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The Relativistic Clock Problem
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The theory of uniformly accelerated motions based on the conformal group of transforrna-
tions in space-time is applied to the clock problem of relativity theory. Two solutions are
found, both of which are at variance with the usual theory. The bearing of the problem on
the relation between mechanics and electromagnetic theory is discussed briefly.

l. INTRODUCTION

1
~~NE of the most interesting problems fur-

nishing a link between the special and the
general theory of relativity is the so-called clock
paradox. This was first introduced into relativity
theory by Einstein' and has since been discussed
many times in the literature; for present pur-
poses we may take the easily accessible treatment
of Tolman' as standard. The interest in the
problem centers around the fact that it leads to
Einstein's important relation between gravita-
tional potential and the rate of an ideal clock.

In the problem as ordinarily stated, ' two
identical clocks are initially in coincidence and
at rest in the laboratory system, and it is assumed
that their readings have been adjusted and their
rates synchronized. One of the clocks, 8, is then
given a strong acceleration for a short, time,
which brings it quickly up to a velocity I with
respect to clock A, while the latter remains at rest
in the laboratory system. Clock 8 continues to
move with this velocity for a long time, after
which it is given a further strong acceleration
which reverses its motion and returns it towards
A with the velocity —u. Just before reaching
the latter, 8 is decelerated in such a manner as
to bring it into coincidence and relative rest with
respect to A. The readings of the two clocks are
then compared. According to the usual theory,
the elapsed time intervals, as measured by the
two clocks, are related by the equation

At~ ——Ats{1+u'/2c')

to terms in {u/c)'. The elapsed time, as read by
the moving clock is thus loess than that recorded

' A. Einstein, Ann. d. Physik f4) 35, 898 (1911).' R. C. Tolman, Relativity, Thermodynamics and Cos-
mology (Oxford University Press, New York, 1934), p, 192.
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by the stationary clock. The apparent paradox
arising from taking the local-system of clock 8
as a standard of rest, in which A is then supposed
to perform the contrary motion to that sketched
above, is explained as an effect equivalent to
that of the gravitational field which can be used
to provide the apparent acceleration of clock A
in the local-system of B.

A variant of the problem, in which the clocks
are not required to be at relative rest when in

coincidence, has been discussed by M plier. '
Apart from the clock problem itself, for which he
appears to concur in the result of the usual
theory, Mfiller takes the occasion to discuss the
problem of determining transformations between
reference systems in uniform acceleration and,
in fact, for even more general motions. We shall
return to this aspect of Mpller's discussion later
in this paper.

Despite the fact that in its kinematical aspects
the problem appears to be entirely symmetrical
between the two clocks, Einstein's theory intro-
duces a dissimilarity between them by the
assumption that one of them is in an inertial
system; the local-system of the other clock then
cannot be an inertial system. However, the pel-
sistent difhculty is that there is no a priori way
of making a decision as to which, if either, of the
two clocks is in an inertial system. Its resolution
in the relativistic argument appears to be quite
as arbitrary as is the corresponding assumption
in Newtonian mechanics.

It has been shown in previous work' that one
can introduce uniformly accelerated reference
systems into relativity theory by employing the
conformal group of transfol mations C4 in space-

' C. Mpller, Det. Kgl. Danske Videnskabernes Selskab,
Matematisk-Fysiske Meddelelser, Bind XX, Nr. 19 (1943).

4 E. L. Hill, Phys. Rev. 6'7, 358 (1945); '72, 143 (1947).
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time, as a generalization of the I.orentz group
L, 4, which establishes transformations between
systems in uniform relative motion. It is the
purpose in the present paper to discuss the
application of this theory to the clock problem;
in this way we shall be able to lift one of the
deficiencies of the current theory by establishing
explicitly the transformations between the local-
systems of the two clocl.s and so can make the
kinematical treatment symmetrical between
them. However, as the theory is kinematical in

character, and makes no direct appeal to
mechanical principles, we can draw no particular
conclusions concerning the causes of the apparent
motions of the clocks, nor can we infer any rela-
tionship to any particular type of force field such
as gravitation. '

Our treatment will be limited to the case in

which either of the clocks appears to perform a
linear uniformly accelerated motion in the local-

system of the other. If the clocks have two coin-
cidences, they are then not at relative rest at
either coincidence. An important point in the
analysis must then be the method of establishing
a comparison of the natural rates of the two
clocks. We shall require that the rate at whi. ch
either of the clocks appears to run in the local-

system of the other, at the instant at which it
comes to rest in that system, agrees with the
rates of other neighboring clocks which are
permanently at rest and synchronized in that
system. The possibility of establishing extended
covering times in the local-systems of bofk

clocks, despite the inherent uncertainty as to
whether either system is inertial in a mechanical
sense, is founded on an appeal to the known form
invariance of the electromagnetic field equations
under C4, if such a covering time can be estab-
lished in either system by purely optical means,
it can be established in both.

2. THE SUBGROUP OF THE CLOCK PROBLEM

Our first task is to abstract from the full

group, C4, that subgroup which describes the
type of motion appropriate to our version of the

~ Even should one bring in considerations concerning an
external force field, it does not appear mandatory that it
be interpreted as a gravitational field; the invariance of
the Maxwell-Lorentz field equations suggests a formal
interpretation in terms of electromagnetic fields.

problem. This can be built up from a translation,
a uniform velocity, and a uniform acceleration
along the x-axis. A study of the commutator
table' of' C4 shows that we must adjoin three
further transformations, representing (a) a
translation of the time origin, (b) a dilatation in
space-time, and (c) a "red-shift. " transforma-
tion. ' This gives us, in total, a 6-parameter
subgroup of C4. I-Iowever, the two translations
can be eliminated at once by taking as our funda-
mental particle representing a clock, that one
which corresponds to the origin of coordinates
in space-time; the moving clock wi11 then cross
the origin of coordinates at the zero of local-time,
moving along the x-axis, and the clocks will be at
the origins of space-coordinates in their respec-
tive local-systems. By including translations we

should merely shift to other points representing
the clocks,

The general transformation of this type has the
subsidiary differential equations

dx/dp = rpg 2 (r +x y" —s ) pg xrp3+x,
dy/dp =y( —xp2 —r pa+1)
ds/dp=s( —xp, —rp, +1),
dr/dp = xp, —xr pg

—,'( 'r+ —x—+ y+ s)p, + r

(2)

' E. L. Hill, Phys. Rev. 68, 232L (1945).' For comparison with the notation of reference 4, we
have the correspondence

P1P~CXS/C, P2P&ii/C, PSP~A'14/~q P 15

The theory of the differential equations involved in the
integration of a continuous group can. be found in the
books by J. E. Campbell, Theory of Continuous Groups
(Oxford University Press, New York, 1903), p. 47; L. P.
Eisenhart, Continuous Groups of Transformations (Prince-
ton University Press, Princeton, New Jersey, 1933),
Chapter 1.

For notation, we let (xo, yo, so, and ro) be the
space-time coordinates in the local-system 5& of
clock 8, while (x, 'y, s, and r) are those for the
local-system 5.4 of A. We have now to establish
the relationship between these sets of coordinates
by integration of Eqs. (2), with adjustment of
the constants to suit the conditions of the pre-
scribed motion.

We start by considering only those points
which move along the common x-axis of the two
systems. On setting y=s=0 in Eqs. (2) we

obtain

d(r+x)/d p = (r+x) (1—
p&)

——',(r+x)'(p2+ p3),
d(r x) /d p =—(7 —x) (1+p&) +-', (r —x)'(ps —ps),
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and by integration we obtain the transformation equations for this class of points in the form

(1—p)) (ro+xo)
~- =-t-x =———

(1 p))s { ' pl)p+ (po+pp)(zo+xo)[1 s—{)--p))o)

(1+p)) (ro —xo)

(1+p))& '"'""—-'(pp —pp)(rp —»)[1—& "+""j

To find the trajectory of the point representing
the moving clock, 8, in the local-system of
clock A, we set xo ——0 and eliminate vo. This
yields the equation

(x+o}-'e"cosh p)p) '

—(r o) 's& —sin-hp)p)'= (e&/pp)',

These relations yield just two solutions, which
we designate as

Case a:. pi=+1, p2= —ps= p,
Case b: pl= —1, p2=+ pg= py.

IIi thc next two sections wc shall examine the
solutions for these cases separately.

p2 p3 ps+ p3
s{)+pg)p]+ [1 s{)—px)p)

2(1+p)) 2(1 —p))

In order to synchronize the clocks we now
require that for xo= 0

(dip/dr) =1 a-t (x, 7) =(xo, ro),

where x+ and v+ are, respectively, the point and
the instant at which the moving clock, 8, comes
to rest in the local-system of clock A. They are
given by the relations

xo = o) 8"(1 coshp)p), ro =I so s)nhplp.

3. SOLUTION FOR CASE a.

The differential Eqs. (2) reduce to the form

d(r+x) = p.(X'+s')dp,
d(r —x) = (r x) [2+—p.(r x) jdp, —

d3 =3[1+p,(r x)$d—p,
ds=s[1+p.(r x) jdp—

(4)

By integration we find the transformation
equations between the local-systems S~ and S~
of the two clocks to be

&+x= (&o+xo)+4p (yo +so') sinhp,
r —x =X,e"(ro —xp),

P —/gal {jo 8 —)L,@SO

with
On writing out. this condition in full, we find

thc IclRtlon
P =1/[e-& —p.(rp —xo) sinhpf.

(pp pp)(1 —p))[ —~+«""""
+sm{& pl)p sk{p+p1)p]

+(po+ pp)(1+p))[ ~+«"—
+sO{)+p&)o sr{p—pi)@]=0

with 0 = +1.
Now when pl is considered to have an indeter-

minate numerical value, the exponentials in this
expression are linearly independent functions of

p, so that this condition can be satisfied only by
assuming

(po —
pp) (1 —p)) =O

(po+ po)(1+ p)) =o.

The trajectory of the moving clock, 8, in Sz
is found by setting xo=yo=80=0 and eliminating
&0. This gives us

(x—p.-'coth)p)o (r+—p ')' .(1/p=. sinhp)'. (6)

In the local-system of clock A, the moving
clock, 8, closses thc OI'lg1n at time % =0, with a
velocity P) ———tanhp, proceeds to the point
xo =p, ' tanh(p/2) on the x-axis, which it reaches
at time ro = —1/p„coming to rest at this point.
On reversing its motion it again reaches the
origin, at which clock A is fixed, at time 2vg,

after which it continues its motion indefinitely

along the x-axis, its speed approaching the value
c asymptotically. By adjustment of the param-
ctcIS onc CRn cRusc thc ultlnlRtc motion to tRkc
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place in either direction. The whole motion is
symmetrical between the two clocks, since the
transformation of Eqs. (5) is inverted by inter-
changing the coordinates and changing the sign
of the group parameter p.

The relation between the local-times of the
two clocks is obtained directly from Eqs. (5)
on scttlng xo=go =80=0, which yields

We sce from this that so= a for x=o, so that
the readings of the two clock agree at boIh, coin-
cidences, in contrast with the result expressed in

Eq. (1).
It follows also from Eq. (7) that dro/dr is

greater than or less than unity, according as
dx/dr is greater than, or less than, zero. This
relation is peculiar in that it does not depend on
thc RlgcbIaic signs of po and of p. Thelc appeals
to be an absolute distinction between left and
right directions along the x-axis; this may also
be interpreted as an absolute distinction between
past and future which is conditioned by the
imposed temporal ordering of the coincidences as
first and second

It is of interest to note that we can arrive at a
transformation corresponding to uniform relative
motion of the two systems if we take the limiting
case p,~O, with Pq = —tanhp, =const. , with which
we 6nd

x = (xo+Pgro)/(1+Pg),

r = («+P»o)/(1+P~)

1-P~ '" yo

We observe that our transformation does not
satisfy the u priori requirement imposed by
Mgllero that it be of the form

x=f(xo, ro), y=yo, s=so, r=&(xo, ro).

There appears to be no reason to believe that
transformations of this functional form have any
wider validity than the Lorentz group.

4. SOLUTION FOR CASE b

It will not be necessaI'y to give the calcula-
tional details for this case, since the work is
811TlllRr to thRt of Scctlon 3. The transformation
equations RI C

r+x =Xoe~(«+xo),
r —x = (ro xo) —Xo—po(yo'+so') sinhp, (9)

p =Xylo, 8 =Xyso, ,

Xo ——1/Le &+po(ro+xo) sinhpf.

This transformation can be obtained from that
of Eqs. (5) by either of the formal substitutions

(a) (x, y, s, r)-+( x, y, s, r)-, p.~ po, p-+-p,

(b) (» y s, r)~(x, y, » —r) p~+ po

The remainder of the anaylsis proceeds factly
as in Section 3. The two clocks again appear
to register the same time interval between coin-
cidences. Thc moving clock RppcRrs to gRln when
it moves to the left and to lose when it moves
to the right, which is just the reverse of the
behavior found for case a.

The transformation of Eqs. (8) is formed by a
homogeneous Lorentz transformation with the
velocity parameter, P~, followed by a dilatational
transformation of all coordinates with a scale
factor L(1—P~)/(1+P~))&. The complete group
of transformations of this type is obtained by
ad jolnlng dllRtRtlons to the 1IilioGlogcncous
Lorentz group, giving nse to an j.i-parameter
subgroup of C4. From the point of view of
physical interpretation this result throws new

light on the meaning of the usual simple Lorentz
transformation, which provides no mechanism
for the synchronization of clocks in uniform
1clatlve motion.

The existence of two solutions of the clock
problem shows that the conceptions of classical
kinematical theory are not capable of charac-
terizing the problem uniquely. Mathematically
this arises from the circumstance that C4 is a
j.5-parameter group, whllc the col I espondlng
group of classical kinematical theory has but 13
parameters. ' In order to see the nature of the
inRuenee of the enlarged character of C4, let us
examine the behavior of the particles which move
along the x-axis. We find the formula for the
trajectory of such a particle from Eqs. (5) and

(9) on setting yo ——so ——0 and eliminating ro We.
obtain equations of the form

(x xo —p'—cothp)' (rW—xone p ')' (1/=p sinhp)o.



E. L. H I LL

For the apparent velocities of these particles we
have

dx/dr = w(raxoa p-')/L(raxo+ p-')'
+ (p sinhp) —'g'.

If we now consider those particles at great
distances in either direction along the axis, for
any fixed time r, we find that tdx/dr~~I as
~xo~ —+& ~. In this way we are brought quite
directly to a kinematical connection between the
clock problem and the "expanding universe. "
This is, in fact, simply another apsect of the
relationship between C4 and cosmological theory,
which has been discussed by Robertson' and by
Infeld and Schild. '

To return to the comparison of the present
analysis with the current relativistic theory, we
observe that the divergence between the two
mathematical procedures rests on the interpreta-
tion assigned to the "line-element" associated
with the group C4. The group is, in fact, charac-
terized by a differential form of the type'

2(x $ s, r)(dT2 dx2 F2 ds2). (].0)

In the relativistic theory an arbitrary assignment
is made of the "inertial" system in which ) =1.
In the present theory we refrain from making a
unique assignment of line-element to the local-

8 H. P. Robertson, Phys. Rev. 49, 755 (1936}.
'L. Infeld and A. Schild, Phys. Rev. 68, 250 (1945};

ibid. , VO, 410 (1946}.

systems of the clocks; our discussion leaves the
line-element of any particular coordinate system
indefinite to the extent indicated by the farm
(10). We are concerned only with relations
between coordinate systems, but not with the
absolute specification of either system. From the
mathematical point of view the present pro-
cedure is more closely related to Weyl's theory"
than to that of Einstein.

From the point of view of physical interpre-
tation, this bifurcation is just that existing
between mechanical and electrical theories, and
it seems to the writer that by the apposition of
the two procedures in the clock problem we are
enabled to see the basic divergence between the
two types of theory in a particularly elementary,
but fundamental, light. The equations of me-
chanics are form invariant under transforma-
tions to systems moving with constant relative
velocity, but the electromagnetic equations are
insensitive to transformations involving uniform
accelerations. The failure of the electromagnetic
theory of mass seems to be a real measure of the
incompatibility between the two theories. %e
seem here to be close to the root mathematical.
dif6culties confronting the attempt to correlate
quantum mechanics and the theory of relativity
on any wider basis than that provided by the
Lorentz group.

'0 H. Weyl, Space-Time-Matter (Methuen Press, London,
1922}Section 35.


