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(i I/—~)' in the remaining summations should
act to reduce the value of F as I increases.

In conclusion, it seems rather likely that I'
should generally be of the order of magnitude
of —' to —''

' The ionizing action of comparatively energy-rich but
slow ions, of velocity close to that of molecular valence

I wish to thank Dr. J. H. Curtiss and Dr. C.
Eisenhart for helpful discussions and advice on
the statistical treatment and Dr. D. Blackwell for
discussing his results with me prior to publication.

electrons, constitutes an exceptional case for the determina-
tion of both e and P; ~ may become much larger than 30—35
ev, and I' may approach 1.
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The results of two preceding articles on the energy
dependence of the reaction and scattering cross sections
are generalized. As before, the configuration space is
divided into two parts. In the internal region or reaction
zone there is no restriction on the type of interaction
between the particles. In the external region, on the other
hand, the interaction takes place between the colliding or
separating particles without changing their structure (wave
function). The present article deals with a more general
situation than the preceding ones, first by allowing for an
interaction, although only of a restricted type, outside the
reaction zone. The most common type of interaction which

plays a role outside the reaction. zone is the electrostatic
interaction of the colliding or separating particles. In

addition, the present article does not restrict the angular
momentum of the particles to zero, but permits the treat-
ment of arbitrary angular momenta. The cross sections are
expressed in well-known fashion in terms of the collision
matrix U. which is, of course, independent of the size of
the internal region. Q, in its turn, is expressed by the 5
ma trix ((35) and (38)) and the quanti ties co, 5, and
describing the interaction in the external region. 5 as
function of energy is given by (24), and a number of
properties of this function are enumerated. None of the
quantities R, co, 8, and 5 are strictly independent of the
size of the internal region, although the combination (38),
i.e., the collision matrix, of course, is.

I. INTRODUCTION AND SUMMARY

HE present treatment of the representation
of the scattering and reaction cross sections

differs from that given in two previous papers"
in that it divides the problem of finding a sta-
tionary solution of the quantum-mechanical
equations into two steps. The first step is taken
in Section III; Section II is devoted to the intro-
duction of several definitions and a few mathe-
matical preliminaries. In Section III an expres-
sion is obtained for the value which the wave
function assumes on the surface 5 separating the
internal and external regions, ' in terms of the

"E.P. signer, Phys. Rev. 70, 15 (1946).
E. P. Wigner, Phys. Rev. 70, 606 (1946). Professors

J. Schwinger and V. V/eisskopf have kindly informed us
that they have recently obtained results which closely
parallel those of the present paper.

~ Most of the notions (such as internal and external
region, etc.) used in this paper were formulated by the
writers in 1940 for a review article, the. publication of
which was postponed because of the war. It will appear
shortly in another journal.

normal derivative of the wave function on that
surface. The essential content of this section may
be described as follows. A complete set of ortho-
normal functions X~ is defined in the internal
region by means of an Hermitean boundary value
problem. The X), are those solutions of the wave
equation which satisfy the boundary condition
that their normal derivatives vanish at the
boundary 5 of the internal region. If an arbitrary
stationary-state wave function. , q, associated
with the energy Ji, is expanded in terms of the
X), the expansion coefficients are found to be
vz/(Eg —L~') where y), = 1"Xg*(ap/Be) d5 The 2), .
is the characteristic value associated with X)„
8 q /Be denotes the normal derivative; the integral
is to be extended over the boundary surface S.
As a result, the value of p is.given by

y&, fX)*(Bq /Be) d S,—x~=2 (i)



Since p), depends only on the normal derivative
of rp on S, Eq. (1) constitutes a relation between
the value and the normal derivative of y on 5.
If both p and Bq/Bn are expanded into an or-
thogonal system, the integral operator defined

by (1) goes over into the matrix g which has the
same significance as the R of reference lb. The
expression obtained there for % is rederived here,
and it is shown that the constant matrix %„
vanishes. The 5 matrix plays a central role, and
since its form is given implicitly by (1), this equa-
tion contains, in a sense, the essential content of
the present paper.

Although the boundary condition on the X)„
which is actually used in Section I II, is somewhat
more complicated than the one given above
(vanishing normal derivative on S), the relation
which is derived between value and normal
derivative of q is formally identical with (1).The
reasons for the choice of the particular boundary
conditions employed will become apparent latet. ,

but it should be emphasized here, perhaps, that
there is a certain arbitrariness in the choice of
these conditions (and hence of the X&, and K)
and that the ones used may not always be the
most suitable ones.

Section IV deals with the second step for ob-
taining an expression for the scattering and reac-
tion cross sections. It consists in obtaining that
consistent set of values and derivatives of the
wave function on the surface S, the continuation
of which into the external region gives the asymp-
totic form which corresponds to an experiment
to determine the scattering and reaction cross
sections. While Section III deals with the condi-
tion that the values and derivatives of the wave
function on the surface dividing the internal and
external regions be continuable into the internal
region, Section IV gives the condition that the
continuation into the external region give the
correct asymptotic behavior. One can also say
that Section IV gives Heisenberg's 5 matrix or
Wheeler's collision ma, trix' in terms of the 8
matrix obtained in Section III.

In Section V some general aspects of the re-
sults of the preceding sections are discussed. Also
the form of the one-level resonance formula,

which follows when all terms of Eq. (1), except-
ing one, can be assumed to be independent of
energy, is derived.

Li'+ H'
Be'+n

L~ +H
He'+ He4

(A)

The various reaction products which appear on
the right side will be called "alternatives. " Thus
He'+He' is an alternative of the reaction (A).
The pair Li'+H' represents not one but several
alternatives, corresponding to the different pos-
sible states of polarization of the spins of Li' and
of O'. Since both these spins are 1, the total
possible number of polarizations is 3 X3 =9, and
the third pair of (A) represents 9 alternatives.
The pair Li'+H' can be formed so that Li' is in
the normal state or in the first excited state. In
the former case, the spin is ~, giving 4 )(2 =8
alternatives, in the latter case probably —'„giving
2X2=4 alternatives. The same holds of the
Be'+n pair. Altogether, the reaction (A) is, in

the energy region in which the above described
end products are possible, an (8+4)+(8+4)
+9+1=34 alternative reaction. It is desirable,
furthermore, to consider, along with the reac-
tions (A), all the reactions in which any of the
end products of (A) is the initial state. These
are, in the present instance, 34X34 reactions.

II. THE INTERNAL AND EXTERNAL REGIONS OF
CONFIGURATION SPACE

Qualitatively, the internal region of the con-
figuration space is characterized by the condition
that all particles are relatively close together, the
external region by the requirement that the sys-
tem is well separated into two sub-systems. The
forces between these sub-systems are either en-
tirely absent or, if present, of such a nature that
the internal structure of the sub-systems is not
affected. The boundary between the internal and
external regions will be called S.

For a more exact and quantitative formulation
we must start with a few preliminaries. 4 Let us
consider a typical nuclear reaction

' J.A. Wheeler, Phys. Rev. 52, 1107 (1937);W. Heisen-
berg, Zeits, f. Physik 120, 513, 673 (1943); C. Moiler, I.
D. Kgl. Danske Vid. Sels. Mat. Phys, Med. 23, 1 (1945).

4The definition of "alternatives" which follows is not
quite the same as that used in Proc. Nat. Acad. 32, 302
{1946).
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Some of these are, of course, not real reactions
but scattering processes.

There is a certain arbitrariness in the definition
of the states of polarization of the pair Li'+H',
for instance. We shall use the following conven-
tion: From the spin wave functions of the pair
we- build Nuch a linear combination that the
composite angular momentum of the pair is defi-
nite. Similarly, the component of this angular
momentum in a given direction (usually the Z
direction). shall have a definite value. The differ-
ent alternatives will be distinguished by two
indices, s and v. The former determines the
nature and state of excitation of the pair together
with the angular momentum resulting from the
spins of the pair. The magnitude of this resultant
angular momentum will be denoted by j,. The
index v gives the component of this angular mo-
mentum in the Z direction. Neither j,k nor vk is
necessarily the total angular momentum or the
Z component of total angular momentum of the
system because they do not include the angular
momentum of the motion of the nuclei, which
forms the pair s, with respect to their common
center of mass. This is, to be sure, zero in a
head-on collision, but is finite in general.

The product of the normalized wave functions
of the two nuclei He4+He4 will be denoted by
$.0 if s designates the pair He'+He'. In general,
the P,.will not be a simple product but a linear
combination of such products, which will be as-
sumed, in all cases, to be normalized:

where di, denotes integration over the internal
coordinates of the nuclei which make up the pair
s. It is probably unnecessary to mention that f„
is independent of the energy with which these
particles collide or separate. In addition to (2),
one can assume' that P,„ is real in the sense that

(3)
~ E.P.Wigner, Gottinger Nachr. 31, 546 (1932).Actually,

the normalization used in this paper is somewhat awkward
since (3) implies that a function &,0, which is real in the
sense (3), is imaginary in the usual sense. However, this is
purely a matter of convention and plays, in fact, very little
part in the following. The spins of the particles make the
following derivation appear much more complicated than
it actually is. If the spins of all the particles participating
in the reaction were zero, all j, would vanish; s(j„ l)z„
=s(0, l)gp =B~J would hold, and all formulae would be
considerably simplified.

where E implies the transition to the conjugate
imaginary and multiplication with the imaginary
spin operator (0„) of all the elementary particles
in the two nuclei. The point of the normalization
(3) is that the scalar product of two functions,
normalized by (3), is real. It is zero if the j value
of the two functions is diferent, or if their s

values are different. If the two j and s are the
same, the scalar product is independent' of v and
one can argue'

However, because of the last statement (f„g,)
is also equal to (f „g .); it is equal to its con-
jugate complex and hence real.

We now can state more accurately what we
mean by external and internal parts of the con-
figuration space. In the external part, the most
general solutions of the quantum-mechanical
equations with a definite energy are linear com-
binations of functions of the form

F,(r„Q,)P,„(i;).

In this, P„is one of the functions described above,
i, denoting the internal coordinates of the nuclei
which make up the pair s. The r, and Q. denote
length and direction of the vector connecting the
nuclei of the pair s. In other words, the system
is in one of the alternate states (A) which the
reaction can yield. The Ii, is a solution of the
Schrodinger equation in three-dimensional space
with the potential which acts between the pair s.
The external region is so defined that the inter-
action of the nuclei which make up the diferent
pairs can already be represented by a potential.
Clearly, Ii, is independent of v. The internal re-
gion is the remaining part of configuration space.

It may be well to remark here that the size of
the internal region is not defined; the above gives
it only a minimum size. It is always possible to
add to the internal region part of the configura-
tion space which could be in .the external region.
One will try, however, for reasons Which will be-
come clear later, to make the internal region as
small as possible. It should be noted, further-
more, that the size of the internal region is a

6 E. P. Wigner, Grlppentheorie (Edwards Brothers, Ann
Arbor, 1944), Chapter XII.
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function of the energy range which one considers.
With increasing total energy of the system, the
number of excited states of the product nuclei
ivhich one has to take into account will also in-
crease, and so will the distance at which these
excited nuclei interact intimately. At the energy
at which three or more free product nuclei can be
formed, the present considerations lose validity.

Since P,(r„Q,) obeys a second-order partial
differential equation in three-dimensional space,
it is completely determined in that part of the
three-dimensional space which corresponds to
the external region, if its value and normal de-
rivative at the surface S of that region are given.
It is practical, therefore, to choose surfaces r, =a,
to form the boundary between these regions.
Since, furthermore, the Schrodinger equation for
I'", has a spherically symmetric potential, its gen-
eral solution is a linear combination of functions
of the form

The boundary conditions (8) were chosen with a
view to making the behavior of S and 6 simple
for small kr. For small. kr, the two simplest solu-
tions of the radial wave equation behave as r'+'
and r—'. The latter satisfies the boundary condi-
tion for 6. The corresponding boundary condi-
tion for S would read S,~(a,) =(M./k)'*a. /(/+1).
Since this is a small quantity, it was replaced by
0, which also gave some formal simplifications.

The last preliminary step is the formation of
wave functions which have definite total angular
momenta which include both the spins of the
particles of the pair s and the momentum of their
relative motion. This can be done by the coeffi-
cients s~, (&", well known from the vector-
addition model'

K)glp (rs& Qrqr &s) = gm $(gs, f) Jp mm rs— '

r,—'S,~(r,)P~„(Q,) and r, '8, ~(r,)P~,.(Q,). (6)

The P~ (Q,) are the well-known spherical har-
monics giving, to the relative motion of the pair
s, the value lk for the magnitude of the angular
momentum and the value mk for its Z-compon-
ent. We assume that the P~ are normalized if
integrated over the surface of the unit sphere,
and that they obey a condition similar to (3):

P,„(Q)*=—( —)"Pg (Q). (7)

The S,~(r,) and the 8,~(r.) are solutions of the
radial Schrodinger equation which applies to F,
These are chosen so that at r, =a„

S,g(u.) =0,

d (3II,) & d l (iV, q
ir

(8)
dr, Kk) dr d, 4k)
3II, is the reduced mass of the pair s. Evidently,
S and 8 depend not only on the energy but also
on the position r, =o„of the boundary between
internal and external regions; PI, is independ-
ent of both. The notations S and 6 were chosen
to manifest the analogy with the functions
(M/k)~k ' sink(r —a), and (3II/k)** cosk(r —a) into
which S and 6 go over if the angular momentum
1=0, and if there are no forces acting in the ex-
ternal region between the particles of the pair s.

The symbols S and 'U were chosen because S has
a finite derivative, 'U a finite value on the bound-
ary of the internal and external regions. Both X)

and 'U are solutions of the quantum-mechanical
equation in the external'region for a stationary
state with energy E. They represent states with
a total angular momentum J, and a Z component
p (zero linear momentum), and they both are
real in the sense that they satisfy the equations,

%53,)„= 2"$.( „, X'—U.(„= P&'U, ( „—(10).
As a result of the normalization of S,~ and t', g

as given by (8), it follows that on the surface S

~+sly = 'U, g„~ (on S).

A second relation which will be useful in the next
section is

, I 'U, )„~*'U. ( „~dS=8., 6g) (3E,/k),

which is a consequence of (8), the orthogonality

~ Reference 6, Chapter XVII, Section 6. The number of
alternatives, as defined in the paper of reference 4, is the
number of different pairs s, l for a given J. It is also the
number of dimensions of the matrix 5 which will be defined
in Section III.
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of the P& ancl the f,„an. d the unitary character
of the s-coelficients (Chapter XVII of refer-
ence 6).

It may be well to repeat that the s(j, I) z„
the Pt, and the f., are independent both of the

energy E and also of the location u, of the bound-

ary between external and internal regions. The
S, ~ and C, ~ depend on both. This completes the
preliminary work for the rest of the development.

III. THE % MATRIX

The general solution of the quantum-mechan-
ical equations in the external region is a linear
combination of the S and 'U of (9) with arbitrary
coefficients. The purpose of the present section is

to derive relations between these coefficients
which guarantee that the solution can be con-
tinued into the internal region to give a singu-
larity-free solution of the equations in that region
also. Since the coefficients of the S determine the
derivative of the wave function on the surface S
which separates the external and internal regions,
and since the coefficients of the '0 do likewise for
the value of the wave function, the relations be-
tween these coefficients give also the relations
between derivative and value of the wave func-
tion which must hold on the surface S in order
that the continuation of the wave function into
the internal region be possible.

Since the quantum-mechanical equations are
linear, it is sufhcient to determine a set of basic
solutions out of which 'the general solution, and
in particular the one fitting the experimental con-
ditions, can be obtained by superposition. We
chose these wave functions so that they represent
states with definite values of the total angular
momentum J and its Z-component p. These will

be, in the external region, superpositions of the
S and 'U with a single J and p. We may drop,
therefore, for this section, the superscript J.

There are as many linearly independent states
with definite J and p (and definite energy) as the
indices s and I can assume values. (This is equal
to the number of alternatives, as defined in refer-
ence 4. The index l can assume every integer
value between

~
J—j,.

~

and J+j, ) We shall de-
fine our basic solutions so that they contain only
one S; the coefficients of the 'U 'are then de-
termined:

(13)

Equation (13) holds in the external region but rp

can be continued into the internal region. R de-

pends on the energy and on Jbut is independent
of p. Applying Z to (13) one obtains by (10)

Z—rp, („=i'"S,( „+Q R,(;. ( *i'"'U, ( „(.14)

Since Xy is also a solution of the quantum-me-
chanical equations, ' (14) is evidently i"q, & „,and
since g is independent of p,

i.e. , the elements of 5 are real. .

The object of this section is to determine the
coefficients R as functions of the energy. For this
purpose we consider those solutions X),„of the
quantum-mechanical equations in the internal
region which satisfy the boundary conditions at
the surface S,

= )/grad„Xq„*P~, (Q.)g,„d5,

where grad„ is the component of the gradient
normal to S. The Xz„ thus satisfy the same
boundary condition as the 'U, &„. The character-
istic value problem for the X),„is Hermitean, and
X)„can be assumed to form a complete set of
orthonormal functions. Furthermore, since the
problem defining the X),„does not prefer any
direction in ordinary space, a J and p can be
defined and X~„assumed to be real in the sense
of (3). The characteristic value of X~„will be de-

noted by' E~.

It should be noted that this is a well-defined boundary
value problem even though some of the Eg fall outside the
energy region in which the formulae are valid. That region
applies to E and not to the E),. P. I.. Kapur and R. Peierls,
Proc. Roy. Soc. A166, 277 (1937) also introduce an or-
thogonal system to express the wave functions in what
corresponds to our internal region. As a result, there are
many common features between their treatment and ours.
However, their boundary condition depends on the energy
so that they use, in effect, a different set of expanding func-
tions for every energy. As a result, the "constants" in their
equations are only approximately independent of energy,
and this dependence makes it quite difficult to derive e.g. ,
the proportionality of the particle widths in the one-level
formula to the velocity. The complicated nature of the
relation of their constants to those used here is illustrated
in Fig. 2 of reference 1b. On the other hand, their constants
have a closer relation to the observable cross segtioqg
than ours,
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If one applies Green's theorem to p.~„and
X),„, the terms in the surface integral which con-
tain the 'U drop out by virtue of the boundary
condition imposed on the X),„, and one has

8
~ X),„*—X),)„d5

2M, ~ Br,

= (E E),))—I Xg„*p.(„dI. (16)

where R.~;, ~ (~) is an arbitrary real-symmetric
matrix independent of the energy, is a generaliza-
tion of Eq. (33a) of reference 1b.

The R-matrix may also be obtained by the
requirement that rp, &„be continuous at the bound-
ary S. This condition leads to the above equation
with R(~) =Q. Since X) is zero at the boundary
we have as the condition for continuity from (13),
(18), and (19)

The last integral has to be extended over the
internal region. The left side assumes' that only
those S and 'U have to be considered on the part
of 8 which is given by r, =a. which have the If both sides are multiPlied by —(k'/2M, )'U, t „"
first index s'. and integrated over the boundary S we have, on

Introducing (1]) into (16) we obtain for its mak»g use of (1~)
left side

(k) &

(»)
2M; 0 &2j

&( V. ) „u, )„*dS. (22)
the right side defines the y which is independent
of E (and of p) and, as the scalar product of two
real functions, is also real because of (4). Since The orthogonality properties of the 'U, &„, (12),
the Xy„ form an orthonormal set, we can write reduce this equation to
for the internal region

Isla QX +slDXpy (18) (23)

whence (16) gives

(@ I
' Qxal

&2P E~-E

Note that % in, addition to being real is sym-
metric. In the matrix notation used in reference 1

(19) Eq. (23) becomes"

The energy dependence of the R-matrix could
now be obtained by a development which closely
parallels that of reference 1. In this method a
second application of Green's theorem to the
functions y, ~„and y, ~ „', for the different energies
E and B', is made. The evaluation of the surface
integral involved is obtained by neglecting on
that part of the surface which is given by r& =a~,
all X) and 'U terms the first index of which is not I,.
The result of this procedure,

'This is the condition which gives the effective lower
limit to the size of the internal region. It shows, in particu-
lar, that the size of the internal region becomes increasingly
large as one approaches the energy at which a new pair of
reaction products is about to become energetically possible.
Thjs case needs, therefore, separate jnvestigatiog,

&(E)=2
X

(24)

Although hardly any assumptions enter into
(24), the class of functions which can be brought
into the form (24) has some remarkable proper-
ties. Let us consider first the case of a single
alternative reaction with spins zero in which case
both the matrices % and the vectors y be-

"Concerning the derivation given above, which leads to
the more specific formula (23} or (24), it is well to remark
that it is based on the convergence of the series of (18) at,
the boundary S. One can prove the convergence of this
series under certain simplifying restrictions, and we are
convinced that (18) converges also in general. We point
this out specifically because it is easy to see that the series
of the normal derivatives of the right side of (18) does not
converge to the ~derivative of the left side. In finding the
present derivation the main difficulty was to realize that
(18) is a correct equation even at the surface S but that
the equation obtained by differentiating it tecum by term
js jncorrect:,
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come numbers. Then %(E) has the following
properties:"

(i) All its odd derivatives are positive wherever
they exist (i.e., except at the points Ez).

(ii) All its derivatives satisfy the inequality

(R'"+"&/(n+ m)!)'

(E«»+»E«'» —»/(2/+ 1)!(2' —])!
except at the points E),.

It is not known whether every real function
which satisfies these conditions can be brought
into the form (24). If there are several alterna-
tives, R is a matrix and (i) and (ii) hold for the
quadratic form of % with any real energy-
independent vector,

Although it may be a mere mathematical
curiosity, it will be mentioned that if 5 has the
form (24), the function

also can be brought into that form. In addition,
of course, any linear combination of functions of
the form (24) with positive coefficients has again
that form.

IV. CONNECTION BETWEEN % AND THE COL-
LISION MATRIX

The last two equations, (23) and (24), contain
the major result of the present article: they give
in conjunction with (13) the connection between
the derivative and the value of the wave function
on the surface S which must hold if the wave
function is to be continuable into the internal
region. The real constants which appear in (23),
i.e., the E& and the y~, are energy independent
although they diRer for different total angular
momenta J. In order to bring this out, the 5 will

be given an upper index J henceforth.
As far as the present derivation is concerned,

it seems that the above constants can be entirely
arbitrary. It is possible, however, that this is not
the case and that there are relations between
them (similar to the sum rules) which are always
fulfilled.

The purpose of this section is to express the
scattering and reaction cross sections in terms of

' The following is the third property which was referred
to in reference 4.

%~. For this purpose, we need the asymptotic
behavior of the solutions X) and U which are de-
fined in (9) and occur in (13).Because of the real
character of the S and 6 we can write

8,((r,) +,'i(—A,-iv, &exp—( ik,r—,)
A—.&'v; 1exp(ik, r,)),

(26)
6,((r,)~2(B,((v, )*v, lexp(— ik,r,)—

+B,ga), (v, &ex—p(ik, r,))

The A, 8, and ~ are energy-dependent constants;
8 and co can be assumed to be positive real, and
of modulus 1, respectively. A is complex in gen-
eral. The reason for the notation adopted in (26)
will be apparent later. The v, =kk, /M. is the rela-
tive velocity of the particles of the pair s at
infinity, so that the v, 'exp(&ik, r,) corresponds
to unit Aux. Since the S,» and 8,» satisfy the same
second-order differential equation, 6,&dg, &/dr,

&.~d8—,~/dr, is independent of r. As the v. alue of
this expression is 3E,/k at r, =a. (Eq. (8)), it
follows that

B,i(o, )A„i+B,i(v, )~A, i* 2. (2——7)

The 8,», co, », and A, » may be considered as di-
agonal elements of the diagonal matrices 8, co,

and 5. They will play roles similar to the various
powers of k in earlier articles. With this notation,
(27) reads

(28)

so that one can also write

(29)

where (K is a real diagonal matrix. It will be as-
sumed that the S and 6 are known functions of r.
Hence the 5, su, and 8 will be energy dependent
but known quantities. We shall further use the
abbreviations I,„», and B,„» for those solutions
of the quantum-mechanical equations in the ex-
ternal region which correspond to incident and
emerging waves. Their asymptotic behavior is
given by

I„i —+P.,(i,)Pi (0,)v.—ir,—'exp( —ik,r,),
(30)

E,„i ~f,„(i,)Pi„(Q,)v, &r, 'exp(ik. r,).
They are, of course, functions of the form (5).

The asymptotic form of the S and 6 is given
by (26), the S and 'U are expressed in terms of
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One can obtain from (31), by linear combination,
a solution in which only one type of incident
wave is present:

2 Q {(Rs8~*+&5) '}'i;"i v ' i p

the 8 and 8 in (9), and the q are expressed in
terms of the X) and 'U in (13). One obtains by
means of these equations, for the p in terms of
the incoming and outgoing waves I and E,

iv, i„=-', P (%'8«*+~8),i:. i
s' l'm

Xs(gs', I ) Jp mmls'p m—l'm-
+-.' P (%'8« —~8*).i;, i

s' l'm

nature of the u~ matrices were evident. If the
spins of the particles are all zero, the 0 matrix in
fact becomes, in the sense of reference 5, identi'cal
with 8~~ times the H matrix. It is desirable, for
these reasons, to bring the 1(~ into a form in which
their unitary and symmetric nature is at once
apparent.

For this purpose we express 5 and 5*, by
means of (29), in terms of the 8, ra, and 5:
u = (%8&v'+KS 'cu*+i8 'co") '

x(—%8«—58 '«+&8 "«) (3&)

The superscript Jhas been omitted on both sides.
For the first factor one can write, since the 8, a&,

K all commute,
s'l'

= Q s(2„ I)&„„I,„ {f8 '( —~8%8—~5+1)~*j-'
t'cv(—1 —F8%8—iK)-'8. (37)

—g n„;,.,'s(j ... I') s„„E,„„p„, (32)
s'L'm

where

u. i;. i s= —{(%'8«*+i5) '

x (%'8« —~5*)},i;. i' (33)

From this, one obtains by means of the orthog-
onality relation of the coefficients s (Eq. (28),
Chapter XVII of reference 6) a solution in which
only one incident beam occurs. This becomes, in
the external region,

I,„i„PU,„i„;—,.„ i Z. „(, (34)
s'v'l'm'

in which

J+svbni s'v'l'm' ~ J ~gpss vJ Jvmlsl i s'l'

Xs(ja 1 I ) sP 7I1 ~N1+I', ur +v (35)

is the ordinary'collision matrix. The last factor
of (35) expresses the conservation law for the Z
component of the angular momentum since v is
the Z component of the spins, and m is the Z
component of the angular momentum of the rela-
tive motion of the two particles. The ( onsel vatlon
law for the absolute value of the angular n1o-

mentum is not immediately evident from the
form (35) but is included in the s factors.

The symmetric and unitary nature of the 0
would follow at once from the orthogonality rela-
tions of the s coefficients if the symmetric unitary

The second factor can be transformed in a similar
way to give i8 '(i8%8+iK+1)ra. Hence

(38)

It is permissible to use the fraction sign in (38)
since both numerator and denominator depend
on a single matrix: 8%s8+K. Since this matrix
is evidently symmetric and Hermitean, the frac-
tion is symmetric and unitary and it remains such
if multiplied both in front and in back by the uni-

tary matrix co. Equations (35), (38), and (24) give
the collision matrix in terms of real parameters.
Although the values of these parameters are de-
pendent on a„ the collision matrix, which is a
property of the physical system, must itself be
independent of these quantities.

The wave function describing a collision ex-
periment may be obtained by well-known pro-
cedures in terms of the collision matrix 1I. The
plane wave representing particles of type s mov-
ing along the Z axis has the form

~v, lexp(ik„z„—)P,„(i,).
This wave is normalized to unit current of the s
particles per unit area normal to the beam. The
normalization of the P~o, which are used in the
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definition of 8 and I, is given by

P (p(Q.) =i((2l+ 1)/4s. )~P ((cos8,),

where the P&(cosli, ) are the usual Legendre
polynomials.

A continuable solution with the same incident
waves as (39) may be formed by taking an appro-
priate linear combination of solutions of the
type (34):

for the differential cross section for the produc-
tion of s' systems in a collision between unpolar-
ized s systems. Integration of (42) over dQ, . leads
to the total cross section.

O'" = —Q p (2I+1)'
(2js+])ks vv'i'm' l

X I(—)'U. to; "'t' ' —&.to; . t I ~ (43a)

X isvlo E Usvlo' s'v'l'm'Ps'v'l'vn' (4o)

If the Q is replaced by the u~ by means of (35)
this expression reduces, upon making use of the
unitary character of the matrices formed by the s
coefficients, to

The continuable solution which satisfies the
boundary conditions for an experiment involving
collisions between the s particles, is obtained
from (40) by adding and subtracting the emerg-
ing waves of (39). The wave function describing
the collision system, therefore, is

1X'
is, 'exp(ik, z,)P,„(i;)+—g (2l+1)'

ZP~ Z8'v'Z'm'

X (( ) f/svlo s'v'Z'm' ~svlol 'svl' m)@ sv'l' m'
v (41)

where
~svla i s'v' l'tn' ~ss'~uv'~ 1 l'~0m' ~

The density of the s' systems resulting from the
collision is obtained by squaring the part of the
sum in (41) which refers to these systems and
integrating over the internal coordinates z, . The
number per second of s' systems crossing a sur-
face subtending a solid angle dQ, at the collision
center, is obtained from the density by multiply-
ing with r, v, dQ, . This is the differential cross
section for the collision between the systems
characterized by s with the polarization specified
by j, and v. The differential cross section is ob-
tained by averaging the cross sections for all po-
larizations v and adding together the cross sec-
tions for all possible v'. This gives

do*"=— — —Q p (2I+1)*'
(PJs+ 1)ks2 vv' l l'm'

I' il TTX (, ) ~ svlo~ s'v'l'm' &svl0i 8'v'l'm'

XPi „(0,, ) d|l... (42)

088

(2j,+1)k,2 «'&

X(21+1)i( —)'N, i;, i
'—b, i;, i i'. (43b)

One should remember when using the formulae
(42), (43) that s (and s') specify not only the
nature of the subsystems which react (and are
formed by the reaction) but also their state of
excitation and the resultant of their spin angular
momentum j, (and j.). The cross section for the
formation of a pair of nuclei without regard to
the resultant j, of their spins is given by sum-
ming (42) and (43) over all s' which refer to the
same pair of nuclei. Similarly, if one is interested
in the cross section of a pair designated by s'
without regard to j„one must average (42) and
(43) over all s (which now refer to a definite pair
of nuclei). This may be done by adding together
the do."' or 0'" for the possible values of s with the
statistical weights (2j,+1)/P, (2j,+1).

V. DISCUSSION: THE GENERALIZED ONE-LEVEL
FORMULA

The results of the preceding sections have very
great generality inasmuch as they permit one to
express all scattering and reaction cross sections
in terms of the energy-independent parameters
2&, p&, &, etc. Their most unsatisfactory feature is
that all these parameters depend on the arbitrary
location of the boundary S of the internal region,
i.e., on the constants a, . Naturally the expres-
sions (42) and (43) for the cross sections are in-
dependent of these quantities. It would be desir-
able to abstract from our representation of the
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cross sections new concepts which have physical
significance. Unfortunately, Ez and p~, &, since
they depend on the a„cannot be given direct
physical interpretation. Clearly, a close 'investi-

gation of the dependence of the quantities Bq,
y~, ~ on the a, is well warranted; such an investiga. -

tion, however, has not yet been made.
Let us first choose the a, as small as possible,

i.e., choose an internal region which just barely
satisfies the conditions enumerated in Section I I.
If we assume that

~
Xq„~ ' is just about as great

on 5 as inside 5, the integral of
~
Xq„, ' over 5 will

be of the order of magnitude of the reciprocal of
the a.. The integral of the

~

'U, ~„~
' over 5 is M, /k.

As a result, yi, ~, the integral of the product of
X~„*'U,&„ over S, is by Schwartz's inequality
limited by

y)„&(— i'„i'd5 =— —, (44)
(2M,)' & (3f,a;„)"*

where a;„ is a quantity of the order of the di-
ameter of the compound nucleus. Actually the
inequality sign in (44) is a very strong one and
the comparison with observed neutron widths
indicates" that the left side of (44) is usually a
few thousand times smaller than the right side.
(The relation between the yq, ~ and the level width
will be given later in this section. ) This is not
surprising considering that any similarity be-
tween the X),„and the 'U, ~„would seem to be
rather accidental. On the other hand, Eq. (44)
suggests that the y), , ~ should be of the same order
of magnitude for different s and l.

We shall now assume that the interaction of
the particles of the pair s has, in the external
region, no term which goes to infinity for r,—+0

except perhaps as Ze'/r, If this is true, , and if
k,r,(&I, the 'U, ~„defined in (9) will be propor-
tional to r, ' ', and the J),„will have the same
behavior near the surface given by r, =a,. Hence,
X» which satisfies a bouridary condition similar
to (8) for a given a„will satisfy it also for another
a, as long as k~,a,(&I. (k, is the wave number of
the separated pair s for the energy 8 =Eq.) This
shows that, as long as k)„a,((1, the B), are inde-

pendent of the a,. On the other hand, the y)„~ will

depend on a, like a,, ', because the X),„depends on

"L.J. Rainwater, tA'. W. Havens, C. S. YVu, and J. R.
Dunning, Phys. Rev. 71, 65 {1947);R. B. Sawyer, E. O.
KVollan, K. C. Peterson, and S. Bernstein, Phys. Rev. 7.0
191 (1946).

r,, like r, ' in the neighborhood of r, =u.. As a
result of this and (44), we can write

yg, ( = 8)„&k/(M,a;.)&(a;„/u, ) ', (4S)

where 8),, ~ is in many cases a number of the order
of 10—'.

This last estimate of the y will permit us to
discuss the results of the preceding section under
some simplifying assumptions. Since a complete
discussion of those results would be tantamount
to a discussion of scattering and reaction cross
sections in general, this is all we can hope for
at present.

For sake of simplicity, we shall consider only
the u~ of (38). In principle, it should always be
easy to obtain U. , and hence also the cross sections,
from u~ by means of (35). Thus, U»&~;, .~~
is actually equal to I«;, &'b«6~~, if j,=0, i.e.,
if the spins of the colliding particles and of the
reaction products both vamsh (the v and v' as
components of j,and j, are also zero in this case).

The difhculty in obtaining u~ from %~ is one
of matrix multiplication or division. As was
pointed out in the last section of reference 1b,
the matrix algebra can be carried out simply only
if R is one or two dimensional, or if it is sufficient
to restrict oneself to one or two terms in (24).
These cases have been dealt with in reference 1b
and will not be taken up again. We assume, in-

stead, that one can replace all the terms of 5,
excepting one, by an energy-independent term:

(46)

This R(B) has the same form which was obtained
in reference 1a and consequently the following
discussion shows a certain similarity with the one
carried out there. In particular, it will lead to
the generalized one-level formula obtained there,
with the difference, however, that the orbital
angular momenta of the particles will not be
restricted to zero.

For convenience we introduce the abbrevia-
tions, SR 8+5 =K', and Syq = ill. Making use
of the theorem K(y&(y)%=(KyXRy), if y is an
arbitrary vector and % a symmetric matrix we

may write for (38)



TABLE I. CoefFicients in the cross-section formula (no interaction in the external region); x, =k.c..

&st ~st Cst &) s~&@

exp( —2x,) k.

verso'

exp(-~x, )
k~,2y)„)'
1+x'

k.~,y)„12

1+x.,2

-i exp] -i(x,—q.) I

(q, =tan 'x,)
——(3+2x,2)

1

x.3
k~s'yy, 2'{j.+x ')
(3+2~, ) +x.

—k~.y)„..'
(t+x.2) (3+2x,&)

(3+2x,')'+x, '

We shall try to choose a parameter q so that the
numerator of (47) may be written

It is convenient to introduce a vector. 0;), de-
hned by

I+if(y~X y~)/(E~ —E)j+iK'
= LI+i'+i~(1 —i@') '(y xy&) j

XLI-'(1-i@')-'(y.xy )i(E.-E)j (48)

so that

eg ——(1—i@') 'y), ——(1 iK'—) 'Sy)„

y~ = (1—i@')s~ = (&+i@')~&,*,

(54)

Upon performing the multiplication and collect-
ing terms, (48) reduces to

2(y, Xy,) =s[(E,—E)(y&Xy~)

—i(y, xy.)(1—iK')-'(y. xy, )j. (4~)

If the elements of (y&, X yq) (1—i(P) '(yz X yq) are
written in terms of the individual matrices in-
volved it is seen that

(y~xy~) (I —iK') '(y. x y.) = t(y.x y~), (50)

where g is given by the scalar product

f-=(y~, (1—i&') 'y~).

Introducing (50) into (49) we get

n =2/(E~ E ik)— —

(51)

(52)

I+i(S' 2i—1 = ----——+—
1 iK' E)—. E i&——

X [L(1-'@')-'y.jxL(1—ls')-'y. jl (53)

(In writing the last matrix of (53) we have made
use of the symmetry of (1—iK') ' which follows
from the symmetry of 5'.)

If now we factor 1 —iK' out of the denominator
of (47) so that both numerator and denominator
have the common factor [1—i(1—iK') '(y~ X yq)/
(Eq —'E)$, we may replace (47) by

the last result follows from the reality of y&,. By
making use of (54) and (54a) we may divide &

into its real and imaginary parts:

Ref= ,'Fg=-(ng', ~),)=P~~),.&~'=-.' Q Fz.~.,
sl

(55)
Im( = r4 = (e),*, 5'ag)

Fq will play the role of a level width: the 2
~
aq, ~

~

'
=I'g, ) may be interpreted as the partial widths.

As will be seen immediately, the 6), represents a
shift in the position of the resonance from B~.
With the help of (54) and (55) we may rewrite

(53) as

(1+i@) 2'(Cgxah)N
u' = (a( — ((v+ (56)

&1 i(P) —Eg+6),—E—-', iF),

The total cross section (43b) may be obtained
from the absolute squares of the elements of the
matrix (—) 'u~ —1.The squares of the elements of
the second matrix on the right of (56) represent
the resonance part of the scattering or reaction.
The elements of (—)'(a(1+i@')(1 i@') 'a)—1, — —
which are slowly varying functions of the energy,
give rise to what one may call "potential" scat-
tering or reaction. The cross products represent
the effects of interference between the resonance
and potential terms. The potential term includes

two contributions corresponding to the two terms

of K'. the part which arises from K alone repre-



E. P. SIGNER AND L. EISF.NBUD

sents the scattering (since is diagonal) of the
incident particles which would be caused by the
presence of an infinite positive potential within
the internal region. The contribution of the
8%„8 represents the effect of all levels other
than the level Z), . It will in general produce both
scattering and reaction terms.

If 5' is diagonal, the contribution to the total
reacti00 cross section by the level Ei, is by (55),
(56), and (43b)

' (21+1)I'i„il'i„ i
(57)

(2j.,+I)&.' «' (%+~i,—&)'+-', I'i'

Let us investigate now the dependence on a,
and energy of the different quantities which enter
(56) and hence (57), at least in the case where
the R of (46) can be neglected. We consider for
simplicity the case of no interaction in the ex-
ternal region. The C. i and $, i which satisfy (8)
are easily computed; comparison of the results
with Eqs. (26) and (29) leads to the results of
Table I, In computing this table we made use of
the relations

—,'I'i. i = (&.n ~.i)'j(1+&.i'), (5»)
(58b)

sl

ai„i=(KiVi,.i) '(gf'&, .i+~~~.i), (58c)

which follow from (55) and (54) when K' is
diagonal. The x, in the table is an abbreviation
for k,a,.

If the energy of the s systems is small and the
c, are taken small so that k,c,&&1, it is seen that
the F)„l depend on energy as 8('+l'. Moreover,
since p&,«varies with a. as a, (Eq. 45) it is seen
that the I')„l, and hence the I'q are approximately
independent of a, as long as a, is small enough so
that k,a,«1. Under the conditions given, there-
fore, the F&, l have physical significance. It is to
be noted also that because of (45), the partial
widths for the higher orbital angular momenta
are related to the partial widths for 1=0, as far
as order of magnitude is concerned, by

( —)'+terms of order x"+' (61)

from which it is seen that the contributions to the
potential scattering, for small x, are small and
that they decrease rapidly with increasing l.

The one-level formula which is essentially con-
tained in Eq. (57), or in (56) and (43b), is only a
rather special case of the general formula (38).
If the approximation (46) is not permissible, (38)
still contains a representation of the cross section
even though it may not be possible to put it into
so pragmatic a form as (57). Nevertheless, an
evaluation of the cross section may still be possi-
ble in closed form, as evidenced e.g. , in the two-
level formulae and the formulae for two alterna-
tive reactions, given in reference ib. However, in
such cases it may not always be possible to associ-
ate large values of the cross sections with energies
in the neighborhood of Bg or to predict even the
qualitative behavior of the cross section as a
function of energy from a knowledge of the y),
and Eg alone.

As an example, we consider the collision of
systems with zero spins between which there is
no interaction whatever, so that the scattering
cross section vanishes for all B. The wave func-
tion for the free particles with l =0 may be put
in the form of (13) if we take

8=k ' tanka. (62)

This may be written as a series of partial frac-
tions in conformity with (23):

R=Q (63)

Thus the partial shifts are all very small and 8&
is practically independent of the a, . As has al-
ready been mentioned, the fact that 2& is essen-
tially independent of a, is a consequence of the
boundary conditions which have been imposed
on the X),„and C, l.

For small k,e, the elements of the first matrix
on the right of (56) are approximately

~As l &s ~Xao ~
2l (59) with

The hz is roughly proportional to B if x, is
small. From (59) and (58b) it follows that the
order of magnitude of the h~, l is given by

8 =—(2X —1)'( —);2' E2ah

(64)

+As i~ Ãspkso (am in/as) (60) &Ma)
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Of course these equations follow also from
the formalism of Section III. Substitution of
ra =exp( i—ka), 8 =kl, C =0, as given for the case
of no interaction in the external region (Table I),
and R from (62) into (38) leads to u~ = 1, i.e. , to
zero scattering cross section, as it must. How-
ever, this result appears as a cancellation of the
effect of the resonance levels given in (64) with
the eff'ect of the deviation of co from 1.Obviously
the knowledge of the Bq and yq alone is insuffi-

cient to provide us with a picture of the variation
of the cross section with energy. In fact, if one

tries, e.g. , to estimate the scattering cross section
at low energies by using for R the first term in its
expansion (63) one obtains about 0.1a'. This re-
sult is not so bad if one has chosen a small value
of a. However, if one chooses a large u, as one is
entirely at liberty to do formally, this gives a
grossly inaccurate picture of the cross section.
Only by considering the effect of all levels on R
does one obtain the correct zero cross section.

This article is based on work performed under
Contract No. w-35-058-eng-71 for the Manhattan
Project at Clinton Laboratories.
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Stress Relaxation across Grain Boundaries in Metals*
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In order to elucidate further the concept of relaxation
of shear stress across grain boundaries in metals, the tem-
perature dependence of internal friction and rigidity
modulus of 99.991 percent aluminum have been measured
as a function of frequency of torsional vibration and as a
function of grain size of. the specimen. It has been found
that for the same specimen, an increase of frequency of
vibration shifts the internal friction curve and the rigidity
relaxation curve (Q ' and 6/G~ versus temperature) to
higher temperatures; and when the frequency of vibration
is kept constant, a change in grain size of the specimen has

the same effect as a change of the frequency of vibration
The observed internal friction and rigidity relaxation can
be expressed as functions of the parameter (G.S.)')&f
Xexp(H/RT), where (G.S.) is the grain size or average
grain diameter of the specimen, f is the frequency of vibra-
tion, and II is the heat of activation. It is shown that all
these observed phenomena are necessary manifestations of
the stress relaxation across grain boundaries arising from
the viscous behavior of the grain boundaries in metals,
which behavior has been demonstrated by previous anelas-
tic-effect measurements.

1. INTRODUCTION

' 'T has been demonstrated' that the grain
~ ~ boundaries in metals behave in a viscous
manner in the sense that they cannot sustain a
shear stress. Thus, when an over-all stress, how-
ever small, is applied to a specimen, the shear
stress across all grain boundaries will gradually
relax. Because of this relaxation of shear stress,
the stress no longer remains a unique function of
the strain, and vice versa, in the conventionally
elastic region, and this causes all kinds of anelas-
tic eff'ects. The locking' effect of the grain edges
and corners will insure that the over-all stress re-

*This research was supported by ORI (Contract No.
N6ori-20-IV).

~T. S. Ke, Phys. Rev. '70, 105(A) (1946); ibid. , V1,
142(A) and 533 {1947).

laxation will be of limited exten& for a fixed over-
all strain. The maximum amount of macroscopic
shear stress relaxation in 99.991 percent polycrys-
talline aluminum (average grain diameter =0.03
cm) determined by four independent types of
anelastic-effect measurements . (namely, internal
friction, temperature variation of rigidity modu-
lus, creep under constant stress and stress relaxa-
tion at consta, nt strain) is 33 percent, which
agrees fairly well with the theoretical value of
36 percent' calculated by assuming the grain
boundaries to be viscous.

It has also been shown that the rate of the
stress relaxation across grain boundaries is a
function of the temperature of measurement and

' C. Zener, Phys. Rev. 60, 906 (1941).


