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Itis known that resonance quanta are highly absorbable by normal atoms of the emitting gas;
hence, under suitable conditions of gas density the eventual escape of these quanta from a
gas-filled enclosure may require a large number of repeated absorptions and emissions. This
“radiative’” transport of excitation is determined essentially by the probability, T(p), that a
quantum traverses a layer of gas of thickness, p, without being absorbed; the dependence of
T(p) on the frequency distribution of the resonance line is investigated, and explicit expressions
are derived for the cases of Doppler and dispersion broadening. The general transport problem
is formulated in terms of a Boltzmann-type integro-differential equation involving T'(p); the
variational method of obtaining steady-state solutions of this equation is discussed. The theory
is then applied to the evaluation of the rate of decay of excitation in an infinite slab; the results
are compared with Zemansky’s measurements of the decay of radiation from an enclosure of
mercury vapor. Finally, the application of the theory to a number of problems concerning
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excited atoms is discussed briefly.

I. INTRODUCTION

HE term ‘“‘resonance’ is applied to radiation
emitted by an atom in an optical transition
from an excited state to the ground state. Ex-
amples of such radiation are the sodium doublet
(5890, 5896A) and the mercury lines 2537A and
1849A. In contrast to other components of atomic
spectra which are emitted in transitions between
excited states, the resonance lines are highly
absorbable by the gas in its normal state. For
instance, in mercury at 1 mm the 2537A line is
appreciably absorbed in a distance of the order
of 0.001 cm. Other resonance lines are similarly
absorbed by small layers of gas.
Under such conditions, it is clear that when
a resonance quantum is emitted by an individual
atom, it is by no means assured an unimpeded
transit to the walls of the enclosure. On the con-
trary, after traversing a short distance, it is most
probably absorbed by another atom, thereby
raising the latter to the state originally excited.
The result of this process of emission and reab-
sorption is merely the transfer of excitation
energy from atom to atom; the eventual escape
of the radiation to the boundary of the enclosure
may require a large number of such transfers. In
such cases we speak of the radiation as being
“imprisoned.”
The first theoretical treatment of this phenom-
enon was given by K. T. Compton.! Regarding

1K. T. Compton, Phys. Rev. 20, 283 (1922).

the transfer of excitation as a type of Brownian
motion, Compton obtained, in effect, a diffusion-
type equation for the density of excited atoms, #:

(1.1)

with D given in terms of the mean free path of
the quantum, A, and the lifetime of the individual
atom, 7, by the relation

D=\/3r.

on/dt=DVn,

(1.2)

In order to compare (1.1) with the conven-
tional kinetic theory expression

D=X3/3, (1.3)

we must take into account an important differ-
ence between the motions of resonance quanta
and material particles. Namely, in the latter case,
the tirme of collision is always small compared to

- the mean time between collisions, whereas, in the

case of quanta, even if one assures \ to be of the
order of the dimensions of the enclosure ~1 cm,
the time between collisions is much smaller than
the time of collision, which for quanta is the life-
time of the excited state, r~10~8 sec. Denoting
by 7' the mean time between collisions, we have
the general relation

o=M\/(v+7'). (1.4)
For the case of material particles
p=N/7, (1.5)
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whereas, for quanta

i=N\/r. (1.6)

Inserting (1.6) into (1.3), we obtain (1.2).

It should be emphasized that the essential
feature of the treatment is the assumption of a
definite mean free path, A, for the motion of
resonance quanta. This means that the prob-
ability of a quantum penetrating a distance p in
the gas before being absorbed is given by an
exponential law, e=**, which, in turn, is true only
if the absorption coefficient of the gas varies
little over the frequency spectrum of the reso-
nance quantum. Because of the highly selective
character of the absorption, however, we expect
precisely the opposite; namely, the absorption
coefficient varies appreciably over the frequency
spectrum of the radiation. Thus, the value of A
to be inserted into (1.2) is uncertain; in fact, as
the analysis given below will demonstrate, it is
impossible to define a mean free path for the
motion of resonance quanta.

The problem was next attacked by Milne,?
who also assumed the existence of a mean free
path. His results were not much different from
Compton’s.

A noteworthy advance was achieved by Kenty?®
who took thé frequency spectrum of the line into
account. Assuming a Doppler line to be emitted
by each volume element of the gas, he attempted
to calculate an average diffusion coefficient essen-
tially by averaging (1.2) over the spectrum of
the emitted radiation, but arrived at the surpris-
ing result that for an enclosure of infinite size this
average was infinite, i.e., one could not define a
diffusion coefficient for an infinite region. In
treating the finite case Kenty still assumed that
the decay was capable of description by a diffu-
sion equation of the type (1.1) and confined him-
self to calculating an effective coefficient, D.
Since, as will be shown below, the phenomenon
cannot be formulated in terms of a diffusion
equation, D could only be calculated to an order
of magnitude. The results, nevertheless, are in
fair agreement with those of the more exact
theory, to be presented below, and with experi-
mental resultst over a limited range of pressure.

2 E. A. Milne, J. Lond. Math. Soc. 1, 1 (1926).

3 C. Kenty, Phys. Rev. 42, 823 (1932).
4+ M. W. Zemansky, Phys. Rev. 42, 843 (1932).
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II. TRANSMISSION OF RESONANCE
RADIATION

The essential feature of the treatment pre-
sented in this report is the determination of the
probability, T'(p), of the radiation traversing a
distance p. Once T'(p) is known, we can readily
set up equations describing the transfer of excita-
tion between different volume elements of the
enclosure. The basis of Compton’s treatment, for
example, is the assumption.of a uniform absorp-
tion coefficient, 1/A, so that in his case

T(p) = e, (2.1)

Since, however, the absorption coefficient of the
medium, k(v), is actually a sensitive function of
the frequency in the spectral domain of the reso-
nance radiation, we must average the mono-
chromatic transmission factor:

T(p, 5) = c-+0»

over the frequency spectrum P(») of the radia-
tion emitted from a given volume element, i.e.,

T(p)= fP(v)e"“(”Pdv. (2.3)

Equation (2.3) is a crucial formula in our treat-
ment; we therefore discuss it in some detail.

The absorption coefficient k(v) is a character-
istic of the gas in its normal state. The frequency
variation of k(») is dealt with extensively in
standard texts.? The different forms which it can
assume are as follows:

(1) Natural absorption. This type of absorp-
tion is characteristic of isolated atoms at rest.
The coefficient is given by the ‘dispersion”
formula

k(»)

- , (2.4)
1+[4n(v—2o) /v ]?

where » is the impressed frequency, », the fre-
quency at which k(y) is a maximum, and + the
reciprocal of the lifetime of the excited state, i.e.,
the probability per unit time that an excited
atom radiates. C is a constant characterized by
the density of normal atoms, IV, the wave-length
of radiation N\o=¢/v,, and v; it may be determined

5 A. C. G. Mitchell and M. W. Zemansky, Resonance
Radiation and Excited Atoms (The Macmillan Company,
New York, 1934), to be referred to hereafter as MZ.
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from a very general expression derivable from
thermodynamic principles (cf. MZ pages 95-96,
formula (28)).

N2 ge N
fk(v)dv=—0--—%—,
87w g1 7

(2.5)

where g; and g, are the statistical weights of the
normal and excited atomic energy levels, and
7=1/. One readily obtains for C the value
)\02N g2

. (2.6)
2T 21

In the great majority of cases, natural absorption
is unimportant because of the frequency broaden-
ing of the absorption line arising from the motion
and mutual interaction of the atoms; these effects
are described immediately below.

(2) Doppler-broadened absorption. This ab-
sorption prevails when the Doppler shift, because
of the motion of the atoms, is large compared to
the natural width. Each atom may be considered
as capable of absorbing a single frequency for a
given velocity of the atom and direction of propa-
gation of the incident quantum. This frequency,
v, is given by the well-known relation

v=w[14(v/c) cosy],

where ¢ is the angle between the directions of
motion of the absorbing atom and the quantum.
Since the velocity distribution of the atoms is
Maxwellian, one can readily obtain the absorp-
tion coefficient. This turns out to be (cf. MZ,
formulas (32), (34), and (35)):

k(v) = kq exp[ — (v—o/v0)*(c/v0)*],

(2.7

(2.8)

where
vo=(2RT/M)}, (2.9)

and
AN g2 1

(2.10)

0= .
8 g1 whvor

In (2.9) R is the gas constant per mole, T the
absolute temperature, and M the gram-molecular
weight of the gas. (2.10) is obtained from (2.8)
and (2.5).

(3) Pressure-broadened absorption. This type
of absorption arises from the interactions be-
tween individual atoms; hence it becomes in-
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creasingly important as the pressure is raised.
For reviews and literature on this subject the
reader is referred to the articles of Weisskopf®
and Margenau and Watson,” and to MZ, Chapter
IV, Section II. In many cases the dispersion
formula

/7

k(») (2.4

Tt DA r—r0) S

first obtained by Lorentz, is valid. Here v, varies
directly with the pressure and C’ is a constant
whose value is determined by (2.5). (2.4’) obtains
when the main effect of interaction is collision-
like, i.e., when atomic frequencies are affected
appreciably in a time interval short compared to
the average ‘“‘free” time, during which the atomic
frequencies are perturbed negligibly.

At pressures of the order of atmospheres, or
for values of »—v¢>v,, the absorption law often
departs considerably from (2.4’). These devia-
tions will not be discussed quantitatively in this
paper.

(4) A general relation which takes into account
the three types of broadening discussed above is
(cf. MZ, Chapter III, Section IIc, Eq. (97))

+o exp(—y?

k@):kﬁf 2 @i
T o Pt (x—y)?

Here, ko is given by a=(y+vy,)Ao/4nvy and

x=[(v—v0)/v0](c/v0). In many cases a is small

compared to unity; for these cases and for x='2,

(2.4) may be written approximately (cf. MZ,

Appendix) as
k() /ko=~exp(—x?) +a/rix?. (2.12)

Equation (2.12) shows that, even for a1, the
behavior of the absorption coefficient at large
|x[, i.e., at the edge of the absorption region, is
determined by the dispersion distribution.

We next discuss the frequency spectrum P(»)
of the radiation emitted from a given volume
element. The specification of P(») is not as simple
as that of the absorption coefficient k(»), since
the nature of the excitation is involved. If the
system were in temperature equilibrium, the
principles of thermodynamics would provide us

8 V. Weisskopf, Physik. Zeits. 34, 1 (1933).

7 H. Margenau and W. W. Watson. Rev. Mod. Phys. 8,
22 (1936).
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with the simple relation
P() < k(»),

which is a form of Kirchhoff’s law. In the case
at hand, the radiation is certainly not in tem-
perature equilibrium with the gas; nevertheless,
if the gas were enclosed within perfectly reflect-
ing walls, we would still be able to consider the
system of quanta plus atomic excitation as being
in a state of local thermodynamic equilibrium,
with negligible interaction between it and the
mass motion of the atoms. Under such conditions,
(2.13) would still be valid. However, in view of
the circumstance that, in our case, the radiation
leaks out through partially reflecting walls, the

(2.13)

thermodynamic argument breaks down; the jus-

tification of assumption (2.13) thus requires a
special treatment. This treatment is presented in
the Appendix, wherein it is shown that the as-
sumption applies to the cases of Doppler and
pressure broadening; since these two cases are
predominantly encountered in practice, we use
(2.13) in the evaluation of 7'(p).

The constant of proportionality in (2.13) is
determined with the aid of (2.5). We have, since
S Pdv=1,

)\02 I4] N
k(v)=— ——P(»)=«P(»). (2.14)
mg1 T
For T'(p) we then obtain the expression
T(p) = f P(v)e~P0)dy. (2.15)

We now evaluate T'(p) for the two types of
spectral distributions: Doppler and dispersion.
(1) Doppler distribution. It is convenient to
represent the frequency in terms of the variable
x defined above, viz:

x=|:(V—Vo)/V0](C/Z)0). (216)
The normalization of P(x) yields
1
P(x)=—; exp(—x?). (2.17)
We also obtain
k(x) = kP (») = k(vgwo/c) 1P (x)
=koexp(—x?), (2.18)
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where k&g is given by (2.10). Inserting (2.17) and
(2.18) into (2.15), we have

Rl 1
—e~" exp[ — kope—*" ]dx.
—0 7r*

T(p) = (2.19)

To obtain T'(p) for all values of kop, recourse
must be had to numerical integration. However,
for many purposes, the asymptotic value of 7'(p)
for large kop suffices. To find this value we first
change the variable according to the trans-
formation

x = (logkop/y)* (2.20)
and obtain
1 koe e~vdy
T(o) = f . @a1)
koprt Jo  (logkep—logy)*

Since the effective region of integration is limited
to values of y of the order of magnitude unity,
we may, for large values of kop, approximate
(logkop—logy)? by (logkep)? and extend the upper
limit of integration to infinity. Thus

T'(p) =~ 1/kop(w logkop) .

(2) Dispersion distribution. We associate this
distribution with pressure broadening, since na-
tural broadening is in most cases negligible. The
normalized distribution may be written as

(2.22)

1 1
Pu)=— , (2.23)
x 1+4+u?
where
u=4rv—vo)/vp (2.24)
We have
4k A2V go v
k(u) =«kP(v) =—DP(u) = — —P(u),
Yo 2 217
or
k(u)=ka/(1+u?), (2.25)
with
XV g2 v
hom— 22 L (2.26)
2 g1 vp

Inserting (2.23) and (2.25) into (2.15), and trans-
forming the variable of integration according to
(2.24), we obtain

+o —ky 2
1f exp[ p/(1+u)]du. (2.27)

T(p)=—
14+u2

TV
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The integral of (2.27) can be evaluated for all
values of kgp in terms of modified Bessel functions
of zero order; however, for our purposes the
asymptotic form for large kqp alone is necessary.
Now, for kso>>1, the effective region of integra-
tion is #*>>1, hence

1 L |
T(p) ~— f — exp(—kap/u)du
T o Y
2 )
=2 f exp(—kapy?)dy,
™Yo

ie.,
T(p) =~ 1/(wkap)?.

Equations (2.22) and (2.28) "describe the

(2.28)

asymptotic variation of 7T'(p) for the cases of

Doppler and dispersion distributions, respec-
tively. Since both of these forms differ consider-
ably from the exponential variation of Compton’s
theory, as given by (2.1), it is obvious that the
simple kinetic theory concept of mean free path
cannot be applied to quanta.

One way of defining the mean free path is via
the introduction of the probability, K(p)dp, that
the quantum is captured after traversing a dis-
tance between p and p+dp from its emission
point. The mean free path, A\, may then be
defined as

=]

)\=f oK (p)dp. (2.29)
0
Now, from elementary laws of probability,
K(p)dp=T(p) —T(p-+dp) = —dpdT /dp, (2.30)
so that
© 9T
A= —f o—dp. (2.31)
o Op

If we, for instance, insert the exponential form
(2.1) into (2.31), we obtain an identity. On the
other hand, (2.22) or (2.28) both give divergent
results. Thus, in the case of Doppler or dispersion
spectral distributions, a mean free path cannot
be defined.

It can be shown easily that this conclusion
holds for an arbitrary spectral distribution P(»)
which is related to the absorption coefficient k(v)
of the medium by the relation (2.14). We have,

T. HOLSTEIN

from (2.31) and (2.15),

@ a(e—xpP(v)) 1
>\=ff P(v) ———dvdp=f-dv, (2.32)
0 dp K

which diverges, q.e.d.

III. TRANSPORT OF EXCITATION BY
RESONANCE RADIATION

The impossibility of defining a mean free path
for resonance quanta forces us to relinquish
the hope of describing the radiative transport
of excitation by a diffusion equation. An ade-
quate description, however, can be achieved by
a Boltzmann-type integro-differential equation,
which we now derive. ,

We introduce the probability G(r/, r)dr that a
quantum emitted at t’ is absorbed in a volume
element dr around the point r. Denoting the
density of excited atoms by #(r), we have, from
the law of conservation of particles,

dtdron(r) /ot=a—b, (3.1)

where ¢ and b are the increase and decrease in
the number of excited atoms in volume element
dr in time dt. For b we have immediately

b=vyn(r)drd:. (3.2)

To obtain @, we must sum over the contributions
of all other volume elements. The contribution
of dr’ is given by the number of quanta emitted
therein in time d¢, yn(r')dr’dt, multiplied by the
probability of any one of these quanta being
captured in dr, G(t/, r)dr. Integrating over these
volume elements, we obtain

o= ydidr f a@)GE, DA, (3.3)

In the derivation of (3.3) we have implicitly as-
sumed that the time of flight of quanta, 7/, is
negligibly small compared to the atomic lifetime,
7 (cf. discussion following Eq. (1.3) of text and
preceding Eq. (19A) of Appendix). Inserting
(3.2) and (3.3) into (3.1), we arrive at the integral
equation

an(x) /ot = —yn(t) f n(®)G(, Ddr', (3.4)

where the integral is taken over the volume of
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the enclosure. (It is here assumed that the walls
are non-reflecting.)

Our next step is the specification of G(r’, r) in
terms of T'(p). We require the assumption of iso-
tropic emission. The assumption is valid provided
the excited atoms are unpolarized. This situation
seems quite likely in view of the large number
of absorptions and randomly directed emissions
which the average quantum undergoes. In fact,
as is stated in MZ, Chapter IV, imprisonment
has a strong depolarizing effect on resonance
radiation emanating from a region originally ex-
cited by a polarized beam. Thus we feel justified
in considering polarization effects to be of sec-
ondary importance, to be included, perhaps, in
a future treatment more refined than that given
here.

The assumption of isotropic emission means
that the probability of the quantum being propa-
gated in a direction circumscribed by a solid
angle dw is dw/4w. The probability, then, that it
is absorbed in a volume element defined by dw
and by spheres of radius p and p+dp from the
emission point is

(1/4m) K (p)dwdp,

whence we see that, with p=r—1’, dr=p?dpdw,
G(r,r')dr' =G(p)do= (1/4mp*) K (0)dp, or from
(2.30)

G, 1) =—(1/4mp*) (8T /9p). (3.5)

Equation (3.5) shows how the whole problem
of the space-time variation of the density of
excited atoms is referred back to the nature of
the transmission coefficient T'(p). In this con-
nection it may be pointed out that Compton’s
diffusion equation can be obtained from (3.4)
and (3.5) and the exponential form of T'(p) given
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in (2.1) by the Fokker-Planck expansion.8 In our
case, however, in view of the form of T'(p) as
given either by (2.22) or (2.28), we cannot per-
form this expansion and must hence deal with
(3.4) directly.

We first observe that there exist solutions of
the type

n(r, t) =n(r)ep, (3.6)

with B and #(r) satisfying the equation
(t=/vn(0) =[G, Dntehar,  31)

which is a homogeneous integral equation of a
standard type treated, e.g., in Courant-Hilbert,
Chapter II1.° We further observe that, in view
of (3.5), G(r’, r) is symmetrical in the variables
r"andr,ie., '

G(r, ") =G, 1).

This feature permits us to formulate the problem
variationally as is shown in the cited reference.?
We have, namely,

(3.8)

f f G(r, r')n(x)n(r")drdr’
=1— ,

Y f n¥(r)dr

8(8/v) =0.

The application of (3.9b) to (3.9a), with use of
(3.8), yields (3.7), as the reader may readily
verify.

It can also be shown that 8/y is positive-
definite, i.e., its minimum value obtained by
applying the variational procedure is positive.
One obtains, after some algebraic manipulation,

(3.92)

(3.9b)

N f () E(r)dr+3 f f Cn(e) — () PO, £)dede’

, (3.10)

! f n?(r)dr

where

E(r)=1—fG(r, r')dr’;

(3.11)

8 A. D. Fokker, Ann. d. Physik 43, 812 (1914); M. Planck, Sitz. Preuss. Akad. Wiss. 324 (1917); S. Chandrasekhar,

Rev. Mod. Phys. 15, 1 (1943), Chapter II, Section 4.

9 R. Courant and D. Hilbert, Methoden der Mathematischen Physik (Verlag, Julius Springer, Berlin, 1931).
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the domain of integration in all cases is the vol-
ume of the enclosure. Since /"G (r,t’)dr’ gives the
total probability of a quantum emitted at r being
caught somewhere in the enclosure, E(r) is the
probability of escape of this quantum. From its
definition E(r) is a non-negative quantity. Since
G(r,r’) is also non-negative for all values of r
and t/, both terms of (3.10) are non-negative, i.e.,
B/~ is positive-definite as claimed above.

The eigenvalues of B8, of (3.7) can thus be ar-
ranged in an ascending series of positive numbers.
(It is also shown in Courant-Hilbert, Chapter
III, that these eigenvalues are denumerable, i.e.,
discrete.) If #,(r) denotes the solution of (3.7)
corresponding to 8., the most general solution of
(3.4) is of the form

n(t, ) =Y cunn(r)ebrt, (3.12)

where the ¢, are constants depending upon the
initial conditions. We observe that, after a suffi-
ciently long time,

n(t, t) = cmq(r)eF, (3.13)

i.e., the solution corresponding to the lowest
eigenvalues, 81, determines the behavior of #(r, ?)
for large t. In what follows, we confine our atten-
tion to this solution. We note in passing that
n1(r) must be non-negative for all points r of the
enclosure in order that it may represent a density
function.

The method which we employ to obtain the
lowest eigenvalue, B8, and the corresponding
eigenfunction, #(r) (we have dropped the sub-
script in the notation for both of these quantities)
is the Ritz variational procedure. This procedure,
in the particular form in which we have applied
it, consists in approximating #(r) by a finite
series of m terms

a0 =3 ami(r), (3.14)

where the #;(r) are m known functions of r and

the a; are to be determined by the minimizing
of 8. Substituting (3.14) into (3.10), we obtain

B
—=3 ai;Ks;/2 awiHi;, (3.15)
i @

Y
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where
K= | ni(r)n;(r) E(r)dr
1 [t =i
X [ni(r) —n;(t")1G(r, t')drdr’, (3.16a)
~and
Hij= n,-(r)n,(r)dr. (3161’))

We observe that K;;=Kj;; H;j=Hj. 8 is now a
function of the a;. The minimum conditions are

38/8a:=0. (3.17)

Performing the differentiations, we obtain

m B
Z IiaJK“——H”].—:O; i: 1, 2, Tty m. (3.18)
i=1 v

In order for Egs. (3.18) to be solved by a non-
zero set of the a;, the determinant of the coeffi-
cients must be zero, i.e.,

B B
Ku——Hy + -+« + Kin——Hin
Y it
=0. (3.19)
B B
Klm_"‘Hlm oo Kmm'—_Hmm
Y v

(3.19) constitutes an algebraic equation of the
m’th order in 8/v, and hence possesses m solu-
tions; of these only the lowest one is of interest.
Once B/v has been obtained, any set of (m—1)
equations chosen from the m equation of (3.18)
can be used to obtain theratiosa;/a1,2=2, - - -, m.
One thus determines #(r) to within a multi-
plicative constant.

It is shown in Courant-Hilbert, pages 149-151,
that the Ritz variational approach gives values
of 8 and »(r) which converge towards the true
solution of (3.7) as the number, 7, of independent
functions #;(r) and adjustable constants a;, in-
creases. In particular, each addition of a new
term involving an adjustable constant to the
series (3.14) for #(r) brings both 8 and #(r) closer
to the true solution.
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The number of terms which must be chosen to
obtain accurate results for 8 and #(r) depends
upon the suitability of the #;(r) with regard to
the representation of the true solution. In many
cases the use of two well chosen functions suffices
to give values of 8 which are good to one percent.

It is known that #(r) is not determined as
accurately as is 8 by the Ritz method. Neverthe-
less, if B is accurate to one percent, n(r) is ex-
pected not to deviate too radically from the true
function. Indications from calculations of spe-
cific cases are that this expectation is fulfilled.

IV. DECAY OF EXCITATION IN AN
INFINITE SLAB

We now apply the theory presented above to
the calculation of the decay of excitation in a one-
dimensional enclosure of gas. The enclosure is in
the form of a slab of thickness L, with the other
two dimensions infinite. The density of excited
atoms is now a function #(2) of the coordinate,
z, perpendicular to the walls of the slab. We
choose the origin to bisect the perpendicular be-
tween the walls so that the coordinates of the
latter are z=+L/2. Equation (3.7) can be sim-
plified by integration over the x and y coordi-
nates, both of which are parallel to the walls. We
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obtain, after some algebraic manipulation,

+L/2
(1—8/7)n(z) = f n(@)H(|5—2 |)de/, (4.1)

—L/2

where !
H($)=—098()/9¢, (4.2)

and

1 /2 21

80)=— fo fn T(¢ sech) sinbdode. (4.3)

&(¢) is the probability that a quantum, emitted
at an arbitrary point, will cross a plane situated
at a distance { from that point. The integral of
(4.3) represents a summation over all directions

‘of propagation; in this case the integration goes

over the solid angle subtended by the plane at
the point, i.e., half the total solid angle. 6 and ¢
are polar and azimuthal angles taken with respect
to the perpendicular from point to plane as polar
axis. The distance from point to plane in the
direction given by 6 and ¢ is p={ secf.

In (4.1) H(|2—2'|)dz is the probability that a
quantum, emitted at 2/, is absorbed in a layer
between the planes z and z+dz. Equation (4.2)
is then a statement of conservation of probability.

The variational expression for 8/, correspond-
ing (3.10) reads

f () E(2)dz+1 f f [n() —n(z) PH(|2—5'| )dedz'

, (4.4)

K f n*(2)dz

where

E(z)E1-—-fH([z—z’[)dz'=6(%L—|—z)+8(%L-—z).

1In these equations, the limits of integration are
z=£L/2.

Calculations have, up to the present, been
carried out only for the Doppler spectrum. Here,
according to (2.22), the asymptotic form for
T(p) is

T(p) = 1/kop(w logkop)*.
Inserting this expression into (4.3), we obtain

1 T
&(¢) =Ef T'(¢ sech) sinfdé
0

1 ‘
" Lot (m loghot)?  &kot (r loghoL/2)}

(4.6)

(4.5)

Applying (4.6) to (4.5) and (4.2), we obtain
1
4kog? (m loghoL/2)¥
1
" 4koL (x loghoL/2)! 1 (5/L)°

Inserting (4.7) and (4.8) into (4.4), and changing
the variable to §=22z/L, we obtain

n*(§) [n(&) —n(£)
dg+i | ————deay
5f=f1—22£ J =

[

4.7)

H($) ~

and

E(2) (4.8)

(4.9)
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where
=koL(mw logkoL/2)'8/v

and the limits of integration are = +1.
In the variational calculation of 8’ as given by
(4.9), linear combinations of the functions

’ﬂo(f) = 1/27
ni(§) =(3/4)(1-8),
na(8) = (5/8) (1 — &%)

were used. (The #,(£) are normalized according

to the relation
+1
f ni(g)dE=1,
1

(4.10)

(4.11)

(4.12)

as is customary for probability functions.)

The K;;and H;;are, with the exception of K.,
all readily evaluated from the one-dimensional
analogs of (3.16a) and (3.16b), which read

Kym +Lm(£)n,~(i)d£
-1 1—¢
41 f“f“[ﬂ (&) —ni(&) 1 ni(8) — na(é)]
(£—¢)2
(4.13a)
+1
Hij=f ni(&)n;(§)dE. (4.13b)

The calculation of Ky cannot be carried out
in this way since (4.13a) gives a divergent result.
This divergence owes its origin to our replace-
ment of T'(p), (), and E(z) by their asymptotic
values. The rigorous expression for Ky reads
(cf. (4.13a), (4.11), and (4.8))

ko[ w log(koL/2) ]t ptLi2
ol g(koL/2)] f E(2)ds,
2 ~L/2

which, in view of (4.5), may be written as

0=

+L/2
Kop= kol loghoL/2)* f SGL+2)dz  (4.14)
—L/2

For §(3L+2), we have from (4.3) and (2.19),

/2 ©
saz+a=[ |
0 0

Xexp[ —ko secO(3L+3)e~="] sinfdbdx.

exp(—«?)

(4.15)
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The insertion of (4.15) into (4.14) gives the com-
plete expression for K. Integrating this expres-
sion with respect to z, we obtain

/2 )
Koo=(logkoL/2)} f f cosf
1] 0

X {1 —exp[ —koL secfe~="]} sinfdddx. (4.16)

We next consider the integration over x. We
perform this operation approximately by taking
the factor in curly brackets equal to unity for
x <log#(koL sech) and zero for x greater than this
value. Thus,

/2
Ko~ (logkoL/2)* f cosf log#(koL sec) sinfd6.
0

We introduce the further approximations of
replacing both logkeL/2 and log(koL secf) by
logkoL. These approximations partly cancel each
other and are also small in magnitude because of
the slow variation of the logarithmic factors. We
then obtain

K()Oz% lngoL. (4.17)

7

Once the K;; and H,; have been evaluated, g8
and the coefficients a; in the Ritz approximations
of n(£) are readily obtained by solution of (3.18)
and (3.19).

In the first three calculations #(£) was suc-
cessively equated to #1(£), n2(£), and n3(§); the
corresponding eigenvalues, 8¢/, 81/, and 85/, were
found to be 2logk,L, 15/8, and 15/8, respectively.

Next, the two-parameter combinations

n01(§) = aomo(§) +ani(§),
n02(§) = aono(§) +ams(§),
n12(§) =a1m1(§) +aamns(§)

were tried; these gave the following expressions
for §’:

15/8)(1——710
Bor'=( /)( " logkoL — 5/4)

/48 (4.18)
Boz' = (15/8)(1—m)

B12' =(15/8)(0.986).
Taking for logkoL a typical value, say 5, we have

Bor’ = (15/8)(0.983),

Box’ = (15/8)(0.994), (4.19)
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whence we see that, although the best two-
parameter result is achieved with n¢(£), the
total improvement over the one-parameter value,
15/8, is only 1.7 percent.

In view of the approximations which have al-
ready been introduced in the evaluation of E(2)
and H({), discrepancies of this order of magni-
tude are rather inconsequential. We therefore
omit the calculation of 8’ for three-parameter
function

no12(8) = aono(§) +ami(§) +ama(§),

which can only lead to a small additional im-
provement of the order of a percent.

The coefficients a; of the function 7¢:1(£), which
gives the best two-parameter result, are found
to be

3/8

Qo= )
1ngoL—3/2

which, for logkoL =35, give a¢=0.107; a,;=0.893.
These numbers correspond to a ratio of density
at the edge of the container to that in the ceunter

no1(==1) /701(0) =0.071. (4.21)

a«1=1”—(Lo, (420)

For the comparison of theory with experiment
we ignore the 1.7 percent difference between Bo1
and B, and take 8'=15/8. The value of B/v
corresponding to this choice is

1.06

B = L GoghL/2)

(4.22)

V. COMPARISON WITH EXPERIMENT

Although the imprisonment of radiation has
been observed in a number of ways, the sole
reliable, direct measurement known to the author
is that of Zemansky,'® who obtained 8 for the
2537A line of Hg as a function of gas density, V.
The comparison of his results with the theory of
this paper encounters a number of complications.

1. Geometry of the enclosure. The experiment
consisted in measuring the decay of radiation
from two disks of thickness 1.30 cm and 1.95 cm,
both of diameter 5.1 cm. It is obvious that the
correspondence of this geometry to the one-
dimensional idealization of the theory is only
approximate.

10 M, W, Zemansky, Phys. Rev. 20, 283 (1922).
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2. Hyperfine structure. The theoretical calcu-
lations are based upon the assumption that the
resonance line is simple. Actually, the 2537A line
consists of five, hyperfine structure components.
The change in B8 arising from this structure is
analyzed immediately below. The main results
of the treatment are: (a), 7'(p) may be considered
as the average of the transmission functions,
T(p), of the individual components, each taken
as an isolated line, and (b), (4.22) is still approxi-
mately valid with the sole modification that %o
is to be replaced by ko/S.

In the evaluation of T'(p) the first question
which arises is whether the absorption bands of
the different components overlap. By ‘‘absorp-
tion band” we mean a continuous aggregate of
frequencies which are appreciably absorbed in
the traversal of a layer of length L in the gas.
If the absorption bands do overlap, it becomes
necessary to consider the composite line structure
in detail.

The edge of an absorption band is given
roughly by the relation

k(»r)L=1. (5.1)

For the case of Doppler-broadened spectral dis-
tributions, we have

koLe =1,
or
x = (logkoL)?%. (5.2)

Combining (5.2) with (2.16), we obtain for the
half-breadth of the absorption band in frequency
units

(4
Av= —Vo (logkoL)%
c

or in wave-length units

(5.3)

2

c Vo
AN=—Avr=\—(logkoL)*.
Vo c

For mercury at room temperature vo= (2RT/M)?}
=1.57X10* cm/sec.; with A=2537A we obtain

AN = (logkoL)#1.33 mA. (5.4)

Now, in Zemansky's experiments, as will be seen
below, the maximum value of k.L, for which
quantitative comparison with the theory is at-
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tempted, is 1000. Since (log1000)*=2.67, we have
ANpmax=3.5 mA.

On the other hand, the minimum separation of
the hyperfine structure lines is about 10 mA
(MZ, p. 38, Fig. 12); hence, there is a band of
3mA between the two components in which
negligible absorption takes place.

Actually, the non-overlap of absorption bands
is not a sufficient criterion to permit us to con-
sider the hyperfine components as isolated; this
can be seen by consideration of the transmission
factor T'(p). For a line possessing hyperfine

structure
P(y) =% P«) (5.5a)

and
(5.5b)

kG) =5 ki),
where the P;'s and &/'s are the spectral distribu-
tion and absorption coefficients of the individual
components. We introduce

Ni= f Pi(v)dv, (5.62)

2N:=1. (5.6b)

N; gives essentially the intensity of the 7<'th
hyperfine component. We then have, according
to (2.3),

T() =5 NiT{(p), (5.7a)

where
1¢() = [ [P0)/N ] expL— % ki()sJiv. (5.75)

Now, if over the range in which P;(») contributes
appreciably to T'(p), all the k;(v)p, j5%1, are small
compared to unity, we obtain

Ti(p)=Tio), (5.8a)

where

T,-(p)=f[Pi(v)/N[]e“’”(")"du. (5.8b)

T'i(p) is the transmission coefficient of an isolated
line. We thus have

T(p) =% N:T(o). (5:9)

T'(p) represents a composite or average trans-
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mission factor of all the components. Against the
introduction of this average transmission, one
might raise the objection that each line ought to
be treated separately, so that one should obtain
different values of 8. The answer to this objection
is twofold:

(1) All the lines which emanate from a com-
mon state of the atom must actually be averaged
since their relative intensities are fixed atomic
constants. This is the case of the sodium hyper-
fine structure.

(2) If different excited states or the excited
states of different isotopes are involved, radia-
tionless transfers of excitation energy between
all such states will take place readily because of
the extremely small energy differences between
the levels. For pressures of the order of those
involved in Zemansky's experiment, this ex-
change is much more rapid than the decay rates
of the individual resonance lines. Hence the rela-
tive concentrations of the excited states are in
constant thermodynamic equilibrium. We are
thus justified in considering T'(p) to be the
common transmission factor for all the com-
ponents. Now, for the Doppler broadening, we
have

ki(v) =k; exp[ — (x—x,)%], (5.10)

where x; denotes the frequency center of the ¢'th
component; with use of (2.14), we obtain

ki=kolV;, (5.11)

with &y given by (2.10). Using the asymptotic
formula (2.22) for T'(p), we find

1
T(p)=—2X

—_— (5.12)
kop ¢ (7 logNkop)?

Now the logarithmic factor is slowly varying;
hence, unless the intensities of the different com-
ponents are very unequal, we may replace N; by
an average without incurring much error. If the
number of components is m, we take N;=1/m
and obtain -
1

kop (r loghep)?
k¢=ko/ m.

T(p) =~ (5.13a)

where
(5.13b)

Since g is determined by 7'(p), we obtain the cor-
rect result by replacing k¢ by k. in (4.22).
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This “averaging’’ procedure of considering the
lines to be of equal strength has been used by
Zemansky in evaluating Kenty’s theory, as well
as in other connections (cf., MZ, p. 234, 125).

We now have to show that the fundamental
condition for the validity of (5.8a) and hence of
(5.13a), namely, the smallness of %;(»)p, i5% 7, in
the region in which P,(») contributes effectively
to T'(p), prevails in the case at hand. Here, as we
have found above, there exists a domain of 3mA
between absorption bands. This corresponds to a
Ax of 2.2. Now, for k.L=1000 (the %L of the
above numerical estimate should be written k.L),
we have for the edge of the absorption band at
x=2.67, exp(—«? =103, At the edge of the ad-
jacent band x=2.67+42.2=4.89; the correspond-
ing value of exp(—«?) is e~24, which is altogether
negligible. The validity of our basic assumption,
as expressed by (5.8a), is thus established.

3. Natural broadening. A small correction to
(4.22) may arise from natural broadening due to
the relatively slow decrease of the dispersion dis-
tribution at large «, as is indicated by (2.12) and
the discussion immediately following. The cor-
rection does not affect the absorption appreci-
ably. Namely, for ko as high as 1000, the im-
portant contributions to T'(p) come from values
of |x| in the neighborhood of x; = (logkop)t=2.67;
taking ay=v\o/419,=0.0011 (Hg at 90°C), we
obtain

kop/mix:2=0.086,

which is a small correction to the Doppler ab-
sorption, kop exp(—x2) =1.

However, if we assume (2.13), i.e., P(x) « k(x),
the change in T'(p), AT x(p) is not negligible; we
have from (2.12), (2.13), and (2.17)

APx(x) =an/mx?,
and hence,

ZGN
x(logkop)¥

which, in view of the slow variation of the log-
arithmic factor, may be approximated by

+o0 \ an
ATN(p)=f exp(—kope™*")—dx =

o wx?

ATw(p) = 5.14
M e loghoL/2)" (5.14)

Since (93) is independent of p, n(g) is left
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unaltered and B is increased by an amount
ABn=ATx.

The presence of the hyperfine structure causes
a diminution of ABx; a rough estimate of this
effect gives a reduction factor of 0.8, which, when
combined with (5.14), yields

0.5y

S

(logkoL/2)

(5.15)

With ay=0.0011, v=107 sec.”!, and logk,L /2 =4
(corresponding to koL =110) we obtain

ABy=~3X 103 sec.! (5.16)
which, although not negligible, is small as far as
the comparison between theory and experiment
is concerned.

The above analysis is based on assumption
(2.13), the validity of which in the case of natural
broadening is rather doubtful. However, it seems
quite likely that (2.13) gives at least an upper
limit for the contribution of natural broadening
to P(x). First of all, the radiation from a given
volume element contained in the spectral region
|| ='x:1 possesses a preferentially large escape
probability. Secondly, as pointed out in the be-
ginning of the Appendix, the absorption-emission
process, in the absence of Doppler shift and
pressure-broadening interactions, does not alter
frequencies and hence cannot contribute to
a replenishment of the dispersion component,
APy(x), in the spectral region |x|=x;. Thus, the
actual APy(x) may be expected to be smaller
than ax/wx?; hence, in our opinion, (5.15) repre-
sents an upper limit to the natural broadening
correction.

4. Pressure broadening. The detailed treat-
ment of the transition from Doppler to pressure
broadening in the case of the 2537A line is quite
involved due to the hyperfine structure. Here we
discuss only the initial manifestation of this
transition.

Assuming an absorption law of the form of
(2.12), we may take over the results for natural
broadening presented immediately above. In the
case of pressure broadening we note that: (a),
(2.13) is valid as is shown in the Appendix, and
(b), ay is to be replaced by a,=ayvy,/vn-

For v, we-use the result of Furssov and
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Vlassov:t
(5.17)

where N is the density of atoms and f the “oscil-
lator” strength for the absorption of the reso-
nance line (cf., MZ, page 96). Equation (5.17)
assumes the absence of hyperfine structure.

We also have (cf., MZ, page 97)

8we? gy
y=—"—f/\"
me go

For the 2537A line g,/g1=3; we thus obtain
vo/v=NAo*/2a2=0.83 X 10-"N. (5.18)

We now consider the effect of hyperfine struc-
ture on the magnitude of v,. As in the Appendix,
we represent the atoms by classical harmonic
oscillators whose natural frequencies coincide
with those of the actual resonance lines. In this
case we must consider oscillators of five different
frequencies corresponding to the five hyperfine
components; the density of each type of oscillator
is proportional to the intensity of the associated
component. Now, for collisions between oscilla-
tors of the same natural frequency, the usual
phase-shift calculation of impact broadening is
valid; the contribution of these collisions to v,
is of the form of (5.17) with the sole modification
that f here represents the oscillator strength for
the absorption of one hyperfine component.
When, on the other hand, oscillators of different
natural frequencies collide, the perturbation of

DECAY CONSTANT, 43,
VS. CONGENTRATION, N,
FOR MERCURY
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FiG. 1. Decay constant, 8, vs. concentration, N,
for mercury.

1 W, Furssov and A. Vlassov, Phys. Zeits, Sowjetunion
10, 378 (1936).
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the frequencies of both oscillators by the inter-
action is reduced; in order for a given phase shift
to be achieved, the oscillators must approach
closer with the result that the rate of effective
collision is diminished.

A preliminary calculation of this effect indi-
cates that the hyperfine separation cuts down
v, by a factor of the order of 2. The insertion of
this result into (5.18) gives

vp/y=35107BN. (5.19)

Combining (5.19) with (5.15), we obtain for
the increase in 8 due to pressure broadening, AB,,
the order-of-magnitude estimate

10-2A8, ~ 1.5(NX 10-5) sec.™..  (5.20)

We now proceed to the comparison of theory
with experiment. Since Zemansky has already
evaluated £.L (in his notation, k¢l) as a function
of the experimental conditions of gas density,
temperature, and slab thickness (MZ, page 234,
Table 40), we need only insert these values into
(4.22). The resultant theoretical expressions for
B are given in Fig. 1 together with Zemansky's
experimental results.

We observe that the left-hand portion of the
experimental curves agree in order of magnitude
with the theoretical prediction. Quantitatively,
the agreement for L=1.95 is quite good while
that for L =1.30 is not as satisfactory; the reason
for the discrepancy in the latter case is not clear.

It should, at this point, be mentioned that
Kenty’s results show a similar agreement with
the left-hand part of the experimental curves
(MZ, Table 40).

The slow rise of Zemansky's curves with in-
creasing N for gas densities greater than 10
atoms/cc is not explained by the theory. Two
possible causes are: (1) pressure broadening, and
(2) non-radiative transitions from the radiating
63P, state to the metastable 63P, state 0.218
volt lower. :

With regard to the first agency, an order-of
magnitude estimate of its initial effect is given
by (5.20). According to this equation the increase
in B due to pressure broadening becomes appreci-
able for NZ3X10%/cc. Beyond N~7X10%/cc
we encounter the complications associated with
the overlap of the absorption bands of the hyper-
fine components,
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At densities high enough so that the separation
of the components is small compared to the ab-
sorption band, we may consider the line to be
simple. Assuming a dispersion distribution we
'have

T'(p) =1/(wkap)*, (2.28)

where

ka=(N\N/27)(g2/8) (v/72).  (2.26)

Now, v,, the line breadth resulting from pressure
broadening, varies linearly with V; hence k4 and
T'(p) become independent of the gas density.
Since T'(p) determines the decay factor, 8, the
latter should also become independent of the
density.

It should be pointed out that, at the high
density extreme of absorption band large com-
pared to the separation of the components, the
absorption band must cover a spectral range at
least of the order of 0.2A. Now according to
Kuhn,* the pressure-broadened spectrum at dis-
tances T 0.6A from the center of the line is no
longer of the dispersion type. Since in the deter-
mination of T'(p) the important spectral region
is in the neighborhood of the edge of the absorp-
tion band ~0.1A from the center of the line, the
validity of a treatment based on the dispersion
distribution is rather doubtful.

Recently'® the method of nuclear transmuta-
tion has been applied to the production of the
pure mercury isotope 198, which by itself shows
no hyperfine structure since its spin is zero. Ex-
periments with this isotope should prove quite
informative, since the complications due to
hyperfine structure do not exist.

In this connection, experiments with the so-
dium D lines would also be of interest since the
element exists in only one isotopic form. Both of
the lines are split into only two hyperfine com-
ponents, the separation of which is small com-
pared to the absorption bands which would be
encountered in radiation-decay experiments of
the type performed by Zemansky. On the other
hand, the 6A separation of the D lines themselves
permits the avoidance of overlap complications
over a large range of pressure. Whether or not
the lines decay independently is an additional

2 H, Kuhn, Proc. Roy. Soc. A158, 230 (1937).
13 J. H. Wiens, Phys. Rev. 70, 910 (1946).
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question which can be investigated both experi-
mentally and theoretically.

With regard to the second possibility for the
rise of Zemansky’s curves at higher values of N,
namely, the radiationless conversion of the radi-
ating state into the metastable state, the sole
evidence known to the present author consists of
an experiment performed by Orthmann and
Pringsheim.* They find that, as the pressure of
mercury is raised to about one atmosphere, the
diffuse resonance radiation from a chamber illu-
minated with the resonance line 2537A is almost
completely quenched, whereas the radiation of a
small admixture of thallium (2X10~2 mm), the
atoms of which can be excited upon collision
with metastable mercury atoms, loses none of its
original intensity. These results indicate that the
radiating 6°P; state produced by the incident
beam is converted to the 63P, metastable state,
which in turn, lives long enough to make a rela-
tively infrequent collision with a thallium atom.

The conversion from radiating to metastable
state should be capable of a more direct and
quantitative investigation than that of Orth-
mann and Pringsheim. However, this has not yet
to our knowledge been achieved.

In the light of the above discussion, a further
advantage of experiments with sodium vapor is
that non-radiative quenching of excitation should
not take place in sodium since the only level
below the resonance level is the ground state 2.1
volts lower in energy. The conversion of this
amount of energy into kinetic energy of nuclear
motion is extremely unlikely; hence, the decay
should be due entirely to the escape of resonance
radiation.

VI. ADDITIONAL PROBLEMS

In conclusion we present a brief discussion of
additional problems suggested by the theory.

1. Lines of various spectral distributions. The
above theory may be amplified to include various
types of spectral distributions arising both from
pressure broadening and the existence of hyper-
fine structure. Concerning the dispersion distri-
bution, the first step has already been taken in
the derivation of (2.28). As we have remarked
above, in the discussion of pressure broadening,

*W. Orthmann and P. Pringsheim, Zeits. f. Physik 35,
626 (1926).
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distributions other than the dispersion distribu-
tion occur. Probably the most important is the
“‘statistical’”’ distribution!* which for large (vo—v)
is given by the formula
2.(—p)i
Py =N
(ro—r)}

in which the sign of (vo—v) is opposite to that of
b (for (vo—v)b positive, P(v) =0).

The presence of hyperfine structure will, as we
have seen above, also give rise to new effects,
particularly when the absorption bands overlap.

2. Equilibrium between an excited radiating
state and electrons. Here two additional proc-
esses must be included.

(a). The creation of excited atoms by electron
collision with normal atoms. The contribution of
this process to the rate of increase of excitation
is given by

An.(r),

where 7,(r) is the electron density and 4 a con-
stant proportional to the density of normal atoms
and otherwise dependent on the cross section for
excitation of the level and the energy distribution
of the electrons.

(b). The destruction of excited atoms by colli-
sions of the second kind with electrons. The rate
of decrease of excitation due to this cause is
represented by the term

—Bn(r)n(r),

where B is a function of the cross section for such
collisions and the electron-energy distribution.

The equation describing the equilibrium set up
by these two collision processes, together with
the radiative transport of excitation, reads

0=An.(r) — Bn.(r)n(r) —yn(r)
+’YfG(r, n(@)dr’. (6.1)

We observe two limiting cases:

(a). At very low electron densities the second
term becomes negligible and we have approxi-
mately

0=~An.(r) —yn(r) +7fG(r, r)n(r')dr,

4 Reference 7, Section 8, Eq. (2).
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from which we see that #(r) is proportional to the
number of electrons.

(b). At very large electron densities, the last
two terms may be neglected and we have

n(t)=4/B, (6.2)

i.e., n(r) is independent of electron density. We
observe here that, if the electron energy distribu-
tion is Maxwellian, with a temperature T, we
must have in case (b)

n(r) = Ne~/*Tegy /g4, (6.3)

where NV is the normal atom density, ¢ the excita-
tion energy, and g,/g: the ratio of the statistical
weights of the excited and ground states. Equa-
tion (6.3) follows from thermodynamic principles
which apply to case (b), since the only processes
involved are reversible exchanges of energy be-
tween free electrons and bound atomic electrons.
Now (6.2) and (6.3) must be identical; hence,

A/B=(ga/ge ",

when the electrons have a Maxwell distribution
in energy.

In order to obtain quantitative results for the
general case, we must solve (6.1). This problem
was attacked a number of years ago by de
Groot,s who erroneously assumed the transmis-
sion function T'(p) for light quanta to be ex-
ponential; the results were retracted in a subse-
quent paper.®

The approach which seems most feasible at
present is the variational method. The applica-
tion of this method to the solution of linear in-
homogeneous integral equations is indicated in
Courant-Hilbert® (Chapter IV, page 176).

(3) Decay of excited states in noble gases: In
noble gases (and to some extent in metallic
vapors such as cadmium and mercury) radiating
and metastable states are separated by small
energy differences. Hence, the conversion from
one to the other upon collision with normal
atoms, with simultaneous change in the kinetic
energy of nuclear motion, may take place readily.
It has often been tacitly assumed that once a
metastable atom is converted into a radiating
atom, the excitation energy is immediately radi-

16 W. de Groot, Physica 12, 289 (1932), (old series).
16 W. de Groot, Physica 1, 28 (1934).
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ated from the enclosure. Because of the long life-
times of radiating states caused by imprisonment
of radiation, this assumption must be revised.
A schematic treatment of the decay problem from
the new point of view has been given by de Groot
and Penning in their Handbuch article. A more
accurate analysis will require the solution of
integral equations of the type encountered above.

(4) The Penning effect. This phenomenon is
the ionization of impurity atoms by excited
atoms of the main constituent of a gas mixture;
the most notable example is the ionization of
argon atoms by excited neon atoms.!” Since the
ionization process must complete with other
forms of destruction of excited atoms, the radia-
tive transport of excitation is of crucial impor-
tance. A correct treatment of the problem must
therefore consider imprisonment of resonance
radiation.

APPENDIX I

The purpose of this appendix is the justifica-
tion of the assumption

P) < k). (1A)

The validity of (1A) is by no means universal;
one can readily imagine cases for which it fails.
For instance, let us suppose that ‘“‘monochro-
matic” radiation (whose spectral width is small
compared to the natural width) is incident on a
medium whose absorption coefficient is character-
ized by natural broadening, i.e., the atoms are at
rest and do not interact with each other. Then it
is well known!8 that the spectrum of the emitted
radiation is identical with that of the incident
beam.

A similar, though less drastic situation prevails
in the case of Doppler broadening. Here, a mono-
chromatic beam excites only those atoms whose
velocity component in the direction of the inci-
dent beam satisfies the Doppler relation (2.7).
Since these atoms emit radiation in all directions,
the spectral distribution of this radiation is obvi-
ously not monochromatic; nevertheless, it will
certainly deviate greatly from the Doppler form
as given by (2.17).

17 M. J. Druyvesteyn and F. M. Penning, Rev. Mod.
Phys. 12, 87 (1940).

18 Max Born, Optik (Verlag, Julius Springer, Berlin,
1933), Chapter VIII, Section 91.
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Since, as these examples demonstrate, (1A) is
not universal, its applicability must be examined
for the particular situations of interest. In this
appendix we show that (1A) may be used in the
cases of pressure and Doppler broadening; the
case of natural broadening presents difficulties
which have not yet been overcome.

A. Pressure Broadening

For this case we demonstrate that atoms, even
when excited by a monochromatic beam, emit
radiation whose spectral distribution is essen-
tially proportional to k(). For the sake of sim-
plicity the treatment will be classical throughout;
i.e., the atoms are considered to be classical har-
monic oscillators whose resonance frequency is
identical with that of the resonance line; the cor-
responding quantum-mechanical approach does
not present any essentially new features and will
hence not be given here.

We first assume that the interaction of a given
oscillator with its environment may be repre-
sented by quenching collisions, after each of
which the oscillator is de-excited, i.e.,

u(te) =u(t) =0, (2A)

where u 1s the oscillator displacement and ¢, the
time at which the collision takes place. This as-
sumption will later be modified to deal with the
actual case of non-quenching collisions. In the
time between collisions, the oscillator does not
interact with its neighbors; hence, in the presence
of an incident field, Ee®?, the displacement u
obeys the well-known oscillator equation, which,
with neglect of radiation damping, reads

4 wou= — (eE/m)et, (3A)

where wo= 277y and the other symbols have their
conventional significance.

It is permissible to neglect the damping term
in (3A) because of the circumstance that when
pressure broadening predominates the mean free
time between collisions, 7,, is much smaller than
the radiative lifetime, r=1/v; since we integrate
(3A) only over times of the order of 7, the effect
of the damping term, yu1, can easily be shown to
be negligible.
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The solution of (3A) subject to (2A) is

eE et 1 w
u= —— [1_—(1.{__)@-—“0’—«00)(!——!.‘)

m wo?— w? 2 wo

1 w
.___( 1 __)e—i(w+wo)(t—ti)]’ (4A)
2 wo -

where ¢; is the time at which the last collision
previous to time ¢ has occurred. In the neighbor-
hood of resonance (4A) may be approximated by
the expression

it
u=— (Ee/m) [1 — e—i(w——wo)(t—c;)].

2wo(wo—w)

(SA)

Because of the random nature of the collision
process, u(f) is only partly coherent with the im-
pressed field. The coherent component is gotten
by averaging u(f) over all collision times ¢;=¢—0
with the weight factor

W(0) =e~0"». (6A)
We then obtain the well-known result
iwt
(W= —(eE/m) (7A)

2iwo 1/Tp+i(wo—w)'
The incoherent component of #(#) is given by

Au=u-—Up. (8A)

Now, the field of the emitted radiation has the
same time dependence as u(f); hence, to obtain
the spectral distribution of the emitted radiation,
it is sufficient to perform a Fourier analysis of
u(t). This analysis, which involves the evaluation
of the Fourier components of u(Z)- for specified
times of collision, #;, fs, -, and the
averaging of these components and their absolute
squares over all properly weighted values of
t1, ts, =, s * -+, will not be presented here; we
confine oursevles to stating the results.

1. The coherent component, {(u)x, obviously
has a non-zero Fourier amplitude for only one
frequency, the impressed frequency w, i.e., the
spectrum of (u)y is a line spectrum.

2. The incoherent component, Au, possesses
non-vanishing Fourier amplitudes for all frequen-
cies, ’. These amplitudes are uncorrelated with
each other. The average spectral distribution,

N TR
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P(w’), which is proportional to the average abso-
lute square of the Fourier amplitude at ', varies
with frequency according to the relation

1
P(o)~ —,
14 (0" —wo) *15*
which, if we define v,=2/7,, is identical with
(2.4"), i.e., the spectrum of the incoherent com-
ponent obeys (1A).

We now show that the average magnitudes of
the coherent and incoherent components of the
total displacement are equal. With the aid of
(6A) we readily obtain

(9A)

([u|2>m=’ ) . (toa)
2mawo| (1/75)2+ (wo—w)?
From (10A) and (7A) we then find that

([au 2w =(lu]Hn— [{Wn]*=[(Wn|%  (11A)

Thus, the spectrum of the total displacement,
and hence of the emitted radiation, may be re-
solved into two equal parts of which one is a line
spectrum whose frequency is equal to that of the
incident beam, whereas the other obeys (1A).

The above result is obtained on the basis of
assumption (2A), which states that every colli-
sion quenches the oscillation. Since the quenching
action of collisions is by no means universal, and,
in fact, is very rarely observed if only one type
of atom is present, the assumption requires modi-
fication. According to the present point of view,'
a collision need not extinguish the motion of the
classical oscillator; in the absence of quenching
its chief effect is the introduction of a random
phase shift into this motion with the consequence
that immediately after collision the phase of the
oscillator displacement is uncorrelated with that
of the incident field. Thus, at any time ¢ the
total displacement u(f) may be written as

u(t) =u1(f) +us(f),

where u;(f) is given by (4A) or (5A), and us(Z) is
uncorrelated in phase with the incident field or
with ui(#). The coherent part of the total oscilla-
tion is thus left unaltered, whereas the intensity

(12A)

of the incoherent component is increased by

19V, Weisskopf, Physik. Zeits. 34, 1 (1933); H. Margenau
and W. W. Watson, Rev. Mod. Phys. 8, 22 (1936).
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[us(f) |2 Now, the time dependence of u.(f) is
that of free oscillation interspersed with the
random phase shift due to collisions; as is demon-
strated in standard texts,'® the spectrum associ-
ated with this time variation is given by (9A)
and, hence, by (1A). Therefore, if we are able to
show that

(Jua| Ha>>(ur| Da, (13A)

we shall have established the validity of (1A) for
the case of pressure broadening.

Two processes enter into the determination of
(|uz|®an. One of these is the relatively slow de-
crease due to radiation damping, heretofore ne-
glected in our treatment. The rate of decrease per
unit time arising from this mechanism is

— (| uz| D

The other process is the transformation of u; to
up which takes place with each collision because
of the introduction of the random phase shift;
the rate of the resultant increase of (|us|%) is

1
—(|u1|Ha.

V4

Equating these two rates, we have

1
<|u2[2>Av=—(|u1| Dy
Y7o

which, in view of the inequality y7,<1, immedi-
ately gives (13A).

The above treatment establishes the validity
of (1A) for the “impact” type of pressure broad-
ening associated with the dispersion-type absorp-
tion law (2.4"). As stated in the text, deviations
from impact broadening may occur at pressures
above 1 mm and for frequency differences
v —vo>>7,. Since these cases have not been treated
in the text, we shall not analyze the applicability
of (1A) to them.

B. Doppler Broadening

From the standard treatments of Doppler-
broadened emission spectra it is apparent that
the validity of (1A) requires the velocity distri-
bution of the excited atoms to be Maxwellian. In
the investigation of this velocity distribution two
cases are of interest.
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1. Non-radiative transfer of excitation be-
tween atoms takes place before radiation. This
transfer owes its origin essentially to dipole-
dipole interaction between an excited and a nor-
mal atom. The cross sections for such reactions,
classified as collisions of the second kind, are
generally much larger than kinetic cross sections,
because of the fact that no energy transfer be-
tween electronic excitation and nuclear motion
is required. It has been shown, first by Fursov
and Vlassov® and later by Houston, that the
non-radiative exchange of excitation is connected
quite intimately with pressure broadening; in
fact, at the pressure such that the mean free time
between exchanges is equal to the radiative life-
time, pressure broadening is of the same order of
magnitude as natural broadening. Another char-
acteristic of the collisions is that the radius of
collision varies inversely with the square root of
the relative velocity of the colliding atoms, with
the result that the mean free time is independent
of the relative velocity.

If, now, pressure broadening exceeds natural
broadening, both remaining small compared to
Doppler broadening, non-radiative exchange of
excitation takes place with equal likelihood be-
tween atoms of arbitrary velocities in preference
to radiation. Hence the velocity distribution of
the emitting atoms approaches that of the normal
atoms, which is Maxwellian.

2. The radiative time is short compared to the
mean free time between excitation transfers. In
this case we cannot assume a prior: that the ve-
locity distribution of the excited atoms is Max-
wellian and must, therefore, fall back on a more
general formulation of the problem which pre-
sents both this velocity distribution and the fre-
quency spectrum of the radiation as unknowns
to be solved by analysis.

In describing the frequency spectrum of the
radiation we introduce the frequency variable
%= (v—wo/vo)c/vo. The energy in a positional vol-
ume element, dr, radiation whose direction of
propagation is contained in an element of solid
angle dw and whose frequency lies in a range
between x and x4-dx, is represented by

hvf(r, x, n)drdxdw,

20 W. Furssov and A. Vlassov, Physik. Zeits. Sowjetunfon
10, 378 (1936).
#'W. V. Houston, Phys. Rev. 54, 884 (1938).
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where n is a unit vector in the direction of propa-
gation. f(r, x, n)drdxdw may be regarded as the
number of quanta in the positional volume ele-
ment dr and within the specified range of solid
angle and frequency. Furthermore, we designate
by N(r,v) the density of excited atoms in six-
dimensional, velocity-position space. We may
then describe the time variation of f(r,x,n)
and N(r,v) by two ‘‘probability-conservation”
integro-differential equations. The first reads

df/dt= —cn-gradef—ck(x)f

+v/am) [ N(r,v)a(

n—v

—x)dv. (16A)
Yo

Here k(x) is the absorption coefficient of quanta
of frequency x, dv an element of volume in ve-
locity space, and § the Dirac delta-function,
defined by the equations

d(x—x1) =0; x5%xy,
z1+b

f d(x—x1)dx=1.
z1—a

Equation (17A) describes the generation, trans-
port, and absorption of light quanta. The trans-
port and absorption are obviously given by the
first and second terms of the right-hand side. To
see that the integral term represents the genera-
tion of quanta, we note the following:

(a). The integral is proportional to the density
of emitting atoms, N(r, v).

(b). The delta-function restricts the emissive
contribution to those atoms for which x =n-v /v,
~which, in view of the definition of x, is the
Doppler equation.

(c). If we integrate the term over all values
of x and n, i.e., over all possible emission fre-
quencies and directions, we should obtain the
total rate of emission per unit positional volume.
Performing this integration we find for this rate
the expression y/N(r,v)dv which is obviously valid.

(d). Finally, it should be remarked that iso-
tropic emission is assumed. This assumption is
discussed in the text.

The second equation reads

dN(r,v)

(17A)

ko exp(—92/v0?)
+vN(r,v) ==
Vo

n-v
Xfa(————x)f(f, x, n)dwdx. (18A)
Vo
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Here, & represents, as in the text, the absorption
coefficient at the center of the Doppler line, x=0.
In (18A) the transport of excitation due to the
velocities of the excited atoms is neglected so that
the equation represents the change in N due to
absorption and emission of radiation alone. The
emission is obviously given by the second term
of the left; to show that the term on the right
describes the absorption process, we note that
(a), the integrand is proportional to the density
of quanta, f(r,x,n), and of normal atoms
« exp(—v%/ve?), (b), the delta-function takes
care of the Doppler effect, and (c), integration
over all velocities gives the total rate per unit
volume of absorption of light quanta, i.e.,

fko exp(—x?) f(r, x, n)dwdx

= fk(x)f(r, x, n)dxdw.

In proceeding further we find it convenient to
neglect the retardation effect arising from the
finite velocity of propagation of light. This effect
is contained analytically in the 8f/d¢ term on
the left-hand side of (16A). As we shall show in
detail below, the neglect of this term gives
f(r,x,n) at time ¢ as an integral involving
N(1’, v) the ‘“‘source’’ function, evaluated at the
same time, ¢; on the other hand, consideration of
the df/0t term would give f(r, x, n) as an integral
containing N(r’,v) evaluated at the retarded
time, ' =¢t— (|r—1’|)/c. The neglect of retarda-
tion is permissible because of the circumstance
that as long as we deal with enclosures whose di-
mensions are of the order of centimeters and
radiative lifetimes, 7108 sec, the time of flight
of the quanta is much smaller than 7; we may
therefore, to a good approximation, regard their
motion within the enclosure as instantaneous.

With neglect of the df/d¢ term, we integrate
(15A), obtaining

4mc

f(x, x, n)=—1—j;pm fN(r—np, V')

n-v )
XB( —x)e—’c(mdpdv’, (19A)

Vo

where p,, corresponds to a point » —np, situated
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on the boundary of the enclosure. Inserting (19A)
into (18A) and introducing the ‘‘source-point”
vector, ' =r—np, with dr’=p*dpdw representing
the positional volume element around the source
point, we obtain

oN
3?+7N (r, v) = exp(—v*/ve’)

XffK(r, v; 1/, V)N(t', v')dr'dv’, (20A)

where

K( , ,) +o  pie—k@Ir-r']
r,v;r,v )= E—
B —w  Awcrv|r—1' |2

/

v-n v -n
——x )0
Vo Vo

X

—x)dx. <21A)

5 ffffK(r,v;r’,v’)N(r,v)N(r’,v’)dr’dv’drdv
=1—
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We observe in passing that
K(,v;t',vV)=K@',v;r, v).

Also, in (20A) the integrations go over all veloci-
ties and over the volume of the enclosure.

As in the text treatment, we are interested in
steady-state solutions of the form N(r,v,?)
~e~#tN(r, v), which satisfy the equation

(=B4+7v)N(x, v) =v exp(—2%/v¢?)

(22A)

XffK(r,v;r’, V)N(r/, v')dr'dv’. (23A)

Furthermore, we confine our attention to the
solution of (23A) which gives the smallest value
of B, since, after a sufficiently long time, that
solution alone is capable of experimental observa-
tion. We note that (23A) is equivalent to the
following variational problem

(24A)

¥

as can easily be verified with use of (22A). Our
problem is then to find the minimum:of B/v as
given by (24A).

To solve this problem we have at our disposal
the Ritz variational procedure. The value of 8
obtained by this method is always higher than

6(8/v) =0,

f f exp(+2 /o) N2(x, v)drdv

the true value, and converges towards it as the
number of variable parameters increases.

We now try a solution of the form N(r, v)
=N(r) exp(—12/vo?); inserting this expression
into (24A), we obtain

f f G(r, r)N(r) N(r')dr'dr

, (25A)

Y f N(x)dr

where

f f K(r,v;r'v') exp[ — (v*+v"%) /vs* Jdvdv’

G, r)=

(26A)

f exp(—v%/ve®)dv

The evaluation of (26A) yields

dx,

+o b xp( —x2)e—*@ Ir—r’l
G, x) = f () exp(—a)e (27A)

oo mHr|r—1' |2

which is easily seen to be equivalent to (3.5) and
(2.19). For the determination of N(r) and 8 we
now apply the variational method to (25A);
since this form is identical with (3.9a) the
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further analysis is the same as that of the text
problem.

The above treatment shows that the assump-
tion of a Maxwellian distribution for the veloci-
ties of the excited atoms leads to a variational
approximation of the exact solution. In particu-
lar, the value of B obtained with the Maxwell
distribution is always higher than the true value.
Thus the text calculation gives an upper limit
for B. v
Unfortunately, this procedure cannot give
quantitative information as to how far off the
upper limit is until other more general forms for
N(r,v) have been tried. Such calculations are
rather tedious. Another possible approach is that
of iteration. One inserts an assumed function for
N(r,v), e.g., the Maxwellian form, into the right-
hand side of (23A); the evaluation of the integral
gives a new value of N(r,v), which may be sub-
stituted into (14A) for a repetition of the process.
The correspondence of the new N(r,v) to the
original function gives an indication as to the
validity of the latter as a solution of the problem.
Using this approach, we have made some pre-
liminary semiquantitative studies; the essential
physical picture which emerges from these studies
may be described as follows.

For an infinite vessel, in which N(r,v) is
rigorously Maxwellian (as can be verified by
substitution into 23A), the radiation density
function, f(r,x, n) as determined from (19A) is
independent of frequency and propagation direc-
tion (as well as of position). This independence
is linked up with the circumstance that, with
increasing «x, the diminution in the emissivity of
each volume element is compensated by a longer
free path, 1/k(x), which permits more volume
elements to contribute to the radiation density
at r. For the finite case this behavior is still
realized for those frequencies x such that 1/k(x)
is much smaller than the linear dimensions of the
enclosure; furthermore, in its r variation f(r, x, n)
is proportional to the density of excited atoms
atr.

However, when 1/k(x) approaches the linear
dimensions of the enclosure, this picture changes.
In the central region the radiation density drops,
since contributions from outlying regions dimin-
ish because of the lower density of excited atoms
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in those regions. When 1/k(x) exceeds the dimen-
sions of the container, no new volume elements
are brought into play with the result that the
decrease in the emissivity of individual volume
elements is now uncompensated ; hence the radia-
tion density drops off rapidly with further in-
crease of x.

In the outer portion of the enclosure the x de-
pendence of the radiation is somewhat more
complicated. Here, as 1/k(x) gets large enough
so that quanta emitted in the central regions can
penetrate to the boundary, the radiation density
at first increases with frequency; when, however,
1/k(x) exceeds the dimensions of the container,
no new volume elements can contribute and the
radiation density drops rapidly to zero. The
phenomenon of enhanced intensity in the wings
of the frequency distribution of the radiation
density is often encountered in spectroscopy,
where it is designated by the term “‘self-reversal.”

As a result of the above described behavior of
f(r, x, n), it turns out that in the central region
the wings of the velocity distribution of excited
atoms drop below the Maxwell form. It is also
probable, though at the present time not defi-
nitely established, that in the boundary regions
the self-reversal of the radiation density is dupli-
cated to a certain extent in the velocity distribu-
tion of the excited atoms.

Here it should be pointed out that the behavior
in the central region is of decisive importance in
the estimation of the error in 8. Namely, a de-
ficiency of high velocity excited atoms gives rise
to a cutting off of the wings of the emission spec-
trum from the individual volume elements and
hence leads to a reduction 7'(p) and B. On the
other hand, by an analogous chain of events, the
self-reversal, characteristic of the outer regions,
may be expected to provide an increase in 8. Now,
the variational theory states that the true eigen-
value is lower than that obtained from the Max-
well distribution. Hence, in obtaining an upper
limit for the error we neglect the possible increase
in B due to the self-reversal in the periphery and
confine our attention solely to the central region,
where the correction results in a diminution.

Preliminary iteration-type calculations follow-
ing this approach indicate that the emission spec-
trum of individual volume elements closely ap-
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proximates the Doppler distribution, e~#, up to
a value x; such that

x1~ (log(keL/2))*.
For x> x, the Doppler distribution is to be multi-
plied by a factor roughly of the form x;/x.
These results may now be introduced into (2.3)

to calculate, e.g., T(L/2); it is then found that
the new value is smaller than the text value

T1(L/2) =

Rop(r log (koL /2))*
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by an amount
T\(L/2)

2 log(koL/2)’

which, for koL ~200, is of the order of 10 percent.
We may thus expect that the error in 8 arising
from the use of (1A) is less than, say, 20 percent.
On the other hand, the error in the functional
form of N(r, v), or even of N(r), is undoubtedly
much greater; in particular, for these quantities
the contrast between the central region and the
periphery of the enclosure is more significant.
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Paramagnetic Resonance Absorption in Salts of the Iron Group*

R. L. Cummerow,** D. HALLIDAY, AND G. E. MOORE
Unaversity of Pittsburgh, Pittsburgh, Pennsylvania

(Received August 29, 1947)

When a paramagnetic salt is placed in a high frequency alternating magnetic field which is
perpendicular to a static magnetic field, energy may be absorbed by the salt in a resonant
fashion for a range of values of the steady field. These paramagnetic losses have been investi-
gated for three manganous, two cupric, and one chromic salt at a frequency of 9375 mc/sec.
Well-defined absorption maxima were obtained in all cases, and absolute values of x”’, the
imaginary part of the high frequency magnetic susceptibility, are presented.

I. INTRODUCTION

BSORPTION of energy from a high fre-

quency alternating magnetic field by a
paramagnetic salt placed in the field was first
demonstrated by Gorter! in 1936. He found that
this absorption can be influenced by the applica-
tion of a static magnetic field either parallel or
perpendicular to the alternating field. He and his
colleagues have carried on an extensive investi-
gation of both types of absorption during the last
decade.?® The perpendicular field case has been
further investigated by Zavoisky*® and by two
of the present authors.®

* This work was supported in part by the Office of Naval
Research under Contract N6ori-43 Task Order III and in
part by the Army Air Forces, Air Materiel Command,
under Contract W28-099-ac-238.

** Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy at the University of
Pittsburgh.
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Purcell and co-workers” have recently demon-
strated that when paraffin is put into a cavity
resonator and a static magnetic field of the cor-
rect magnitude is applied perpendicularly to the
high frequency magnetic field in the paraffin-
filled cavity, energy is absorbed from the alter-
nating field. This absorption shows sharp reso-
nance characteristics and is associated with re-
orientations of the magnetic moments of the
protons in the paraffin. Such nuclear absorptions
are several orders of magnitude smaller than the
absorptions referred to above, which are ionic
in character.

In the earlier experiments?—* which were limited
by the unavailability of oscillators of sufficiently
high frequency,*** the strength of the static
magnetic field corresponding to the maximum
absorption was less than the absorption half-
width, so that the maxima were not very clearly

7E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys.
Rev. 69, 37 (1946).

**% Zavoisky’s most recent work,® carried out at 3000
mc/sec., has only recently been available to us.



