic magnetization M, (r)

This average removes the dependence on the
beam particle, but it still varies rapidly within
atomic distances. Another average that can be
formed is the dynamic magnetization Md(r, r').

M~(r, r') =(AQ) '
~ cV(r+y, r'+p)d~, . (14)

Equation (6) states the law of Biot-Savart for a
beam particle which has a probability density
p(r') to be at a given place. I,+I, is the current
density producing the magnetic field. This
current density breaks up into two parts. The
part (8) is the current produced by the orbital
motion of the electrons, part (9) is the contribu-
tion of the spin. Ke shall neglect the contribution

(8) in the future.

'H. A. Bethe, Handbgch der I'hysik, Vol. XXIV, 1, p.
304.

*

Here AQ is a volume large compared to atomic
dimensions, but small compared to the size 0 of
the magnet. The Anal average is the gross mag-
netization M which is obtained by carrying out
the missing averaging process on (13) or (14)

= 0-'Jt M~(r, r')di-'. (15)

'R. Becker, 'rheo' der Blektri&Mt (B. G. TeubneI. ,
Leipzig, j.933), Vol. 2, Chapter C.
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Both M& and M have the crystalline structure
averaged out, but (14) still shows the dynamic
effect of the beam particle. The final average (15)
is variable only in the walls of the magnet; the
current (11) reduces for this case to the "equiv-'
alent solenoid" current which, in turn, produces
a field equal to the induction B. Thus Eq. (12)
reduces for this case to

t (vXM) X(r' —r)
B= ' p(r')dr' dr (16).

lt has been pointed out that Eq. (12) can be
arrived at without the use of Dirac theory.
Simple electrodynamics predicts Eq. (11), and
Eq. (12) results from it by the law of Biot-
Savart. The only assumption needed is that M
is due to circulating electric charges. Now, if we
assume instead that M is due to di-poles, then a
variable magnetization would produce a pole
density P which equals'

P = —V M = - ri Ml8. .

e two last averages can be related to each The average field resulting from the same mag-
netization (10) would then produce a different
field h. It equals

Md(r, r') = M(r)f(r r'), — (17a)
where

(17b)

f(r) = 1, (if r is larger than atomic dimensions).
(17c)

The reason for this is that inside the crystal the
only variation of Had not yet averaged out is that
arising from the proximity of the beam particle.
This effect involves coordinate differences only
as is indicated in (17a) and is necessarily of short
range as is shown by (17c); in the walls of the
magnet, the two averages vary the same way.

Fquations (12) and (16) show that 1 will equal
B if it is permissible to replace 3' by its double
average 3f. The two intermediate averages will

have a certain usefulness in the following dis-
cussion.

3. A GENERAL THEOREM CONCERNING b

A classical calculation of the average field b
leads' to certain general statements emphasizing
the importance of the interior of the electron.
One introduces as a device the true di-pole type
of an elementary magnet. Let us call h the aver-
age field which would be produced if all the
electronic di-poles were of this type. This quantity
h is of course fictitious, but it is useful in that we
can infer that it would be very accidental to find
b =B unless we find b —h=4+M. Of this differ-
ence b —h, one can show that it arises entirely
from contributions inside the magnetic di-poles.
The quantum mechanical analog of this calcu-
lation will now be carried through.

Following the reasoning which led from (12) to
(16) we get an expression for the conventional
magnetic field H as due to the pole faces:

8M r' —r
H = — t p(r')dr'

~

— dr (20).

Now we take (12) ancl (19) and form their
difference. We find

We can apply Gauss' theorem provided we
exclude the point r'=r. The expression then
reduces to

b, h. = Jt p(r')dr'4s—.M(r', r'), (21)

In a similar manner we find b, —h =0, b„—h„=0.
If the same calculation is applied to (16) and
(20), instead of (12) and (19), we get, of course

B, H, =47rM, B, H—,=0, B„H„=—O, '(22)—
as expected.

or, expressing the second integrand as a di-
vergence,

1
b, h,,= p(r')dr—' v ~ Mv dr

r' —r
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On Eq. (21) we can make the following ob-
servation. Consider

It equals

ance iY.s average

In view of (15) Eq. (24) gives then

b —h =4xpM, (26)

fI
—'Jt P, (t„*(r, r')(p„(r, r')dr'.

For physical reasons the two expressions must
be equal when r' —r is made large in the first one.
The second expression gives, therefore, the elec-
tron density at r if the beam particle is very far
away. On the other hand

P„i „*(r,r)p„(x, r)

gives the electron density at r if the beam
particle is also at r. We can write, therefore,

P„e„*(r,r) i „(r, r)

where

chance of finding the electron at r
if beam article is also at r

(23)
p

p(r) =
chance of finding the electron at r

if beam particle is far away

We shall call it the coincidence probability at r.
Now, using (10) and (13), the previous con-
siderations give us

M(r, r) =p(r)M. (r).

This transforms (20) into

b —h =4ir J( t)(r) p(r)M. (r)dr, (24)

' G. H. Wannier, Phys. Rev. 67, 364 (1945).

or in words: b —h is equal to 4x times the average
value of the atomic magnetization along the path
of 'a beam particle, provided the atomic mag-
netisation at each point is multiplied with the

coincidence probability af that point.
The same relation was stated in a simpler form

in an earlier paper. ' If the effect of the crystalline
field upon the beam is negligible t)(r) and p(r)
become constants in the magnet. The latter is
obviously connected with f(r), as defined in (17).

where M is now the gross magnetization. Equa-
tion (26), in turn, reduces to (22) if the coin-
cidence probability is unity, that is for undis-
turbed wave functions.

The conditions under which (24) or (26) holds
were enumerated formally in an earlier paper. "'

A short review of them may be in order:
(a) "That the magnetic interaction is suf-

ficiently small to be treated as a first order per-
turbation. " This condition is implicit in picking
a wave function (5) not invol~ing. the magnetic
interaction and computing from it the expecta-
tion value of (3). It appears reasonable enough
for charged particles, but seems inadmissible for
neutrons. It is not possible, of course, to find
wave functions containing magnetic effects
unless "cut-off" methods are used.

(b) "That the magnetic fielcl is due entirely to
the electronic spin. " It arises from the neglect of
(8) and appears generally accepted for ferro-
magnetic metals.

(c) "That the ferromagnetic electrons move in
orbits independent of each other. " This is a
reasonable assumption which is necessary to
get Eq. (4).

(d) "That it is sufFiciently accurate to solve
the Dirac equation in the Schrodinger-type
approximation of Darwin-Pauli. " This assump-
tion transforms (4) into (6) and needs some dis-
cussion. The true Dirac wave functions are very
weakly infinite at the origin; they will produce
divergent results in the present case unless com-
bined with a cut-off procedure. As soon, however,
as a cut-off radius of the order of the electron
radius is introduced the wave functions differ
only insignificantly from those used here. The
assumption, therefore, appears to be justified.

(e) "That the test charge is much heavier than
the electron. "Having a p different from unity in

(26) implies scattering. This scattering will

affect the beam particle unless it is heavier or
much faster than the electron with which it
collides. Even if this condition is broken the
equations from (3) on may still be applicable;
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but Eq. (1) will break down and make our results
meaningless unless a new empirical definition is
found justifying (3). This remark applies for
instance to the proposal of Webster' to apply
considerations of this type to conduction elec-
trons in iron.

A further assumption stressed by Swann'
happens to be unnecessary. The difficulty raised
there is that coincidence of beam particle and
electron would be so uncommon statistically that
a strict average would have little meaning. In
quantum theory the "coincidence" part of a
wave arises entirely from the S-part of the wave
function. The chance for such an S-collision can
be obtained as follows: we estimate the maximum
angular momentum possible for a beam particle
passing a monatomic layer by taking it to be
(reduced mass) X(impact parameter) X(relative
velocity), and limiting the impact parameter to
one half of the interatomic distance. The maxi-
mum quantum number J thus obtained lies
between 10 and 100, depending on the velocity.
This gives a probability for S-collisions lying
between 10 ' and 10 '. Thus even in a 0.01-mm
foil each beam particle experiences at least 10
S-collisions.

Under the restrictions just listed, Eqs. (24)
and (26) state in quantum language the same
thing as the classical considerations of Swann. '
The difference b —h arises entirely from the
interior of the electrons and thus depends on the
result of head-on collisions. If b is to equal B
this difference must equal 4mM in spite of the
facts just stated.

I

4. SPECIAL RESULTS FOR THE COULOMB FIELD

The analysis of the previous section shows
that there are two effects which may produce a
1 which is not equal to B:

(a) The crystalline field will modify the wave function
of the beam particle so that encounters between beam
particle and ferromagnetic electron no longer have random
probability.

(b) When there is an encounter, the chance of inter-
penetration is not average because of the intervention of
repulsive or attractive forces.

The effect (b) opens a possibility of detecting
short range forces which may not otherwise be
observable. For such hypothetical forces, Eq.

7 D. L. Webster, Am. J. Phys. 14, 360 (1946).

(26) goes about as far as we can hope to go.
There is, however, such an effect produced by
the Coulomb field of the two charges. We shall
calculate this effect in the following, assuming
effect (a) to be negligible, as it probably is for
beams of reasonable energy.

The first thing we can do for this case is to
examine the relationship of the previous section.
The simpler form (26) applies here. The value of

p is given by (25); it is well known for the
Coulomb field' and equals

P=~/(1 —e *),
where

x = (4''se'/hv) = 1.39 10'(s/v) .

(27a)

(27b)

If the absolute value of x is large, p will be very
large for positive charges and zero for negative
charges. Fur high velocities, on the other hand,
x will be small and p will equal unity. A list of
values of p in the transition region is given in
Table I of reference 6.

The calculation can be completed without any
difficulty to yield b itself. Our assumptions
permit substitution of the smoothed out M~ for
M in Eqs. (12) or (19). The quantity M&, in
turn, can be expressed through Eq. (17).Taking
the difference between Eqs. (12) and (16) or
between Eqs. (19) and (20) we get formulas of
the form

h —H= —Jt p(r')d~'

I —X—(~ If(r' —r) —1 I )
f

r' —rf'

@or Coulomb forces, f(r) is expressible in para-
bolic coordinates, and the calculation can be
made in closed form. The result involves the
same quantity P =f(0) that was written down in

' Mott and Massey, Theory of Atomic Collisions (Oxford
university Press, New York, j.933), p. 36.

M can be treated as a constant, because in the
region in which it is variable the second factor
is zero by virtue of Eq. (17c).The integral then
breaks up in two independent factors and gives

p af(r) r

as r'
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(27). It reads

or
b =B+2mM(p —1), (28a)

b'=-', (B+H). (29)

This formula has been inferred earlier by Swann. '

b =H+2mM(p+1). (28b)

Strictly speaking, this equation is only found for
the field transverse to the beam, while for the
longitudinal field an equation

b(= Bt+47rM((p 1)—
results. There seems to be no physical applica-
tion, however, in which this component could be
observed.

It is interesting to notice that (28) gives for
positive particles an average field which is larger
than 8, while for negative particles it is smaller.
This asymmetry gives 'some hope of observing
the effect, which is, unfortunately, not in the
range of easy observation (see next section).

Webster' has called attention to a consequence
of (28) for conduction electrons in a ferromagnet.
For them p equals zero and we get

The first objection to this formula is that the
crystalline field will certainly modify the chance
of encounters at these low speeds. The second
difficulty is the lack of an experimental definition
of the type (1) which would make b at least in

principle a measurable quantity. However,
Webster~ suggests some indirect approaches in

his paper which may be of value in this situation.

5. MAGNETIC DEFLECTION AND MULTIPLE
SCATTERING

Observations on magnetic deflection have to
compete in practice with multiple scattering. It
is therefore useful to study the two effects con-
currently. The study is based on the following
three equations:

(a) The range-energy formula'

dB 4~e4s'ZX ( 2nw'
(3o)

dx ms' (I(1 —P') e~')

(b) The magnetic deflection formula

866

dx Pc

IOO'

I

IOO~
J

ANGLES

O.I—

aool'
.OOI .OI JO I.O IO

ENERGY (IN UNITS OF REST ENERGY'}

IOO IO,ON

Fio. 2. Angles of magnetic deHection and scattering for various particles as a function
of energy. Thickness is picked to maximize the ratio of the two quantities. Results near
E= 3'' are rough interpolations only.

M. I.ivingston and H. A. Bethe, Rev. Mod. Phys. 9, 263 (1937), Eqs. (749) and (750).
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(c) The multiple scattering formula"

d (8') 8ms'Z'&4'
ln (181Z—"*).

dX p2V2
(32)

Here the symbols have the following meaning:

The integration can be carried out for the ranges
E«3fc2 and Z)&Mc2. The results are for E«3fc'

Ib ( I
16wsZe'X (2mc')

2mvp2 ~ 2mV2

x t~ ——t~-
I I

e =basis of natural logarithms,
6 = elementary charge,

m =electronic mass,
.M =mass of beam particle,
s~ =charge of beam particle,
8=energy of beam particle,
y=angle of magnetic deflection of beam particle,
0 = root mean square angle of scattering of beam par-

ticles
/=momentum of beam particle,
v =velocity of beam particle,
p =8/c,
x =path length in foil material,
Z =atomic number of foil material,
A =effective magnetic field inside foil material,

%=number of atoms per unit volume in foil material,
I=mean ionization potential of foil material.

(34)

27%v p"
O'=Z—ln(1. 81Z—

~) ln ln —ln ln
M I ' (35)I

for E)&3IIc2

2'&02 2m+2
In In —ln ln—,(36)

I3II2c2e Inc'e
mc%

8msZXe'

m (2nzc2) ' IM'c'e &

O'=Z—
I ~

ln(181Z—') li
ME Ie) 2mBp'

IM2c2e '
—12—

B2
(37)

As a preliminary calculation, we can try to 2m
determine the thickness of the ferromagnet in
such a way as to make the quantity y/8 a Here lix is the logarithmic integral

maximum. The result is that the thickness must
be chosen in such a way that in the non-rela- Ax=

i Ix lnx
tivistic region (E((3fc') 0

P0 (33)

reasonable. This choice was made for. the
numerical results of this section. It determines
the thickness of the magnet to be used when the
energy Ep of the beam is given. The actual value
of the thickness is obtained by integrating (30)
and is easily available in the literature.

For the present purpose, it is preferable to
eliminate x from the Eqs. (30), (31), and (32) and
to get p and 8 as functions of the beam energy.

B. Rossi and K. Greisen, Rev. Mod. Phys. 13, 263
(1941), Eq. (1,53a).

E/Zo = 0.432,

and in the relativistic region (B»Mc')

B/Zo ——0.203,

where A=energy of beam particle when leaving
foil, Ep ——energy of beam particle when entering
foil. A somewhat more complicated result is
obtained in the neighborhood of E=Mc2. The
maximum of y/8 is sufficiently flat to make a
choice

or, more properly, its real part.
The numerical evaluation of (34), (35), (36),

and (37) is shown in Fig. 2 for the case of iron.
On the abscissa axis is plotted the energy in
units of Mc', this gives the same q-curve for all

particles of unit charge. A somewhat arbitrary
connection is made between the regions E« Jt/Ic2

and B&)3IIc2; it is marked by dotted lines. The
value of b was taken as large as possible, namely,
21,900 oersted. A reasonable averaging process"
was used for I and gave

I/mc' =0.000385.

Scattering curves are given for the electron,
meson, and proton. The meson mass was taken
as 200 electron masses. The proton gives best
results; actually the deuteron is still more
favorable, as it has the scattering diminished by
a factor 0.7 compared to the proton. The
Coulomb splitting discussed in Section 4 is shown
for the y-curve. It appears difficult to observe.

"The average is a logarithmic average of the type dis-
cussed by Livingston and Bethe (reference 9, p. 265).
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In conclusion we can say that the magnetic
deflection of a beam of charged particles in mag-
netized iron should be quantitatively observable
if high energy protons or deuterons are used

instead of mesons. ' A modification of the gener-

ally accepted result

may be expected if there are short range forces
modifying interpenetration of proton and elec-
tron. The Coulomb force alone will give such an
effect, but it appears barely at the threshold of
observation.

I wish to express my thanks at this point to
Dr. John Eldriclge, Dr. J. R. Dunning, and Dr.
H. A. Bethe for valuable discussions.
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Interpretation of the Triton Moment*

R. G. SACHS

A rgonne NationaL Laboratory, Chicago, IlIinois

(Received April 29, 1947)

In order to account for the measured magnetic moment of the triton it is necessary to
assume that the wave function in the ground state is a linear combination of '5, 'P, 4P, and
4D functions. An attempt is made to determine the amplitudes of these functions from the
magnetic moment on the assumption that the intrinsic nucleon moments are additive and
relativistic eGects are negligible. With certain reasonable assumptions concerning the nature
of the wave functions, it is found that the relative probabilities for finding the system in the
'P, 'P, and 'D states satisfy the relation shown by the curves in Fig. 1. Wherever the results
would otherwise be arbitrary, the wave functions have been chosen in such a way as to mini-
mize the amount of P state, with the exception that only the lowest one-particle configurations
have been considered. If the amplitude of the 'S state is taken to be as large as possible, the
wave function contains no 4D state, 8 percent 4P state, and 17 percent 'P state. A wave function
of this form would seem to indicate that there is a spin-orbit coupling other than the tensor
interaction acting among nuclear particles. In the other extreme case that the wave function
contains a maximum of the 'D function, the 25 state probability is zero, the 4D probability is
22 percent, the 4P is 30 percent, and the 'P is 48 percent. If the wave function of He' has the
same form as that of H', the He' moment would be expected to lie on one of the curves shown

in Fig. 2.

1. INTRODUCTION

HE recent measurements" of the magnetic
moment of the triton give a value about

6.7 percent greater than that of the proton. If
the ground state of the triton were a pure '5;
state, it would be expected that the moment
would be equal to the proton moment. It is
believed, of course, that the ground state is not
a pure '5 state but contains an admixture of
'I', 4I', and 'D states. ' A theory based on simpli-
fying assumptions leads4 to the conclusion that
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the presence of these states should result in a
reduction of the moment instead of the observed
increase. However, it has been pointed out~ that
cross terms between the various states in the
expression for the magnetic moment have been
neglected in the simple theory. These may be
positive and could, therefore, account for the
large moment.

It is the purpose of this paper to obtain a
general expression for the magnetic moment in

terms of the amplitudes of the various wave
functions and thereby to gain some information
concerning the nature of the ground state wave
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