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Birkhoff's gravitational equations are put in terms of Ct in place of the local time ds used
by him. The transformed equations show that Lorentzian mass has been used, and to the
Newtonian attractive force is added a force normal to the direction of motion, v'/c' times the
component of the gravitational force normal to the motion.

I. INTRODUCTION

HE theory of gravitation proposed by the
late G. D. Birkhoff was developed by him

from a very general mathematical standpoint,
and the physical significance of the theory is
difhcult to grasp in the form in which it has been
presented. As indicated by the title of his most
detailed presentation, "El Concepto Matematico
de Tiempo y la Gravitacion, " Birkhoff laid
stress on the use of ds (local time) in place of dt

(Newtonian time); the "forces" figuring in his

development are Minkowski forces instead of
physical (Lorentzian) forces. Yet his solution for
a planetary orbit (which gives the correct
advance of perihelion of Mercury) contains no
terms in ds, raising the question whether this
result does in fact depend on his adherence to
this variable. Actuated by the desire to see what
form his "force" equations would take if ex-
pressed in terms of dh and ordinary physical
force (time rate of change of momentum), I have
carried through the necessary transformations,
with the results given below which exhibit some
features of interest.

2. THEORY

BirkhoA's gravitational force, which is the
third term of an expansion which he states' "it
is natural to set" as typifying "all force vectors, "
gives, in his hands, for the motion of a particle
moving in a plane in the gravitational field of a
mass 3f,
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Putting fi =xi+yy we. get

It is these equations that we wish to put in
terms of dt. To transform the right-hand side we
use the relations

ds= dt(1 —v'/c') ', v' =xP+y'

where the dots indicate differentiation with
respect to t. We note that the left-hand side is
the Minkowski force,

Fz(1 —v'/c') **

in which I'"I, is the Lorentzian force, that is, the
time variation of momentum where mass varies
with velocity according to the relation

m =m (1—v'/c') —".

We then have

(Fc). = [ (G3dmpx/rP) (1+v'/c'-)

'G. D. Birkhoff, Boletin de la Sociedad Matematica
Mexif..ana I, 1 (1944).

'A. Barajas, G. D. Birkhoff, C. Graef and M. S. Val-
larta, Phys. Rev. 66, 142 (1944).
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(~~)p =—G~mp y (yx —xy) Using this result in (10) gives the areal con-
stantr' r

r'8 = k exp[ (2G—M/rc') +kjComparing these with the Newtonian forces

G3IIm—px/r',

G1VI—m py/r',

leading to the solution, replacing r by 1/I

r8 d22
+u = (c'/I2') [exp(k+2 GM 22/ c') —1jd8'

it appears that the Birkhoff equations dier in
the use of the Lorentzian mass, and the addition
of terms in (jx *y)—

'

It is instructive to put these equations in
polar coordinates through the relations

Xexp(k+2 G3f 22/c 2) (14)

yx —iy = r'0

Fs = (I"*x+F.y)/r, F2 = ( F.y+I'—.x)/r

2okick is identically I3irkkog's expression, from
which the advance of perihelion of Mercury is
correctly indicated.

Equations (9) and (10) may be put in simpler,
although less instructive form, by inserting the
value of [1—(r'+r282)/cpj& from (12), giving

used on the right-hand side, using on the left the
statement of the Lorentzian force as given by
Eddington, ' yielding

mp (r' —r82)[1 —(r' +r 28)2/c]pl

+r' [1—(r' +r2'8')—/c ]l2
dt

= —(GIrIm p/r 2) (1+ r'8'/c')

X [1 (r'yr'82—)/c'$ :, (9)—

-Jrr8 [1—(r'2+r282—)/c2] *

dt

= (GIrIm p/r 2) (r'r 8/c')

X [1—(r'+r'8')/c'] '. (10)

These equations are solved by multiplying (9)
by r, and (10) by r8, and adding, which gives

[1 (r'2+ r 282) /c2]
dt 2G3I~'

(r'2+ r 282) /c2]

from whicl)

[1—(r'2+r'8') /c' j=exp[ —(2GiVI/rc') +k) (12).
'A. S. Eddington, Phil. Mag. L6$ 34, 321 (1917).

r2 c2

3. DISCUSSION

Examination of (9) and (10) shows that
Birkhoff's equations for a planetary orbit are
the equations which one would obtain by using
Lorentzian masses throughout in place of the
invariant masses of the simple Newtonian theory,
with, the addition of terms in i, r5', and c' on the
gravitational side of the equations.

First consider the appearance of the Lorent-
zian masses, Birkhoff in his presentation lays
great stress on the use of /ocal time. The idea
that a planet is controlled in its course by the
time indicated on a clock carried on it lacks sub-
stantiality. Physically, forces act on masses.
Actually the factor by which local time is dis-
tinguished from absolute time is the "contraction
factor, " (1—v2/c2)"*. Now this is also the factor,
appropriately placed, by which /ocal mass is dis-
tinguished from stationary mass. Our trans-
formed equations are force equations in terms of
Lorentzian local mass. Hence although BirkhoH

' C. G. Fernandez, Boletin de la Sociedad Matematica
Mexicana 1, 25 (1944), especia11y p. 36.

d(r'8)/dt = 2GMr'8/cp.

These are identically the expressions given by
Fernh, ndez4 who also puts his equations in terms
of dt instead of ds, in discussing the problem of
two bodies in Birkhoff's theory.
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talks of local time as the significant factor-, he is
really stressing the importance of the contraction
factor, ' and his development could just as well,
but with real physical significance, be founded
on local mass.

Next consider the added terms on the right
in Eqs. (5) and (6). Their characteristic is

that when multiplied respectively by i and ~j

and added they cancel exactly, leaving us with
the simple Lorentzian Eq. (11) which may be
written

PA

PA /

/8

—(1—v'/c')
dt {"~mo——mp +

2 (1-v'/c') & r'c'(1-v'/c') &

This equation states that the sum of the deriva-
tives of kinetic and potential energies is zero
which may be accepted as a fundamental re-
quirement. An infinite number of such additional
terms could be set down, which cancelling out,
would leave the energy equation unchanged.
Any- term of this sort has, however, the result of
changing the value of r'8, which is obtained by
integration of the second of the equations in

polar coordinates (10), alone. The whole d2fference
between the Birkh off solution (14) and the
simple Lorentzian solution comes about from the
value of r'8, the "areal constant, " which occurs
(squared) in the denominator of (14), the nu-
merator having always the same fixed value
determined by (12). The terms added by Birk-
hoff in his force equations change this from

r'g = h exp[22k —G3E/rc 52
the Lorentzian value, to

r'g = II exp[k —2G3I/rc25

thereby changing the predicted advance of
perihelion from -'„ the value obtained from the
Newton-Lorentz solution, to the full observed
value. The prediction of these particular added
terms is, in the light of this analysis, the key
contribution of Birkhoff's theory.

Let us study these added terms more in detail.
They are completely described by the following

«The contraction factors are the coefficients of mass,
length, and clock rate, which are demanded to insure the
conservation of energy and momentum in radiation-
matter interactions. Cf. H. E. Ives, Phil. Mag. I 7] 36, 392
I'1945).

FIG. i. Resolution of the force on a particle.

fII=force due to motion, normal to direction
of motion—

fNv'/c' =fI2(r g/c') (y'+r'g') '.

The component of added force in the radial
direction is

f yg( 2+ry2g2) $ f y2g2/c2

and the component of added force in the direc-
tion normal to the radius is

f~r'(r'2+ y2g2) $ f&r'y%2

Putting —( MGm2r/')[1 —(r'+r2g')/c'5 & for

fg we get the added terms in (9) and (10).
Denoting the Lorentzian forces (time vari-

ation of momentum, mass varying with velocity)
by FI„and the Newton-Lorentz gravitational
force —( MGmr2/)[21 —(r'2+ r'g') /c'5 & by GI.,
the Birkho8 gravitational equations for a
planetary orbit may be concisely expressed as
follows

(~L)I2 [GI+ (GL)Nv /c 5Rr

(+L)e = [GI+ (GL)Nv'/c'52,

(17)

(18)

statement: A po,rticle in motion in c gravitational
fIetd exPeriences an additional force, normal to the
direction of motion, of value v'/c' times the com-

ponent of the gravitationaL force normal to the

direction of motion
The proof of this theorem is exhibited in the

accompanying Fig. 1, in which

fN
——gravitational force normal to direction of

motion—
fI2r g (y2+ r'g')



where the subscript X denotes components
normal to the path of the particle, and the sub-
scripts R and 0 denote components in the radial
direction and perpendicular to the radius, respec-
tively.

As to the origin or nature of this transverse
force produced by motion, it is of interest to
observe that it is similar to the "fundamental
law" proposed in a posthumous note by Gauss"
for the mutual action of two elements of elec-
tricity in relative motion. Thc occurrence of c'
stems from the idea of the attraction being
transmitted with thc speed of light.

The Birkhoff force equations for a planetary
orbit can be summarized, according to this anal-
ysis, as follows: They are the equations one

' C. F.Gauss, Werke {Gottingen, 1863—74), Vol. 5, p. 616.

would obtain from a Newtonian attractive force
acting on the Lorentzian local mass of the planet,
with the addition of forces caused by motion,
transverse to the path of the planet, which do
not affect the conservation of energy but alter
the areal constant. The precise value of these
added forces and the method of obtaining them
is thus of crucial importance. Apparently these
forces are not introduced by Birkhoff with con-
scious resort to physical concepts, but they are
prcscnt bccausc of his choice for gravity of the
third term'-' of a formal expansion in rational and
integral components of a typical force function,
in which succcssivc terms are of increasing com-
plexity and hence provide for additional force
components. An independent physical derivation
of these transverse forces would be welcome.
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When a plane non-uniform electromagnetic wave is refracted between two conducting
media, there are two possible positions for the propagation vector in the second medium.
Consideration of the energy flow shows that each solution holds within a certain range of
values of the {complex) angle of incidence, the transition from one to the other occurring in a
discontinuous way. The two cases of the electric vector perpendicular and parallel to the plane
of incidence are discussed.

(1) INTRODUCTION

'HE problem of the refraction of a plane
non-uniform electromagnetic wave at the

plane boundary between two conducting media
is not generally fully discussed in textbooks where
it is pointed out that, with the use of complex
angles of incidence and refraction and of complex
propagation vectors, the problem is formally
identical to the usual one in which perfect dielec-
trics are involved. '

It is the purpose of this paper to complete this
treatment discussing the new physical features
which appear when both media are conducting,

' See, for instance, J.A. Stratton, Electromagnetic Theory
{McGraw-Hill Book Company, Inc. , New York, 1941},
pp. 500-524.

gp kj ~ r+tcoi

kl =a+ib; k2 =A+iB,

8 being a complex amplitude.

(1)

(2)

in particular, a discontinuity occurring in the
(complex) propagation vector in the second
medium at the (complex) angle of incidence for
which there is no average Aorv of energy across
the boundary.

{2) THE PROPAGATION VECTOR IN THE SECOND
MEDIUM

Lct the boundary be the plane y —s, and the
plane of incidence the plane x —s, the x-axis being
directed from the erst medium into the second.
Let any 6eld component be represented by


