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Statistical Geometry and Fundamental Particles
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To take account of the fact that the existence of a
fundamental length a, the classical electron radius, sets a
limit to the accuracy with which the position of a point
can be measured, it is proposed to introduce two spaces,
an "abstract" space consisting of points, and an "observ-
able" space in which one deals with elementary volumes
correlated to the points of the former by means of a
statistical distribution function in the form of a three-
dimensional Gaussian error function. Such a function is
not Lorentz invariant, but one can obtain Lorentz covari-
ance in the observable space by carrying out the usual

Lorentz transformation in the abstract space. If one
assumes that the usual equations for wave fields, in which
the fundamental particles are regarded as points, are
valid in the abstract space, then one can obtain corre-
sponding equations in the observable space, with the
particles behaving as if they had finite volumes. The
difficulties associated with infinite self-energies and singu-
larities in the interactions between particles, as calculated
by the usual perturbation method, disappear, but the
difficulty associated with the divergence of the series of
successive orders of perturbations remains.

1. GENERAL CONCEPTS

'HE constant a, the "classical electron
radius" of the order of 10 " cm, is con-

sidered to play an important role in limiting the
range of validity of the present form of the
quantum theory. ' It has been suggested by
various authors' that this constant represents the
smallest measurable distance, and that it is
therefore necessary to alter the ordinary concepts
of geometry when one is dealing with regions
having dimensions of the order of a. Accordingly,
March' introduced a "granular" geometry in
which the smallest distinguishable element of
space is a sphere of radius a. Recently there
appeared a very interesting paper by Snyder, '
in which the coordinates and time are treated as
non-commuting operators, the coordinates hav-

ing eigenvalues which are integral multiples of a.
In the present paper the point of view adopted

is somewhat related to that of March. It is
assumed that the constant a determines the
lower limit to the error in the measurement of
the position of a point. If one measures the
x-coordinate of a point under the most favorable
conditions, because there does not exist an
infinitesimally small measuring rod in nature,
one will not obtain an exact value, in general.
On the basis of the theory of random errors of
measurement it is reasonable to expect that
repeated measurements will give values dis-

' W. Heisenberg, Zeits. f. Physik 120, 513 (]943).
'A. March, Naturwiss. 26, 649 (1938), where reference»

are given to papers by himself and other authors.' H. S. Snyder, Phys. Rev. 71, 38 (1947).
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tributed about the mean value in a normal or
Gaussian distribution. It will be assumed, then,
that the probability of getting a value lying
between & and (+d& is given by

(2x)—'a—' expL —($—x)'/2a'jd),

where x is the mean value. Extending this idea
to the other coordinates, we will assume that, if
one measures the position of a point, for ex-
ample, that of an electron at a certain instant of
time, the probability of obtaining values in the
ranges d$, dv, di near &, v, i is given by

d~=x(k x. v
—X, i v—)did—ed',

where

x(u, v, n) = (2n.u') —'*

Xexp[ —(u'+v'+Tv') /2a'], (2)
so that
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ln this way we arrive at the idea of a geometry
dealing with small regions, "elementary vol-
umes, " instead of points, provided we think of
the elementary volume associated with mean
values of the coordinates x, y, s, as made up of
those points (values of &, v, i') for which the
function y($ —x, q

—y, i —s) has an appreciable
value. Such an elementary volume differs from
the kind considered by March in that it does not
have a definite boundary.

The basic physical principle associated with
such a geometry is that only a physical quantity
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associated with an elementary volume can be
observed, while. the value at a point is not directly
observable. If one wishes to have physical laws
in terms of observable quantities, it is therefore
necessary to express them in terms of physical
quantities which refer to elementary volumes.

When one attempts to formulate laws in this
way, taking account of the basic indeterminacy
of position, it is convenient to work with two
spaces, an "abstract" or point space and an
"observable" space, made up of elementary
volumes, as described above. To every point of
the abstract space one can correlate an elemen-
tary volume of the observable space by taking
the mean values of the coordinates of the latter
equal to the corresponding coordinates of the
former. In the observable space, no meaning will
be assigned to the value of a physical quantity,
such as a field variable, at a point, but only to
the mean. value over an elementary volume. The
purpose of introducing the abstract space is to
help one to obtain such mean values.

In attempting go formulate physical laws in
the framework of this statistical geometry it is
natural at the outset to try to keep them as
nearly as possible in the same form as at present.
Thus, in the case where one is dealing with
physical variables satisfying linear equations,
one might try to retain these equations, but to
take them as holding in the abstract space. The
corresponding equations in the observable space
v ould then be obtained by an averaging process
from the latter, so that, for example, a function
f(x, y, s, t) would go over into'

according to the relation

Such a transformation has some interesting
properties. In the case of a constant, C, it follows
obviously that

One also sees i eadily that for a coordinate x and

4 Owing to typographical difficulties in setting bars over
multiple symbols or boldface symbols, the notation with
angular brackets will be used where required. Jid.

the time t

5=x, (=I.
In the case of any well-behaved function
f(x, y, s, t) it follows that

(cf)= C f (fr+f2) = f~+f
(8f/rex) = 8f/Bx, (Bf/Bt) = 8f/8I, ,

and

(7)

(g)
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fdxdyds =
~ J

fdxdydz (9).

On the other hand one finds that

2. LORENTZ TRANSFORMATION

Before considering applications of the pre-
ceding ideas, it is necessary to examine them
from the standpoint of the special theory of
relativity. If we have two frames of reference
moving with a uniform relative velocity, it is to
be expected that the same uncertainty in the
measurement of position will exist in each of
them. In each system one will have "elementary
volumes, " and an observer in each one will be
able to introduce an "abstract" and an "ob-
servable" space. Any physical law must be
expressible in the same form in each. frame of
reference.

Now, the special relativity theory was de-
veloped without taking account of the limitation
on measurement imposed by the existence of the

(xf) =xf+a'(8 f/Bx) . (10)

It follows that for a function f(x, y, s, t) which
satisfies a linear homogeneous partial differential
equation with constant coefficients, the equation
for f(x, y, s, t) will have the same form as that
for f It sho. uld be noted however that, while we
have obtained the form of the equation in the
observable space by an averaging process, this
does not mean necessarily that each solution

fmust be obtained by erst determining a suitable
solution f and then getting its mean value over
an elementary volume. Once the appropriate
equation in the observable space has been found,
it is possible to get its solutions directly. Each
such solution, however, is subject to the re-
striction that it must be possible to express it as
the mean value of some function over the ele-
mentary volume.
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fundamental constant a. Hence one should be
prepared to find that the introduction of this
constant into the theory leads to changes in the
usual transformation relations between quan-
tities in the two frames of reference.

In order to be sure of obtaining transformation
equations that will lead to physical laws of the
same form in the two systems, one can make the
following assumption: The usual Lorentz trans-
formation will be assumed to hold in the trans-
formation from the abstract space of one refer-
ence frame to that of the other frame moving
relative to it with a uniform velocity. The trans-
formation of a physical quantity in the observ-
able space can then be determined from the cor-
responding transformation in the abstract space,
if one knows how to go from the abstract to the
observable space.

It may turn out in some cases that the trans-
formation in the observable space will differ from
the Lorentz transformation. However, as far as
the transformation of coordinates and time is
concerned, we see from Eq. (6) that the Lorentz
transformation will remain valid. From a con-
sideration of a plane monochromatic wave one
can readily see that the frequency and wave-

length of a light wave transform in the usual way.
At this point it is appropriate to consider

briefiy another question suggested by relativistic
considerations. In the preceding discussion the
time coordinate has been treated quite differently
from the space coordinates. In particular, we
have considered the uncertainty in the measure-
ment of a space coordinate at a particular
moment of time. It might be asked whether one
should not introduce an uncertainty in the time
(in this case of the order of a/c) in the same way
as has been done for the coordinates. This would

mean having on the right-hand side of Eq. (1)
an additional factor

(2s) '*ca ' exp[ —c'(r t)'/2a']—d, r

However, the objection to such a procedure
appears to be that it would be difficult to inter-
pret the formalism from the operational stand-
point. In the three-dimensional treatment con-
sidered previously the function x of Eq. (1)
represents the probability distribution of meas-
ured values of the coordinates of a point, such
as the position of an electron, at a given moment

of time, so that the time serves as a parameter
to identify what is to be measured. In the four-
dimensional treatment, where the time would
also be measured and would have an uncertainty,
no such parameter would in general be available,
so that it would not always be clear what one was
measuring or how the measurement could be
repeated. The procedure adopted here, of using
the time as a parameter is, after all, in agreement
with what is generally done in the quantum
theory.

3. ELECTRON AND RADIATION FIELD

We next consider the problem of the electron
and its interaction with the electromagnetic
field. In order to avoid lengthy derivations,
reference will be made to the book of Heitler'
for a discussion of the classical and quantum
theories of the electromagnetic field.

The electromagnetic field for a given dis-
tribution of charges with a density p and con-
vective velocity v can be described classically
in terms of the potentials @, A by means of the
following equations

'P = —4s-p,

7 A+//c=0,

with a dot denoting differentiation with respect
to the time. The electric and magnetic field
intensities E and H are then given by

(14)

If we assume that these equations are to
remain valid in the abstract space and then go
over to the observable space by transformations
of the type of Eq. (4)., we get in place of (11)

2@= —4s.p,

while the other equations are changed in the
same way. We see that in the observable space
the equations for the electromagnetic field have
the same form as in the abstract space, except
for the fact that the charge and current densities
refer to niean values over an elementary volume.
Hereafter, we shall drop the bars from the field

'W. Heitler, The Quantum Theory of Radiation, second
edition '(Oxford Press, England, 1944).' The d'Alembertian operator Q' —=V' —8'-jc'8t'
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variables, but it will be understood that they
refer to the observable space.

It has been suggested' that an electron, because
of its fundamental character, should be repre-
sented by the simplest of all structures, a point.
Let us adopt this standpoint, but let us represent
the electron by a point in the abstract space. The
corresponding representation in the observable
space, however, will no longer be a point but an
elementary volume.

Consider a point charge eI, having at the time
t coordinates x&, yl„sI„and an instantaneous
velocity v& in the x direction. The charge density
p at a point x, y, s, at the time t is then given by

p = ej, (1 vI, '/c—') 'b ([x— xl.][—1 —vga/ c]—i)

X b(y —yg) 8(z —zk) (16)

the force exerted on or by a part of the electron,
but only the electron as a whole.

The equations for the electromagnetic field
associated with a system of electrons can now

be written

'y = —4~ P„egx(x x—p, y —y, , z —zI:),

'A = —(4x/c) gg ega

(19)

&& x(x —xa, y —ya, z —zi:), (2O)

with the remaining equations having the same
form as (13) and (14).

Let now expand @ and A in series of plane
monochromatic waves, following Heitler (refer-
ence 5, p. 47) and using his notation. For ex-

ample, if we write

where 5 is the Dirac delta-function. It follows

that
p = esx(x —xg-, y —yk, z —za),

O=Z. a.(t)4.(x, y -)

then from (19) we obtain

a, +(o,'a, = Qg egg„(k),

(21)

so that the "effective charge density" is now

given by a Gaussian distribution. It is seen that
p has spherical symmetry about the center. Thus
this effective charge distribution does not un-

dergo a Lorentz contraction when it is in motion.
This is, of course, attributable to the fact that
the charge distribution arises from the geometry
of the space and not from any assumed internal
structure of the electron. A similar behavior was
pointed out by March. '

In the same way one obtains in the observable
space

(pv) = epvsx(x —xg, y —yp, z —zg), (18)

where vA, is the velocity of the point charge in

the abstract space, or that of the center of the
charge distribution in the observable space.

We see then that, on the basis of statistical
geometry, one obtains a description of the elec-
tron in which many of the previous difficulties
have been removed. The electron behaves like a
distributed charge without any singularities, as
far as its interaction with the electromagnetic
field is concerned. At the same time any questions
concerning the stability of the electron or the
nature of the cohesive forces holding the charge
together drop out. It is meaningless to ask about

' J. Frenkel, Zeits. f. Physik 32, 518 (1925); P. A. M.
Dirac, Proc. Roy. Soc. A16V, 148 (1938).

where u, is the (circular) frequency, and P,.(k)
is given by

y. (k) =~14.(&, v, I)

Xx(&-x., v-y', l-z, )dgvdf, (23)

y =8 exp[i(kx —(at)], (24)

with co =kc. Then one finds

@=8[exp(—k'a'/2)] exp[i(kx u)t)]-
= [exp( —k'a'/2)]4 = [exp( —w'a'/2c')]4. (25)

which is the mean value of @ over the elementary
volume of the k'th particle. Equation (22) is the
same as the corresponding equation given by
Heitler (reference 5, p. 49) except for the fact
that here we have p, instead of p on the right-
hand side. In the same way, in the expansion of
the vector potential A in series of transverse and
longitudinal plane waves, one gets equations for
the coefficients which differ from those given
there by Heitler only with respect to this aver-

aging over the elementary volume.
Now the effect of averaging over the ele-

mentary volume becomes important as one goes
to high frequencies. Consider a plane mono-
chromatic wave, say, of the form



g

~1(x) =2ir i " [exp( —n-')]du.
0

For r»u, this goes over into the coulomb
interaction, but as r approaches zero, it remains
finite, instead of going to infinity as does the
coulomb interaction.

The self-energy of a particle Wk one obtains
either by going through the same kind of cal-
culation as that leading to Eq. (26) or by getting
2Vii, from (26), letting r approach zero. One
finds for the self-energy

Wi = —', Vip = ei,'/2ir**a (28)

Incidentally, the same results for V;k and W& can
be obtained by calculating the electrostatic
interaction and electrostatic energy of charge
distributions of the form given by Eq. (17).

If one equates the expression (28) for an elec-
tron to its rest energy rnoc' one finds

a=0.79/10 "cm

based on the way a was defined in Eq. (2). How-

ever, it is not clear at present that such a pro-
cedure of equating the electrostatic self-energy
to the total rest energy is justified.

Let us now consider the question of quan-
tization. In view of what was found for the
equation of the electromagnetic field in the ob-
servable space it is plausible to take for the
quantum-theoretical equations for the system

This means that the coupling of an electron with
the high frequency components of the electro-
magnetic field is now weaker than in the classical
theory.

If again one follows Heitler (reference 5, p. 50)
in writing down a Hamiltonian function for the
system and then calculating the energy present
in the longitudinal field components, one finds
that this can be expressed as a sum of terms of
two kinds: (I) interaction energies of pairs of
particles, and (2) self-energies of single particles.
For the energy of interaction of two particles one
obtains, on integrating over the various fre-
quencies and directions of the plane waves,

Vg, = (e;ei, /r) C (r/2a), (26)

where e;, ek are the charges of the particles, r is

the distance between them, and

consisting of electrons and radiation field the
same equations used up to now (reference 5,
Chapters II and III) with the sole modification
that in the interaction of an electron with the
field, the mean value of the latter over an ele-

mentary volume must now be used.
The Hamiltonian for the system can be written

H= Q Hi+ Q IIg+ Q V,i, +Q Wi+H'. (29)
k X i)k 1c

Here the Hamiltonian for a particle is given on
the basis of the Dirac theory by

IS(, = cai, (p, —e,(A')(k)) +mi, c'Pi, +ei,@'(k), (30)

P'(k), (A')(k) being the mean values of the poten-
tials of the external field at the k'th particle. The
Hamiltonian for a transverse radiation wave is

given by
II~ = 2+& gx g x

in terms of the quantized amplitudes ~i (a dis-

cussion of which will be found in reference 5,
p. 59). The term H' represents the interaction
between the electrons and the transverse, or
radiation, field. It is given in the present case by

II'= —Pg ei, ni (A)(k)

= —Q equi (q, (A, )(k)+q),*(A),*)(k)), (32)

where

(A),)(k) =)fA), ($, it, I )

Xx(f—xi, p
—ya, I el, )d&d—zdl', (33)

and A), is the vector potential for a plane mono-

chromatic transverse wave, suitably normalized
(reference 5, p. 59). It follows from Eq. (25) that

(Ai)(k) =expL —a&i'a'/2c']Ay(x, y, s). (34)

It might be pointed out that in (31) we are
taking the Hamiltonian of the radiation field in

the usual form. An alternative procedure is
based on the supposition that the quantization
of the radiation field is carried out in the abstract
space-instead of the observable space. This, how-

ever, necessitates giving up the proportionality
between energy and frequency and leads to the
existence of a maximum value for the energy of
a photon. Such a situation does not appear
satisfactory.
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If one treats the coupling term II' as a per-
turbation and carries out the usual perturbation-
theory calculations, one finds that the use of
mean values of the radiation field over an ele-
mentary volume, as given by Eq. (34), gets rid
of the previous "high frequency" divergence
dif6culties.

We have already seen how one obtains a finite
value for the static self-energy, Eq. (28). By
means of a second-order perturbation calculation
one can calculate the dynamic (or transverse)
self-energy (reference 5, p. 181). One finds, on
taking account of the negative energy states of
the electron, that this is given by

Wi,
' = (ei,'hc/2irci'E) —(ei,'/2as')

y, L1 —(mo'c'/2pE) ln [ (E+cp)/(E cp) I ], —(35)

where Z is the unperturbed energy and p the
momentum of the electron. This result, while
finite, is unsatisfactory, however. The first term,
which is the important one for small velocities,
turns out to have a value which is much larger
than mf)c', if one takes a 10 "cm.

It appears that this is related to another dif-
ficulty: if one calculates the contribution to the
self-energy of higher order perturbation terms,
one finds that, while the value obtained for each
order is finite, the terms of even order (the only
non-vanishing terms) keep getting larger as one
goes to higher orders, for a 10 " cm. A rough
estimate indicates that the ratio of an even-order
term to the preceding one is of the magnitude of
e'h /ac'( m)'c, or of 137 for a equal to the classical
electron radius. This means, of course, that the
perturbation calculation is divergent and hence
should not be used in determining the energy of
interaction of the electron and the field. It
appears that the coupling between the electron
and the field is too strong for the perturbation
theory to be applicable. It might be pointed out
that this difhculty is not peculiar. to the present
approach. In a sense a similar difficulty also
exists in the usual "point-electron" theory, but is
masked by the presence of infinities in the in-
dividual terms of the perturbation calculation.

As has already been remarked, in the observ-
able space the interaction between a particle and

the field involves the mean value of the field over
the elementary volume of the particle. Since our
knowledge of the field can be obtained only from
the observation of its effect on particles, it follows
that only such a mean value (a mean of the mean,
from the standpoint of the abstract space) can be
determined. Hence it is to be expected that in
such matters as commutation relations among
field variables, etc. , one should deal with such
mean values over elementary volumes, and not
the values at a point.

4. OTHER PARTICLES

In the case of other elementary particles one
can use the same method as for electrons: the
particle is regarded as a point in the abstract
space and, therefore, as an elementary volume in
the observable space. This leads to the expecta-
tion that all fundamental particles should have
the same "size."

The expression for the interaction of a particle
with a field in the observable space must take
account of the fact that the particle is now an
extended source. This can be done as above, by
writing down the field equations in the abstract
space and then going over to the observable
space. From the form of the equations the cor-
responding Hamiltonian can then be deduced.
In general it differs from the Hamiltonian for
"point" particles in that the interaction terms
involve the average values of the field variables
over the elementary volumes of the particles.

In the case of nucleons interacting with a
meson field, it is evident that the static inter-
action between two heavy particles (calculated
in first approximation) will not have any sin-

gularity. Hence, if such an interaction is used
as the potential energy in the Schrodinger
equation, no "cutting off" of this interaction
energy at small distances between the particles is
necessary.

Note added in proof: It has —been kindly
pointed out to me by Mr. M. F. M. Osborne
that in the book by A. S; Eddington, Fmndc-
men. tal Theory (Cambridge University Press,
1946), use was made of an "abstract" space and
a Gaussian-error transformation function, al-
though in somewhat different applications.


