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be superconducting at a lower temperature is
not excluded. The data on samarium give an
atomic volume of 19.4 and indicate a Debye
temperature in excess of 130'K. Although the
atomic volume, 19.4, would lie within the region
on the atomic volume versus atomic number

graph, because of the relatively large value of
Debye temperature, greater than 130'K, it is
not likely that samarium is a superconductor.

Protoactinium occupies a position in the peri-
odic table indicating an atomic volume in the

neighborhood of 16 and a Debye temperature of
the order of 150'K. Protoactinium belongs to
the electro-negative group for which the data in

I'ig. 1 is very sketchy. The best that can be
inferred from the data available is that there is

some likelihood that protoactinium is supercon-
ducting and will have a transition temperature
within reach of helium cryostats.

It would be interesting to see if something
could be done along these lines with the super-
conducting compounds and alloys.
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In continuation of earlier work a study is made of the 4-dimensional conformal group of
transformations in space-time as the extension of the Lorentz group permitting the introduction
of uniformly accelerated reference frames into relativity theory. The problem of the motion
of a particle is discussed, as well as the implications for the classical-type electron theory
developed by Dirac.

1. INTRODVCTION

'HE problem of extending the special theory
of relativity to permit the introduction of

euclidean systems of uniformly accelerated refer-
ence axes has been shown' ' to depend on the
generalization from the group of inhomogeneous
Lorentz transformations I.4 to the group of con-
formal transformations C4 in space-time. I his

group is characterized by a line-element of the
form'

dz2 $2(d&2 dz2 dy2 dz2) $2p,dztdx7' ($)

in which the function X is determinable from the

group properties of C4. The mathematical charac-
terization of this group was first given by Lie'
who showed that it consists of a 15-parameter
family, within which I4 forms a 10-parameter

' L. Page, Phys. Rev. 49, 254 (1936).
~ H. P. Robertson, Phys. Rev. 49, 755 (1936).
3 H. T. Fngstrom and M. Zorn, Phys. Rev. 49, 701

(&936).
4 F.. I.. Hill, Phys. Rev. 6'7, 358 (1945).
5 The notation here is x =~=ct, x'=x, x =y, x'=z, with

q; =0 if i &j, =+1 if i =j=0, = —1 if i =j =1, 2, 3.
' S. Lie, Theoric der Transformationsgruppen (Teubner,

Leipzig, 1930).

subgroup. In the earlier discussion by the writer, '
the detailed proof of the association of C4 with
uniformly accelerated motions was established
only for the one-dimensional case, that for
motion in three dimensions being obtained by
generalization only. In the present paper the
complete solution of this problem will be given.

The interest for physical theory in this ex-
tension of the special theory of relativity rests on
three main foundations. In the first place, it
supplies a direct procedure for the study of
uniformly accelerated motions, in a relativistic
sense, by their reduction to analytical coordinate
transformations. Secondly, it has been known for
a number of years from the work of Cunningham'
and of Bateman that C4 is the general symmetry
group of point transformations of the Maxwell-
Lorentz field equations. The association with the
kinematical interpretation of uniformly acceler-
ated motions provides a direct approach to the
study of the radiations from accelerated charged

' E. Cunningham, Proc. Lond. Math. Soc. $2)8, 77
(1910).' H. Bateman, Proc. Lond. Math. Soc. I 2j8, 223 (1910),
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particles. ' Lastly, the fact that the group C4 is
larger than the corresponding group of classical
kinematical theory, which depends on only 13
parameters, ' leads one to certain illodel universes
(~f interest in cosmological theory. This aspect of
C4, which was, first discussed brieHy by Robertson, '
more recently has been noted independently by
Infeld" and by the writer" and has been analyzed
comprehensively by Infeld and Schild. "

It may be noted that although our discussion
necessarily has much in common with those of
Robertson and of Infeld and Schild, insofar as the
properties of the group C4 are in question, the
motivation here is quite different. In the cos-
mological application attention is directed pri-
marily to those subgroups of C4 which satisfy the
so-called principle of homogeneity. Our analysis
of the general kinematical problem, as well as the
applications to electrodynamics, require a treat-
ment of the full group.

The theory developed here is based on the
consideration that the form inoarianc-e oi physical
equations under finite continuous groups of
transformations such as the translation, rotation,
Lorentz, and conformal groups may be of more
fundamental significance than general tensor
covorionce. This is suggested by the fact that
under the transformations of parameter groups
there is no fundamental way in which one can
distinguish one set of reference axes from another.
So far as the present paper is concerned, this is
recognized by the condition that although the
1ine-element of Eq. (1) may be considered as an
invariant of the group C4, and although there
exists a set of coordinates in which the function )
reduces identically to unity, we refrain from
identifying this system with any particular
physical set of coordinates which may arise in the
discussion.

2. THE CHARACTERISTIC DIFFERENTIAL
EQUATION OF UNIFORMLY

ACCELERATED MOTION

The first studies of the uniformly accelerated
motion of a particle in one dimension, in a
relativistic sense, were made by Einstein,

' Calculations in this direction, on the basis of specific
models of the electron, were made by H. Hasse, Proc.
Lond. Math. Soc. j2)12, 181 (1912).

'0 L. Infeld, Nature 156, 114 (1945)."E.L. Hill, Phys. Rev. 68, 232 {1945)."L.Infeld and A. Schild, Phys. Rev. 68, 250 (1945); ibid.
70, 410 (1946).

A/Iinkowski, Born, and Sommerfeld; references to
this work will be found in the books by Pauli"
and von Laue. " In the applications of the con-
formal group to the electromagnetic field equa-
t101ls by |.unningham, Batema11, and Hassle, it
was realized that there existed an associatio»
with accelerated motions on the basis of the fornl
of the infinitesimal transformations of the group,
but the full analysis of this association was
lacking.

We consider as given a priori a "laboratory"
system of euclidean axes S, in which a particle is
observed. to perform a type of motion which we
wish to characterize as of uniformly accelerated
type. By a homogeneous Lorentz transformation
we can, at any instant, introduce a rest-system of
coordinates such that in it the particle is instan-
taneously at rest, although in general it will still
have an acceleration, as well as higher ordered
derivatives of its motion. We now give the
following:

Definition. The motion of a particle mill be con-
sidered to be uniformly accelerated if the time rate
of change of its acceleration, as measured irt an
instanteneous rest-system, voni shes identically.

To put this definition into effect, we consider a
coordinate system S' which is obtained from the
laboratory system by the general homogeneous
Lorentz transformation'~

We now consider a particle, for which the
motion is observable in both S and S', and com-
pute the transformation equations for its velocity,
acceleration, and time rate of change of ac-
celeration, employing the definitions

g = dr/dr, n =dg/dr, y =dn/dr

with similar relations for S'. We shall need to
write down explicitly only the transformation
equation for the vector y.

For convenience in the later argument we ex-
press the vector y' of the S'-system in terms of
the variables of the laboratory system S,

"AV. Pauli, Relativitatstheorie (Teubner, I eipzig, 1921),
sec. 26.

'4 M. von Laue, La rheorie de la Relativite (Gauthier-
Villars, Paris, 1922), Tome 1, p. 166 et seq.

'5 E. Madelung, Die Mathernatischen Hilfsmittel des
I'hysikers (Springer, Berlin, 1936), p. 272.
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If we now require that S' be a rest-system for
the particle at the instant considered and apply
our definition of uniformly accelerated motion,
we have

Ilo = Il (5)

On reduction of Eq. (4) with the values in

Eq. (5) we find the characteristic differential
equation of uniformLy accelerated motion"

,(l —p')+u3(u S) =O.

The foundation of our argument now is that C4

gives just the group of point transformations
under which Eq. (6) is invariant. Since this is a
purely mathematical question which the reader
may be prepared to take for granted, the detailed
proof is relegated to Appendix A. An alternative
proof is provided by the discussion of section 3.
The general integral of Eq. (6), which describes
the class of uniformly accelerated motions, is

given in Appendix B.
Our kinematical interpretation of C4 arises

from the fact that we can find within it a trans-
formation which will introduce a co-moving or
local-system" for a particle performing any

"The statement in reference 4 that the characteristic
differential equation for 3-dimensional motion is complex
arose originally from a definition which was later shown to
be inadequate, since it led to an equation which was not
even invariant under the Lorentz group. The essential point
in the present definition is that the time-derivative of the
acceleration must be computed before S' is identified with a
rest-system; in the 1-dimensional motion discussed in refer-
ence 4 this complication did not arise. Equation {6)o. the
present paper is .a simple generalization of Eq. (6) of
reference 4.

'~ In reference 4 the term proper-system was used to
denote a system of space and time variables, which might
be considered to belong to an "observer" thought of as
permanently riding with a particle. Since this terminology
comes into convict with the established usage of the term
proper-time, we have used here the designation local-
system, which stems from the older term local-time used by
Lorentz. The concept of such a local-system is frequently
employed in qualitative discussions for general motions of
a particle, but seldom with an attempt at defining it
accurately in the sense of establishing the transformation
equations between the laboratory system and the local-
system. The fact that its accomplishment is possible for

obtaining

~ =(&-ll S.) 'I~(&-P')-:
+go[(Y ' 5o/po ) (& po ) (l (& —po )'') ]I

+3( halo)(&
—5 5o) 'f (l Po—')'*

+5o[(& ' (lo/Po') (& Po') (& (l Po') *')3
+ (l —ll r.)-'t(~ llo)(& -& r.)+&('S.)'-I

I ll(l —po')'" 5o[& (5 ' 5o/po')
X(&-(&-p, ')-:)j(l- p.-") I. (4)

motion governed by Eq. (6), which will be such
that the particle will be permanently at rest in it.
Conversely, starting with a particle at rest we c'an
find a system in which it will appear to describe
any motion of this type.

In order to accomplish this, we consider. a
coordinate system So, having space and time
variables (xo, yo, sp, rp), and thinl& of each point of
it as occupied by a particle, the whole family
composing the points of So. Suppose now that So

is related to the laboratory system S by a trans-
formation of C4 such that

x F1(xQ~ ypy spy 'To)y T G(xpy yQy soy r) o(7)
with similar relations for y and s.

If we now fix our attention on a particular
particle I'* of So, having space coordinates
(xo*, yo*, so*), then the expression r =G(xo*, yo*,
so*, ro), gives the relation between the laboratory
time 7. and the local-time ~0 of the particle. On
solving this relation for ro in the form ro=g(xo*,
y, *, so*, r) and substituting in the first three of
Eqs. (7),we obtain the equation for the trajectory
of the particle P* in the laboratory system in the
form

x(r) = F&[xo*, yo*, so*, g(xo", yo', so', r)], (8)

with similar equations for y(r) and s(r).
In So the "trajectory" of each particle is a

degenerate form of uniformly accelerated motion,
corresponding to constant values of its space
variables; therefore in S each particle will appear
to move on a trajectory of the family obeying
Eq. (6). There is no loss of generality in picking
out a particular one of the particles of So, say
that one Po* at the origin of coordinates in So for
convenience, as a fundamental particle. By
choosing various transformations from C4 we can
cause this particle to perform any of the possible

types of uniformly accelerated motion in the
laboratory system S.

It is clear that, just as for the Lorentz group,

uniformly accelerated motions provides a keystone in our
physical analysis. It is to be noted, however, that the
essential point really is the establishment of local-systems
for "observers"; the application of Lorentz transformations
to the Dirac quantum mechanical equations for an electron
shows that the interpretation of the observer as the actual
physical particle is not essential to the development of a
quantum mechanical theory. In the present paper we con-
sider only the phases of the problem related to classical
theory, in which we can speak of the "observer" as a
physical particle.
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the transformation of C4 which introduces a
local-system for a particle is not uniquely defined.
This is of little consequence in the special theory
of relativity in which all particles moving with a
given velocity can be reduced to rest simultane-
ously by a single Lorentz transformation, but a
similar situation does not hold for accelerated
motions. The trajectories of a set of particles
must be related as is indicated in Eq. (8) in order
that they may all be reduced to permanent rest
by a single transformation of C4.

3. THE ABRAHAM 4-VECTOR

l he kinematical considerations of section 2 can
be put in an invariant form by the introduction
of a 4-vector which was originally discovered by
Abraham in connection with his theory of the
radiation reaction of an accelerated charged
particle; we shall refer to it as the Abrukcrvt

4-vector.
We write Eq. (1) in the form

ds' =X'(dq)' =X'(1 P')dr'—
and define the 4-vectors for the velocity, ac-
celeration, and time rate of change of acceleration
as usual by differentiation along the world-line of
the particle, the formulas being'

Eq. (11) we obtain the result

1 O'P' ( dP' dP")
+p'(»~

x' dp' E dp dpi
p'p" d (81nX) d inX 81nV

+
dq &ax" 3 dy ax

d (8 ink) d in' 8 ink
I+— . (»)

dy ( Bx" ] dy Bx"

The general form of the function X can be
calculated, and is found to be"

X=k/L1+2(g;~'x&)+(g „a"a")(g„x"x')], (14)

in which the u's and k are arbitrary constants.
When this is substituted into Eq. (13) it is founcl
that the second and third members on the right
hand side cancel identically, so that we get finally

1 d'P* ( 'dP'dp"i
+P'i n;a

dp' 0 dp dpi

On lowering the index and separating into
space and time parts we find the expressions"

1.=(& )/l (1-P'),
r=( +yX(AX&) j/X(1 —p'),

with

P'=dx'/ds, a' =dP'/ds+ P'P",
jk

y'=dn"'/ds+ n&p"

jt

The Abraham 4-vector is now defined as

(10)

=L~(1-P')+ 3( &)j/(1-P)"'
It is apparent from these equations that the

uniformly accelerated motion of a particle, in
the sense of our definition, is characterized by the
vanishing of the Abraham 4-vector.

4. THE MECHANICS OF A PARTICLE

1"=7'+P'(g ' ")

Ke now introduce the quantities

P'=dx'/dp a'=dP'/dq

which do not form 4-vectors in the relativistic
sense, but which may be considered as the
apparent velocity and acceleration which would
be defined for the particle if we neglected the
appearance of the scaling factor X in Eq. (9).

On introduction of Eqs. (9), (10), and (12) into

1~ In this section and in certain equations of the following
section, we have employed the symbols p, 0., p in a double
meaning, using them for both ordinary 3-dimensional
vectors and for 4-vectors, but the context makes the
meaning clear.

The complete form-invariance of the electro-
magnetic field equations under C4 leads one
naturally to seek a formulation of the equations
of motion of a particle having the same symmetry
group. It is at once apparent from the form of the
acceleration 4-vector that this is not possible
without admitting a mass term which depends

"The finite transformations of C4 are most readily
computed by means of hexaspherical coordinates, which
are described in H. Weyl, Space-Time-Matter (Methuen,
London, 1922), p. 286, and in F. Flein, Hohere Geometric
(Springer, Berlin, 1926), p. 247. The function in Eq. (14) is
not directly comparable with the results of Infeld and
Schild, reference 12, without a special investigation of the
subgroups of C4 under which ) is invariant in form."H. Bateman, reference 8, p. 253, and Vl. Pauli, refer-
ence 13, p. 654. The factor 1/X is paralleled by a similar
factor in the form of the Lorentz electromagnetic force on
a particle.
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explicitly on the space-time coordinates. On
writing out the form of the acceleration from
Eq. (10), using the line-element of Eq. (9) we find

1 dP' 8 ink
e*'=—, —+(p'p' n—"))' dy BX2

and there is no apparent way of eliminating the
explicit term in ln'A. In the discussion of Infeld
and Schild this circumstance is accepted, but
while such a conception may be suitable in the
cosmological applications, we are not prepared to
adopt it in general physical theory. There is, of
course, no mystery in this difficulty in terms of
ordinary mechanical conceptions, since the pres-
ence of a material particle performing a uniformly
accelerated motion would be prima facie evidence
of the existence of an external field. The existence
of a problem at, all arises from the association
with electrodynamical theory in the treatment of
the motions of charged particles.

We make contact at this point with the
formulation of the classical equations of motion
of an electron by Dirac, "which has been studied
in a number of papers by Eliezer. "The radiation
reaction terms are obtained in this theory by a
particular method of evaluating the electro-
magnetic field along the world-line of the particle,
taking into consideration both retarded and
advanced potentials. Since Dirac's principal
arguments refer only to the properties of the
electromagnetic field, it would appear that the
analysis of this paper would have some bearing on
his results. We can, in fact, write down two
possible sets of equations of motion which are
form-invariant under the Lorentz group, and
which might be considered as the generalization
of Dirac's equations. The first of these is obtained
by introducing the Abraham radiation reaction
directly into the Minkowski form of the equa-
tions of motion of a particle in the special theory
of relativity, which yields the equation

d mac'g 2e' e3(e g)
7+

d -(1-P')' 3(1-P')

3(e 5)'
+ —(v 5)+— =et K+5&&Hj (17)

P2 1 P2

"P. A. M. Dirac, Proc. Roy. Soc. A167, 148 (1938).
~C. J. Eliezer, Proc. Camb. Phil. Soc. 42, 40 (1946);

Phys. Rev. 71, 49 (1947).See also a forthcoming review of
the theory by Eliezer in the Rev. Mod. Phys.

The second set is obtained by dropping the term
in the velocity 4-vector in the definition of the
Abraham 4-vector of Eq. (11),which leads to the
result

d moc-'(1 2e"- e3(e g)'+d. (1-p').-' 3(1-p')

4(e 5)'
+ (y 5)+e'+

1-p~ 1-p2 I

=e[E+ y XHg. (17a)

The association of the Abraham vector with
uniformly accelerated motions gives one at once a
qualitative idea of the origin of the "non-
physical" solutions of the Dirac equations which
have been discussed in some detail by Eliezer
and others"

One might suppose that since Dirac's theory is
based primarily on the field equations, it should
be possible to generalize it to have the symmetry
group C4. A direct attempt to do this is fraught
with difficulties, but the discussion given here
makes it seem probable that such a treatment
would lead to a formulation in terms of the
Abraham 4-vector, since this is the simplest
kinematical vector which is form-invariant under
C4 and has the appropriate properties for ex-
pressing radiation reaction. However, this leaves
us with precisely the same unsolved difficulty so
far as the inertial term is concerned. It appears
then that the generality of Dirac's theory is
limited by the unexplained nature of the mass of
a particle to invariance under the Lorentz group.

By the omission of the inertial term on the left-
hand side of Eq. (17) we can obtain an equation
which is invariant under the full group C4, in
which we can introduce any invariant scalar in
place of the Abraham factor 2e' j3. Considered as
an equation of motion of an ordinary charged
particle this is quite inacceptable, but it still has
a certain suggestiveness. In the first place, it is
known that for the linear uniformly accelerated
motion of a point-charge no radiation field is
generated. " It appears probable that the uni-

formly accelerated motions, as defined here,
constitute a unique class of radiationless orbits,
although the detailed proof is not easy to give

'3H. J. Bhabha, Phys. Rev. 70, 759 (1946). N. Arley,
Phys. Rev. 71, 272 (1947).

24%. Pauli, reference 13, p. 648.
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owing to the complex nature of the general trans-
formation of C4, the discussion of section 7,
reference 4, shows this to be the case for motions
differing infinitesimally from rest. Secondly, it is
worthy of note that in the detailed calculations
of Hasse' on the self-force of certain model
electrons, making use of the transformation of the
self-field under C4, no terms corresponding to
radiation reaction were found,

It has been remarked to the writer by Professor
E. Fermi that there may be an essential difficulty
in defining the radiation from orbits of the uni-

formly accelerated type in which the particle
comes from, and proceeds to, infinity with a speed
asymptotically approaching the speed of light.
Similar questions have been raised in conversa-
tions with Professor R, Feynman. The problem
deserves a new investigation. It can be shown
that the coulomb field of a point charge trans-
forms exactly into the standard solution for linear
uniformly accelerated motion as obtained by re-
tarded potential methods, under the transforma-
tion given in section 6, reference 4; this suggests
that a more complete analysis of the behavior of
retarded and advanced solutions of the field

equations under C4 would be valuable. "
From these remarks we get the suggestion that

Eq. (17), without: the inertial term, might be
interpreted as the equation of motion of a type of
charged particle of zero rest mass, the particle
behaving merely as a singularity in the electro-
magnetic field. By including only the external
field in the right hand side of Eq. (17), we would
obtain the trajectories for uniformly accelerated
motion as solutions of the equations of free
motion of the particles. Singularities moving
with the speed of light are included under the
special case (Appendix A) y =0, n=0. This does

"¹teadded in proof. Since this paragraph was written
a more complete study has been made of the transformation
of the coulomb field of a point charge for the case of uni-
formly accelerated motion along a line, The formula. s
obtained give the analytic continuation of the field into
the region in which the retarded fieM itself vanishes. The
resultant field is strongly influenced by the singularity in
the transformation. The absence of a radiation field is
related to the appearance of a second singularity in the
field, other than that of the particle itself, corresponding
to the "ideal charge at infinity"; owing to the nature of
the transformation this singularity is brought into the
finite region of the laboratory system, so that the complete
transformed solution corresponds to the motion of two
moving charges, of opposite signs, in the laboratory system,
This emphasizes the importance of the singularities of the
transformation, as well as of those of the field itself, in
both the finite and the infinite regions of space-time.

not lead to a separate expression for the "par-
ticle" energy, so that all of the energy must be
associated with the field; owing to the singularity
this is infinitely great.

It is to be hoped that experiments with the new
high energy betatrons and other devices will

prove sufficiently accurate to give us our first real
measurements on the radiation from particles,
not arising directly from collisions with other
particles.

APPENDIX A

'I. he symmetry group of Eq. (6) can be studied
by standard procedures of group theory, but it is
more instructive to show its relation to the group
C4 by an indirect method. We pose the argument
in two stages:

(a) Among the trajectories of particles obeying
Eq. (6) are those of particles moving with the
speed of light; for brevity we shall refer to these
as c-particles. Any transformation which pre-
serves Eq. (6) must leave the family of orbits of
c-particles invariant. For c-particles we have the
conditions, following directly from the properties
of Lorentz transformations, "

P =1, e=0, y=0.
The first of these conditions yields the diA'ercntial

equation for the trajectories of c-particles

(dr)s —(d/)s —(dy)s —(ds)s =0 (I 8)

The second condition implies in addition that
these trajectories are straight lines. With the
third condition, whic'h is a consequence of the
second, we see that Eq. (6) is automa, tically
satisfied for c-particles. But the work of Lie''
shows in fact that the invariance of Eq. (18)
defines the group C4. This argument was used by
Fngstrom and Zorn in discussing Page's original
theory, ' and was employed also in the writer' s
eal11c1 papc1. Howcvcl", slncc thc tlajecto11es of
cparticles form only a subset of all of the
trajector ies deiined by Eq. (6), it proves in
reality only that the symmetry group of Eq. (6)
must be a subgroup of C4.

(b) The second part of our argument consists
in the direct veriiication that Eq. (6) is actually

"Note added in proof. This procedure is now seen to
attach too great importance to the class of trajectories of
c-particles which are straight lines. The most general
condition on a c-particle is that tt. Ll =0 when p= i, which
is sufficient to guarantee Eq. {6).
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invariant under aLl of the transformations of C4,

thus showing that C4 must be a subgroup of the
symmetry group of Eq. (6). These two results

taken together imply that C4 actually is the
symmetry group of Eq. (6). For this purpose we

take the formula for the general infinitesimal
SS =imp, +jhp2+kbp3,
8~ =ibpg+ j8ps+k8pg,

N = 18@8+jSPg+k8Pif),
bv =imp&&+ jbp~2+kbp, ~3.

transformation of C4 from reference 4, with an
obvious re-de6nition of the parameters to con-
form to our present choice of variables, and also
de6ne

The general inhnitesimal transformation of the thrice-extended group C4 now becomes

br = —bs (8~ X—r) —«bX+q(»' —«') bv —r(r») «bli1—4+ rbIJ ling

8« = —pi —(r N ) —«(r. bv) ', (»'+—«')—bpii+«bpii,

b5= —(~~X5) —b&+5(5 b&)+(r 5—«)» —(r —«5)(5»)+55(r 5) —r3»4

(19a)

(19b)

(19c)

be= —(ba)Xe)+e2(g 6)+g(e 6)+L(r n)+p' —1]bv (r——«i1)(e»)+e(r bv)

+e2«(g»)+Le2(r g)+g(P' —1)+g(r e)+e«jbliii ebpii, —(19d)

by= —(baaXy)+y3(g D)+e3(e D)+ii(y N)+L(r y)+3(g n) j»+y2(r»)
+3(n+«y)(i1 »)+e. 3«(e.») —(r —«g)(y bv)

+(V3(r 5)+V2«+n3(r n)+e3P'+P(5 n)+5(r V) 3~1 i4 —2Vb~i& (19e)

The condition that Eq. (6) shall be invariant under an infinitesimal transformation becomes

~V(1 —P')+bn3(n 0)+nI3b(n 0)+6(5.~0)(e 0)/(1 —P')I =o. (2o)

The required proof of the invariance under Ci is now obtained by substitution of Eqs. (19a-19e)
into Eq. (20), taken together with Eq. (6) itself. The details of the reduction will be left to the reader.

(d/&«) Lel(1 P')'1 =o—

of which we have the first integral

el(1 p')' = s—,

(21)

(22)

in which s is a constant vector and
~
s

~

=~.
By dot-multiplication with g we obtain the

relation

( i1)/(1-P')'=d(1-P')-'/d ='5,
and by a second differentiation we get the scalar
equation

(d'/d«') (1 P') ' ="(—1 P')'—
which has the general solution

It will be convenient to establish here the
general integral of Eq. (6) for the sake of later
reference. Equation (6) can be written in the
form

with

4'(«) = L(« —«i+km)'+~'/k 'j'
kik g(« —«i)/(k, 'k2'+e') &.

A final integration gives the formula for the
trajectory

r(«) = ri+5i(« —«i)
+ (k '/ ')I:0( ) —(khaki'+ ')'/kij, (24)

ri and gi being the displacement and velocity
vectors of the particle at the initial instant v ~.

The constants of integration can be expressed

ki = (5i )'+s"(1 PP)—
k2 ——(lii s)/ki(1 —pp)&.

It will be convenient also to give the reduction
of this equation for the case of 1-dimensional
motion, say along the x-axis

1 P' =ki/fki2(« —« i+kg)'+v. 'j—, (23)
[~-~,~(1-P,~)~/. y

fr «iaPi(—1 P—P)~/v)' =—1/a'. (I)
ki and k2 being integration constants.

On inserting Eq. (23) into Eq. (22) the inte-
gration for the velocity vector leads to the result

S( ) =& + (k.'/")(4/d )

It is readily verified that in the limit c—&~

these results degenerate into those for the
uniformly accelerated motion of a particle in

Newtonian mechanics.


