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The corrections referred to in the title are considered
for a proton and neutron moving in each other's field.
Two alternative equations are used as starting points for
the calculations, One of these is an extension of the
electrodynamic laws of interaction between charged par-
ticles. The other is typical of Hamiltonians giving rise to
inverted (Thomas term like) vector spin orbit doublets
and is an extension of the scalar field one-body equation.
The calculations reported here show about the same degree
of sensitivity of the relativistic correction of the deuteron's
moment to the type of interaction assumed between
particles as has been previously obtained in simplified

considerations with a single particle model. It is concluded,
therefore, that one cannot be sure of estimates of rela-
tivistic corrections to approximately their whole magnitude
and that even the sign of the correction cannot be con-
sidered as certain. Considerations regarding additivity of
nuclear moments involving an accuracy of much better
than 0.01 nuclear Bohr magneton appear to be obscured
not only by the presence of relativistic corrections but also
by the remoteness of sufficient knowledge concerning the
interactions between particles' which is essential for the
determination of the effects of relativity.

l. INTRODUCTION

' 'T has been pointed' out that relativistic effects
~ - for the magnetic moment of a nuclear proton
depend not only on its kinetic energy but also on
the nature of forces binding the proton to the
other nuclear particles. In the work just quoted,
the proton was considered to be in a central field,
and it was found that different results were
obtained depending on whether the field was of
the four-vector or of the scalar type. For a dis-
cussion of the principle of the matter it is
satisfactory to make the simplified assumption of
the central field. It is, nevertheless, desirable to
know whether the effects of relativity are seri-
ously affected by the introduction of the some-
what more realistic appearing view of interactions
between pairs of nuclear particles. In the present
note, calculations are described. in which the
interactions are of the latter type. Since the true
interaction is not known and since it is probably
impossible to describe it without the explicit
introduction of a meson field or its equivalent,
and since the meson theory of nuclear forces is
still in a very rudimentary and unsatisfactory
stage, it appears to be premature to try to give a
unique or correct answer even to the deuteron
problem at this stage. It may also be recalled
that the existing treatments of nuclear forces by
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meson fields are not worked out to the point of
obtaining interactions correctly even to order of
the square of the ratio of the velocity of the par-
ticle to the velocity of light (v/c)' and that the
field-theoretic divergence troubles usually set in
as soon as this order of accuracy is attempted.

The calculations described below are, therefore,
of necessity of a provisional character and they
are intended in the spirit of finding out what kind
of effects might exist and where they can reason-
ably be looked for. The starting point of the
calculations is a set of wave equations' which has
been set up in such a way as to have invariance to
order v'/c'. One of the wave equations is an ex-
tension of the laws of interaction between charged
particles according to electrodynamics. While the
field theoretic difficulties are formally present in
electrodynamics as well as in meson theories, the
understanding of the physical applicability of
approximations is a much better one in the
electrodynamic case and it is consequently possi-
ble to have some confidence iii the validity of this
equation at least in the special case of a meson
field degenerating into a field of photons.

Another equation which is tried out below for
the deuteron has been set up'-in such a way as to
give the inverted order of the fine structure of
nuclear levels for which there has been some
experimental evidence. ' The fine structure of

2 G. Breit, Phys. Rev. 51, 248 (1937).
3 L. H. Rumbaugh and L. R. Hafstad, Phys. Rev. 50, 681
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Breit, reference 2; G. Breit and J. R. Stehn, Phys. Rev. 53,
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nuclear levels appears from the point of view of
this equation as a relativistic effect and arises
from the same set of terms in the equation which
give rise to some of the relativistic effects on the
magnetic moment which are studied below. Thus
in this case, also, there is a partial tie-up with
experiment through the supposedly observed fine
structure.

Neither of the equations tried satisfies the re-
quirements of saturation of nuclear forces. Equa-
tions invariant to order v'/c' have been devised'
for exchange forces and could, of course, be tried.
This has not been done for the present note be-
cause it appears that at this time the qualitative
rather than the quantitative aspect is important
and because it is believed that the variability of
the answer to the assumptions made has become
sufficiently established through the combined
evidence of calculations for central Fields' with
those reported on now.

2. INTERACTIONS OF THE FOUR-VECTOR TYPE

For obvious reasons it is logical to refer to an
interaction having transformation properties
similar to those of the electrodynamic case as an
interaction of the four-vector type. This equation
has been discussed as Eq. (16.1) in reference 2

and has the form

I 8+c(eip I) +c(eiipii)
+ (Pi+Pii) ~c'+J Q I P =0;—(1)

Q = (eieii) J/2 —(air) (nIIr)d J/2rdr (1.1).
Here the wave function P has 16 components, 4
for each particle. The vectors nz have for com-
ponents Dirac's n matrices for particle I multi-
plied by the unit matrix for particle II. The
matrix P is the fourth Dirac 0. matrix in ac-
cordance with the usual notation. The energy,
including that of the rest mass, is E, c is the
velocity of light, the y are vector momentum
operators, and the mass of either particle is M.
The quantity J depends only on the distance r
between the particles and is the negative of the
potential energy in the non-relativistic limit. The
vector r is the displacement from I I to I, The
quantity Q, defined by Eq. (1.1), is such as to
make Eq. (1) invariant to order Ii'/c'. Dirac's
original choice of matrices 0., p will be used. For
the single particle problem the components
p, (Ii= 1, 2) are small while the pi, (b =3, 4) are

4 G. Bre'it, Phys. Rev. 53, 153 (1938).

relatively large at low velocities. For the two
particle problem the wave function P„, has six-
teen components which can be labeled by two
indices, the first index referring to particle I and
the second to particle II. It is convenient to
break up the sixteen components into foui gi oups
of four as follows:

+ for both p and v equal 3 or 4;
xz for p=1 or 2, v=3 or 4;
yzz for p, =3 or 4, v=1 or 2;
y for both p, and v equal 1 or 2.

Each of the four quantities just listed has two
components for the first particle and two for the
second. It is convenient to write equations be-
tween these quantities with the following con-
vention. The distinction between indices 1 and 3
and indices 2 and 4 will be dropped in linear
equations connecting any of the four quantities
+, yz, xzz, and y with each other. In other words
each of the four quantities is considered as a
column matrix with 4 rows arranged in order for
the four P„„ in such a way that in the first row

p, v =p', v', in the second p, v = p', v", in the third
p, , v =p", v', in the fourth p, v = p,",v" with p" & p, ',
v" & v'. For + it will be understood that p' = v' = 3,
p" =v" =4; for xz one takes p'= 1. , p" = 2, v'=3,
v" =4; for x z similarly p'=3, p,"=4,v'=1, v"=2;
for y, on the other hand, p.'=v'=1, p,"=v"=2.
With this notation one rewrites Fq. (1) as

(E—2MC'+ J)%'+c(eipi)xi
+c(eiipii)xn+X w = 0; (1.2)

c(e'IpI)%+ (8+J)XI+XXII+c(eiipii) p =0 ~ (1 3)

c(eiipii) ++XXI+(&+J)Xn+c(eipi) q = 0; (1.4)

X'P+c(enpn)XI+c(eipi) Xn
+(E+2MC'+ J) q =0 (1 5)

with
X= —(eieii) J/2+ (eir) (eiir) dJ/2rdr (1.6).

Here ez, ezz are, respectively, the Pauli spin
matrices for particles I and II. Equation (1.2) is
obtained from Eq. (1) by setting p=b=3, 4;
v=b=3, 4. Equation (1.3) is obtained for p=II
=1, 2; v=b=3, 4. Similarly, Eqs. (1.4), (1.5) are
obtained from Eq. (1) for p = b, v = a and p =a,
v = a, respectively.

From Eq. (1.3), neglecting q one finds a first
approximation to xz expressed in terms of 01.

Similarly Eq. (1.4) gives a first approximation to
xzz. These first approximations, when introduced
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into Eq. (1.5) give p, correct to order Iz'/c'. The
formulas for q, x~, xI~ so obtained when intro-
duced into Eqs. (1.3), (1.4) yield expressions for

XI, xzz also correct to order v'/c'. The results are

p
= L (ezpx) (ezxpxx) MX—]k/(4M'c'); (2)

XI = }—L1 —(W+ J)/2MC'7
X (ezpz) /2MC —Pn'(ezpz) /8MPC'

+C.( Iezpxx)x+2+( Iexp I)z]/8M pc} p (2..1)

The contribution to the magnetic moment
caused by the Dirac current of particle I, which

is assumed here to have a charge e, is the expecta-
tion value of

p. =eLrx Xaz]/2. (2.2)

The computation of the expectation value can be
carried out by substitution of Eqs. (2), (2.1) into

Eq. (2.2). The calculation is described in

Appendix I. The work is straightforward since by
well-known formulas one can always linearize an
expression in Pauh sigmas. One Ands for the
expectation value of a 'S state

xz, /pp = L1 —(T)/3Mc']
+(T)/6Mc' = 1 (,T)/6Mc' —(2.3)

where po is the nuclear Bohr magneton, and the
quantity in square brackets is the value obtained
for p, /pp if one neglects the term Q in Eq. (1).The
quantity (T) is the mean of the non-relativistic
kinetic energy of the deuteron in its center-of-
mass system.

The calculation would have the appearance of
being more accurate if one computed the value of
p,, for the exact mixture of the 'S and 'D states
which corresponds to the bound state of the
deuteron. The correction. for the presence of the
'D state has, however, been made by Arnold and
Roberts' making use of calculations of Rarita
and Schwinger. ' The correction is of the order of
one percent of the moment of the deuteron, and
the relativistic corrections to this correction are
probably negligible. It may appear, on the other
hand, to be inconsistent to neglect the admixture
of the 'D state which is demanded by Eq. (1) for
the ground state of the deuteron. The four-
component form of Eq. (1) indeed contains terms
in (ezr)(ezzr) where r is the displacement vector
from II to I and because of these it is impossible
to have a pure 'S state. Estimates show, however,

5W. R. Arnold and A. Roberts, Phys. Rev. 'FO, 766
(&946).' W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941),

that the admixture of the 'D state corresponding
to these tensor force terms is much smaller than
that used by Rarita and Schwinger. The coeffi-
cient of the 'D state is about 1/10 or 1/20 of that
of Rarita and Schwinger and it appears justifiable
to assume, therefore, for purposes of the calcula-
tion of the magnetic moment, that the ground
state of Eq. (1) is a pure S state.

q = L(expz) (ezzpzz) MY]e/(—4M'c'); (3 1)

xx = }—[1—(W—J)/2MC']
X (ezpz) /2MC —Pzz'(ezpz) /8M'c'

+ f (ezxpzx) &+2 &(ezxpxx)]/8M'c' }+, (3.2)

where
Y=J(ezezz) /2+ (ezr) (ezzr) dJ/2rdr. (3.3)

Substitution into Eq. (2.2) gives

xz./xzp = L1+ ( —W+ (T)/3) /Mc'5
(T)/6MC' = 1+—( —W+(T)/6)/Mc'. (3 4)

In the above formula the expression in square
brackets is the result of neglecting Y which is
equivalent to neglecting the terms in (azazz) and
in (azr)(azzr) in Eq. (3).The quantity W= —2.17
Mev in Eq. (3.4) is the non-relativistic energy of
the deuteron.

The calculation leading to Eq. (3.4) is very
similar to that which gave Eq. (2.3). Many of the
same quantities occur in both. The evaluation of
the expectation value of the operator on the right
side of Eq. (2.2) is made this time also for a, 'P
state, and Eq. (3.4) is supposed to be right only
for this state.

As has been mentioned in the introduction,
Eq. (3) corresponds to spin orbit interactions of
the simplest Thomas eff'ect type as may be seen by
inspection of Eq. (18.2) of reference 2. The term
—(T)/6Mc' which is added to the bracket in the
expression for the relativistic correction factor

3. INTERACTIONS OF THE SCALAR TYPE

These interactions are discussed by means of
Eq. (18.1) of reference' which has the form

I8+c(aIpI) +c(aIIpII) + (PI+pzx) Mc +Iazpxx I
+(azazz) J/2+ (azr) (azzr)d J/2rdr }/=0. (3)

Equation (18.2) of reference 2 shows that there is
no tensor force in the four component Pauli form
and that its ground state is a pure 3S term. The
calculation is just like that for the four-vector
equation. The approximations to order Iz'/c' a.re
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given by Eq. (3.4) arose through the presence in

Eq. (3) of the terms in (eren), (nrr) (nor). If these
terms were omitted in Eq. (3), the spin orbit
interaction would not be affected, but the in-

variance to order s'/c' would be destroyed.

1 —(T„&/3Mc' 1 (T„&/3Mc'— (4)

for the proton and neutron, respectively, inde-

pendent of the type of field to which the particle
is exposed, and it has also been shown there that
this correction factor is a purely kinematic effect
which is expected quite apart fr om quantum
theory as a consequence of the Lorentz contrac-
tion of a magnetic doublet.

From the formal point of view of calculation
the independence of this correction factor on the
special form of the interaction between particles
is caused by the fact that the small components
of the wave function, P, have to be known in
terms of the large ones only to the first rather
than to the second order in v/c. This circum-
stance has its origin in the fact that the intrinsic
moment is a multiple of (—pao, & in Dirac's original
notation and that pao., is diagonal, so that on}y
squares of absolute values of wave function
components enter the calculation. The same
circumstance makes it unnecessary to bring the

~ W. Pauli, Handbuch der I'hysik (Verlagsbuchhandlung,
Julius Springer, Berlin, 1933), Vol. 24 /1, p. 221.

P. Caldirola, Phys. Rev. 69, 567 (1946); H. Margenau,
Phys. Rev. 57, 383 (1940); G. Breit, Nature 122, 649
(1928}.

4. NUMERICAL APPLICATIONS AND DISCUSSION

The magnetic moment of the proton p~ =2.79
and the magnetic moment of the neutron
p, „=—1.93 in units of a nuclear Bohr magneton.
The proton moment can be broken up into
1+1.79. The ffrst part (1) will be considered as
caused by the Dirac current associated with the
proton's charge and the second (1.79) will be
attributed to an intrinsic moment of the type
first introduced by Pauli' and referred to below as
the "Pauli part. " A calculation of relativistic
effects for this moment has been made by
Caldirola' for the special case of a Diracian
particle in a four-vector field. Caldirola's formulas
as they appear in print are not consistent. with
each other, and it appears from his arithmetic
that an incorrect sign of the correction term has
been arrived at. It has been shown' that for the
Pauli part the relativistic correction factor for 5
terms is

second order quantity p into the calculation for
the two body problem, and the quantities xz, xzz

are needed only to the first order. To this order
they are.expressed in terms of 4' by operating on
+ by the same operators which give for the one
body case the small Dirac wave function com-
ponents in terms of the large ones vis. ,

xr= —(&rpr) 4'/(2Mc) (4.1)

arid similarly foi xzz. In the calculation of the
correction factor to the Pauli part of p„one needs
only xz, and for p, one needs only xzz. The
relativistic correction factors to the Pauli parts of
the moments are thus verified to be the same
functions of the momentuzli operators of the
individual particles as for the one-body problem.

Since
(T.& =(T-&=(T&/2 (4.2)

hip = (0.022 —1/6)(T&/Mc' = 0.145(T)/M—c' (5)

which gives for'

(T&/Mc'= 0.0078
the value

hap, = —0.0011.

(5 1)

(5.2)

If, on the other hand, one omits the effect of Q in

Eq. (2.3) then one obtains

hi'p = (0.022 —1/3)(T&/Mc'
= —0.311(T)/Mc' (5.3)

so that for the numerical value of (T) in Eq. (5.1)
one obtains

~,'& = —0.0024. (5.3')

Equations (5.3) and (5.3') have been given here

only for comparison with the more logically
derived Eqs. (5) and (5.1) so as to show the
magnitude of the effect of the terms arising from

the combined contribution to the relativistic
correction of the deuteron caused by the Pauli
parts of the moments of both proton and neutron
is

—(1.79 —1.92) ((T&/6Mc') = 0.022(T&/Mc'. (4.3)

Because of the approximate cancellation of the
Pauli parts the contribution attributable to (4.3)
is so small that it could be neglected and is
carried here only for the sake of completeness.

Combining Eq. (2.3) with Eq. (4.3) the rela-
tivistic correction becomes for the four-vector
field
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which gives, on making use of Eq. (5.1),

62'p =0.0023+0.0028 =0.0051. (6.3)

In this case, just as in the equation of the four-
vector type, one has an appreciable effect of the
terms analogous to Q of Eq. (1) as evidenced by
the fact that the diBerence of the right sides of
Eqs. (6.1) and (6.3) is of the order of magnitude
of themselves.

It may bc appropriate to disc;uss brieHy the
degree of certainty in believing the differences
~&JM —~&'p, arid ~2@—~2'p, to be physical conse-
quences of the equations which have been ex-
amined. Reasonable doubt can be entertained
regarding this point because in the electro-
magnetic case the order v'/c' is belie~ed to be the
last one in which the Hamiltonian function can
be consistently used for the description of two
particles with a complete elimination of field
quantities. There is some possibility, therefore,
that in higher orders there will be additional
efFects which cannot be foreseen through the
Hamiltonian. This possibility cannot be cate-
gorically denied. It appears to be an unlikely one
for the electromagnetic case but for the deuteron

Q. The quantity Q, it will be remembered, has
been introduced into the four-vector equation so
as to correct for lack of invariance in its absence.
It is the extension of the combined effect of
magnetic interaction and the effect of electro-
static interaction of electrodynamics. The sensi-
tivity of the relativistic correction to assumptions
regarding the nature of interactions between
particles is especially striking if one notes that
the right sides of Eqs. (5.2) and (5.3') differ by
more than a factor 2 and that this difference is
produced entirely by terms which give eBects of
order v'/c' in the energy.

For interactions of the scalar type one obtains,
combining Eqs. (3.4) and (4.3),

&2zz = (—W+0.189(T))/Mc' (6)

so that with S'= —2.17 Mev and the value of
(T) following from Eq. (5.1) one obtains

62zz =0.0023+0.0015 = 0.0038. (6.1)

The number 0,0023 is the contribution of the
term in Win Eq. (6). If the terms attributable to
Y are neglected in Eq. (3.4) then one obtains

6&'ZI = (—W+0.355(T))/Mc' (6.2)

the situation is so full of unknown circumstances
that it would be hazardous to claim too much for
the value of a systematic expansion in powers of
v/c. But if one makes a development of quantities
in such powers, then one cannot avoid the intro-
duction of some such term as Q in Eq. (1).One of
the functions of this term is to make the equations
of motion invariant to order v'/c'. It would be
wrong, therefore, to leave this term out of
consideration.

It should be remarked, however, that con-
siderations of invariance do not suffice to fix such
a term as Q. This aspect of the situation has been
discussed at length in reference 2. It has to be
brought up here only for the purpose of empha-
sizing the lack of uniqueness in the answers. It is
possible to vary the values of the correction not
only by making the function J occur in a place
characteristic of purely four-vector or scalar
types of interaction as in Eqs. (1) and (3), but
one can vary even such differences as A~p, —A~'p,

by a suitable change in the choice of the quan-
tity Q.

In addition to the factors which have just been
mentioned it is necessary to consider that there
is the further flexibility of choice caused by the
unknown exchange character of nuclear. forces.
The terms analogous to Q are different for ex-
change forces from what they are for the ordinary
ones.

It should finally be mentioned that the electric
quadrupole of the deuteron speaks for the pres-
ence of the 'D to an extent of about 4 percent on
the basis of probability which corresponds to a
coeFficient of about 0.2 for the 'D wave function.
In the non-relativistic single body problem the
magnetic moment operators are diagonal in the
orbital angular momentum L and the whole
magnetic moment is in this approximation a
weighted mean of magnetic moments in the 'S
and 'D states in the proportions 0.96 and 0.04.
The fact that the deuteron has two, rather than
one, particles makes no difference in this con-
nection because for any wave function for which

(p+p )+=0
one has

Iz p = (yzpz szpzy)% = (Jzpzz szpzzu)p
= (vzp~ —szpp) p

where p= (pz —pzz)/2 is the relative momentum.
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Since + has a definite parity, an interchange of I
and II leaves 0'*0" unchanged and one has, there-
fore, for expectation values

(I-z.) = (I-zz.) = (L.)/2
as for two particles moving around each other
according to Newtonian dynamics. From this
point of view it might appear that the 4 percent
admixture of the 'D state could be left out of
account since 4 percent of the corrections could
be surmised to be negligible. Such a conclusion
would not be a safe one, however, for the Dirac
part of the moment, because the operator
entering the calculation of expectation value of
the magnetic moment with 4 contains e.g. , a
term in

(razz) &zz&

which has non-vanishing matrix elements be-
tween '5 and 'D states. Because of this part of the
operator one has cross terms between these states
which enter, therefore, with the coefficient 0.2
rather. than (0.2)'=0.04. A quantitative exami-
nation of these terms at this stage appears
pointless on account of the many other uncer-
tainties, but their existence is nevertheless of
interest.

The value of (T) which was used in the
numerical estimates is the same as in reference 1.
It corresponds to a "square well" interaction
potential with radius e'/mc'. In a final calculation
of the effect, one would have to take into account
the presence of the 'D state in some such way as
has been done by Rarita and Schwinger. ' The
change in the effective interaction potential
found by them is large, and the value of (T) used
here is only provisional. Since the equations which
have been used above do not have as a conse-
quence, however, any strong admixture of the 'D
state, it is a self-consistent procedure to neglect in
the present connection the effects which will

enter on account of the Rarita-Schwinger
calculations.

The considerations which have just been pre-
sented give the same general picture as those in
reference 1. The relativistic correction to the
magnetic moment is sensitive to the assumptions
made regarding the forces between the particles.
The sensitivity is so great and there are so many
contributing effects that a close evaluation on any
particular model would be pointless, and even the

possibility of a close compensation of the effects
ca,nnot be excluded since different signs for the
effect have been obtained for different assumed
interactions.

The fact that the corrections attributable to
relativistic effects are subject to so many uncer-
tainties makes it somewhat doubtful that one
will be able to test hypotheses of additivity in
their finer features also in other nuclei such as
H' or He'. Presumably, however, the effects will

not exceed .01 of a nuclear Bohr magneton and
to this precision it should be possible to make use
of measured values with the calculations of Sachs
and Schwinger' and of' Sachs."

APPENDIX

Calculation of the Dirac Part of Moment

The Dirac part of the proton's magnetic mo-
ment is given by Eq. (2.2). The expectation value
of LrzXzzz7 is first expressed as the three-dimen-
sional integral of

/+[&i Xzzz74' = xz+[rz Xzzz7++++t rz Xzrz7xz

+xzz+[rz Xzrz7p+ y+Lrz Xzrz7xzz

and on the right side of the above equation the
values of xq, xn, and q in terms of + are substi-
tuted by means of Eqs. (2), (2.1), (3.1), and (3.2).
The row matrices y+, ++, are, respectively,
the conjugates transposed of the column matrices
q, O', . The quantity + is substituted for in
terms of the closely related quantity +&') which
should be~ ' normalized to unity. Somewhat
lengthy but otherwise straightforward manipula-
tions yield expressions involving expectation
values of W, J, and rd J/dr. These quantities are
present, of course, only in the correction terms to
the moment, and the evaluation of their expecta-
tion values may be carried out, therefore, non-
relativistically. For the non-relativistic wave
equation the virial theorem holds for expectation
values so that

(rd J/dr) = —2(T)

holds with sufficient accuracy. By means of this
relation all of the correction terms can be ex-
pressed by means of W and (J) or else by means
of W and (T). The correction factors in the text
have been obtained by the process described
above.

' R. G, Sachs and J.Schwinger, Phys. Rev, '70, 41 (1946)."R. G. Sachs, Phys. Rev. 69, 611 (1946).


