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Theory of the Propagation of Shock Waves from Infinite Cylinders of Explosive*
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.I. he assumption of energy dissipation at a single shock, formulated in an earlier paper, is
employed in the formulation of a pair of ordinary differential equations for peak pressure and
shock-wave energy as functions of radial distance from the source for the shock wave produced
by an infinite cylinder of explosive along which a stationary detonation wave is traveling with
finite velocity. The profile of the wave may be determined by means of an auxiliary integration.
The theory takes proper account of the finite entropy increnient of the fluid produced by the
passage of the shock, and permits the use of the exact Hugoniot curve of the fluid in the
numerical integration of the basic equations.

l. INTRODUCTION

' 'N a recently published paper, ' hereafter desig-
nated LI], a theory of propagation of one-

dimension'al, that 1s, plane, cylindr1cal, and
spherical, shock waves is described. The partial
diA'erential equations of hydrodynamics and. the
Hugoniot relation between pressure and particle
velocity are used to provide three relations be-
tween the four partial derivatives of pressure
and particle velocity, with respect to time and
distance from the source, at the shock front. An
approximate fourth relation is set up by imposing
a similarity restraint on the shape of the energy-
time curve and by utilizing the second law of
thermodynamics to determine, at an arbitrary
distance, the distribution of the initial energy
input between dissipated energy residual in the
Auid already traversed by the shock front and

energy available for further propagation. The
four relations are used to formulate a pair of
ordinary differential equations for peak pressure
and shock-wave energy as functions of distance
from the source. The theory takes proper account
of the finite entropy increment of the Huid pro-
duced by the passage of the shock and permits
the use of the exact Hugoniot curve of the
Huid in the numerical integration of the basic
equations.

* This paper is based upon work done at Cornell Uni-
versity under Contract OEMsr-121 with - the 0%ce of
Scientific Research and Development.**Present address: Central Experiment Station, U. S.
Bureau of Mines, Pittsburgh 13, Pennsylvania.

Present address: Department of Chemistry, Cali-
fornia Institute of Technology, Pasadena, California.

' S. R. Brinkley, Jr. and J. 6, Kirkwood, Phys. Rev. 'll,
606 (1947).

In the present communication, we apply the
1Ilethods of L1j 'to a description of the shock. Wave
produced by an infinite cylinder of explosive
Rlong which R detonation wRve is t1ave11ng with
finite velocity, The results of the theory should
be applicable to the shock wave produced by
changes of finite length up to distances from the
charge which are of the order of magnitude of
1ts length.

2. THE PROPAGATION EQUATIONS

For the present purpose, it is convenient to
write the equations of hydrodynamics in the
Eulerian form,

Dp 1 8 BN,+-—ru„+ =0,
pc2 Dk r Br Bs

DN„/Dt = asap/pBr, —Du. /Dt = BP/pB—s, (1)

~here r and s are the Euler radial and axial
cylindrical coordinates, relative to an origin fixed
in the detonation wave with s-axis coincident
with the axis of the cylinder, N„and u, the radial
and axial components of particle velocity, meas-
ured relative to the moving coordinate system,

p the pressure in excess of the pressure po of
the undisturbed quid, p the density, D the
detonation velocity in the negative s-direction,
and D/Dt is the Euler total-time derivative which
follows the Huid. The Euler sound velocity c is
equal to L(BP/Bp)s]'. Equations (1) are suppie-
mented by the equation of state of the Quid and
the entropy transport equation, DS/Dt =0, the
latter of which we shall not use explicitly. They
are to be solved subject to initial conditions
specified ori a curve in the r, s, t-space and &o the
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( r)BN, ( z)BN,, 18P
I~ —

I +I~ —
I)i ar & t, i az paz

(4)

The solutions of Eqs. (4) are compatible with
the boundary conditions of continuity of pressure
and normal component of particle velocity at the
boundary between the explosion products and
the exterior medium if solutions of the Taylor
type, dependent only on r/) and z/), are valid

~W. J. M. Rankine, Phil. Trans. A160, 277 (1870).
H. Hugoniot, J. de l'ecole polyt. 57', 3 (1887);58, 1 (1888).

'G. . I. Taylor (Reference is to informal memorandum;
more complete citation is not possible (1941).)

4D. L. Chapman, Phil. Mag. ISj 4'F, 90 (i.889); E.
Jouget, Comptes rendus 132,- 573 (1901). See also H. L.
Dryden, F. D. Murnaghan, and H. Bateman, Bull. Nat.
Res. Council, No. 84, 551 (1932).

Rankine-Hugoniot' conditions at the shock front,

p= poN~U)

p(U —u ) = poU,
~~= (P/2) (1/i o+1/~),

where ~ is the specific enthalpy increment
experienced by the fluid in traversing the shock
front, U is the velocity of the shock front, and I„
is the component of particle velocity normal to
the shock front. Equations (2) constitute super-
numerary boundary conditions which are com-
patible with Eq. (1) and the specified boundary
conditions only if the shock front follows an
implicitly prescribed curve r(t), z()) in the r, z, )-

space.
Taylor' has shown that the Rankine-Hugoniot

and Chapman-Jouget' conditions can be satisfied
at the front of a stationary detonation wave by
solutions of the equations of hydrodynamics
which depend only on r/), where r is the Euler
position vector of a point relative to an origin
traveling with the detonation front. For solutions
of the Taylor type, .

D/D) = (I, r/t) a/ar+ (I,,—z/&) 8/Bt, (3—)

and Eqs. (1) become

r)~p ( P~p
I

~.—I
—+I ~ —I—

)i Br

pC 8 0Q&
= ———rN) —pC —,

r Br 8s

( r)BQp ( z)Bsp 1~&
+I ~.——

I)i Br & )i Bz p8r

in the explosion products behind-the detonation
wave.

The shock front in the exterior medium will be
a surface of revolution with a pro61e

z=l (r) (5)
in any r, z-plane. The pro61e of the shock front
has the deferential equation

di /dr = tani), (6)

where 6 is the angle between the tangent to the
profile and the r-axis. Since the distance traveled
by the shock front in the direction of its normal
in time dh is Udt and the origin of the coordinate
system travels a distance DdI, in the negative
s-direction in time Ch, we have

cosi) = U/D. (&)

The normal component of the particle velocity
is given by

Q =8 sing'+ (D —Q ) cos6.

For continuity of the tangential component of
the particle velocity,

u, cos6 = (D —u.) sini). (9)
If the second of Eqs. (2) is combined with
Eqs. (7), (8), and (9), there result the relations,

u, = (p/poD) tani),
D I,=p/poD. — (10)

.A derivative along the shock front, for which
we use the notation d/dR, is

d/dR = (a/Br). + (8/Bz). tani), (11)
where the subscript 0. implies that the partial
derivatives are to be evaluated at the- shock
front r=E.. When this derivative is applied to
Eqs. (10), two new relations are obtained,

(~p't
cot++&I —

I(ar i . Eaz i .
(Bs„l (BQ„)= —poD

I I +I I
tane,

&Br i, &Bz)

(~p'l (~p)
Ear). &az i,

(Bu,) (Bu,)= —poD
I I +I —

I tane, (12)
E Br). ( Bzi.

where () =1—g sec'i), g=1 —d(logU)/d(logP).
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where ap is the initial radius of the cylinder and
where h(p) is the specific enthalpy increment
imparted to an element of Quid traversed by a
shock wave of peak pressure p after the excess
pressure has returned to the value zero. The
energy of explosion released by unit length of the
explosive is, of course, 2orK(ao). Equating K(R)
to the work due to excess pressure per unit area
of initial generating surface performed by the
Huid initially contained in the cylinder of radius
R on the Quid exterior to the cylinder, we obtain

~ 00

2orK(R)dso = ~ p'u' dA'dt, (14)
~ tp(R)

where dA is the Euler area element into which
the Lagrange area element 2mrpdspl„ is trans-
formed by the passage of the shock wave, and
where u is the vector particle velocity and 1„the
unit radial vector. The primed symbols denote
quantities behind the shock front, unprimed
symbols being reserved henceforth for quantities
on the shock front. The integral is taken along a
path of constant Lagrange coordinates rp, sp.

Now dA=2mrdsn, where n is the normal to the
vector ds into which dsp1, is transformed by the
passage of the shock wave and 1, is the unit
axial vector. Since

Bs ds p dr d&p
1„—— 1,,

Bsp dsBsp ds

Eq. (14) can be written in the form,

K(R) = [u Bs/Bs„'o
. ~ to(B)

+ (D u, ')Br/Bso jr'P'dt —(15).

As in [I], we proceed to set up a supple-
mentary relation involving the reduced energy-
time integral, a slowly varying function of dis-
tance from the charge which can be estimated
without integration of the partial differential
equations of hydrodynamics. If K(R)/ao is the
energy transmitted per unit area of the initial
generating surface along the s-axis by the excess
pressure of the shock wave to the Quid initially
exterior to a cylinder of radius ap, the assumption
of dissipation at a single shock formulated in [I]
yields

K(R) = Jt porob[p(ro)hydro, (13)

The energy-time integral can be expressed in
reduced form

K(R) =Fpv,

F= [u,Bs/Bso+ (D u.)Br—/Bso Jrp,

—= —(D log F/Dt). ,
P

f(R, r)dr, r = [t-to(R))/u,
0

f(R, r) =F'/F. (16)

D (Bz) Bu, Bu, Bz Bu, Br
+

Dt E Bzo) Bzo Bz Bzo Br Bzo

D (Br ) Bu„Bu, Bz Bu, Br
+

Df E. Bso) Bsp Bs 8s'p Or Bzp

The components of the deformation-rotation
tensor at the shock front are determined by the
fact that an element of Huid experiences a pure
strain of magnitude po/p —1 in a direction normal

The function f(R, r) is the energy-time integrand,
normalized by its peak value at the shock front,
expressed as a function of R and a reduced time r
which normalizes its initial slope to —1 if p does
not vanish. Elimination of to from Eq. (16)
yields an additional relation, supplementing Eqs.
(4) and (12) between the partia, l derivatives at
the shock front. This set of equations is exact,
involving integrals of Eqs. (4) for a knowledge
of the reduced energy-time function f(R, r). As
in [I], we impose a similarity restraint on the
energy-time curve by the assignment of a value
independent of R to v. The peak approximation,
appropriate for an initial estimate of f(r), leads
to the value v=1. For the asymptotic quadratic.
energy-time curve, v=2/3. As a convenient em-
pirical interpolation formula between the two
extreme values, we have employed the relation

v = 1 —
s exp( —p/po). (1&)

Reference is made to [Ij for a more detailed
discussion of the similarity restraint on the
energy-time curve.

In order to express 1/u in terms of partial
derivatives at the shock front, use is made of
Eq. (3) and of the identities,
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to the shock front as the result of the passage of and where
the shock wave. Then

(Br/Bro), = 1+(po/p —1) sin%,

(Bs/Bso). = 1+(po/ p
—1) cos'8,

(&r/&so). = (&s/&ro). (1=—po/p) sine cosa. (19)

Equations (3), (16), (18), and (19), together with
the Hugoniot equations, finally yield

(Bpq 1 —X )Bpq
cote)

i,Br), X (Bsj,
(Bu, 'l

+PDDi (
cot@

( Br

1 —X (BN„) p vRp2
+ P,Di—i

cot'8= ——— —, (20)
&Bs). R X(R)

where X =p/poD', for the case r/t =s/t =0. (r/t and
s/t vanish at any finite distance from an infinite
cylinder of explosive. )

Equations (4), specialized to the shock front
and to the infinite cylinder, and Eqs. (12) and
(20) constitute six relations between six partial
derivatives, evaluated at the shock front. They
may be solved for the partial derivatives, and an
ordinary differential equation for the peak pres-
sure p as a function of the radial distance R may
be formulated with the aid of Eq. (11).A second
ordinary differential equation relating X to R
may be obtained by differentiation of Eq. (13).
The resulting expressions may be written in the
form,

dX/dR = —RI.(p),

dp/dR= —r (Rp'/X)M(p)C(p, D)

—(p/2R) X(p)C (p, D), (21)

where the functions I.(p), M(p), X(p) are identi-
cal with the expressions given in LIj,

I-(p) = po&(p),

po 2 (1 —g) +G U'
C(p, D)= 1 ——

p 2(1 —g) —G D' —U'

The functions I.(p), M(p), and N(p) can be
evaluated as functions of the pressure and
4 (p, D) can be evaluated as a function of pressure
and detonation velocity by means of an equation
of state of the Huid and the Hugoniot relations,
Eqs. (2). We remark that Eqs. (21) are inde-
pendent of any assumption regarding the equa-
tion of state of the Quid, that they take proper
account of the finite entropy increment of the
Huid produced by the passage of the shock, and
that they permit the use of the exact Hugoniot
curves of the Huid in their numerical integration.

It is evident from a consideration of the
Hugoniot equations as applied to the detonation
wave that the assumption of adiabatic isometric
conversion of the explosive to its products corre-
sponds to infinite detonation velocity. With in-
stantaneous conversion, the dependence of the
properties of the Huid on the axial coordinate
vanishes and the shock wave becomes one-
dimensional. We note that

ULp(") 3'
f(R) = —1 drp

Qp D
(22)

lim(D —+~)C(p, D) =1,
and in this limit Eqs. (21) become identical with
the one-dimensional equations of [I] when the
latter are written for the cylindrical case. Further-
more,

lim(p —&0)C (p, D) = 1,

and the asymptotic solutions of Eqs. (21) are
identical with those for the one-dimensional
cylindrical wave, given in t I].

When p(R) is known from the integration of
Eqs. (21), the profile i (R) of the shock wave may
be obtained by an auxiliary integration,

M(p) =
paU' 2(1+g) —G

4(po/p)+2(1 po/p)G-
&(p) =—

2(1+g) —G

3. THE IMPULSE

The impulse I delivered by the shock wave at
a point of fixed Euler coordinate r is

G=1 —(poU/pc)' g=1 —pd U/Udp,
I=

~

p'dt,
~ &o(~)

(23)
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with

(P'/P) dr*,
0

r'= (t t, (R))/—8. (24)

The partial derivatives at the shock front mere
obtained as functions of the peak pressure by
the solutions of Eqs. (4), (12), and (20). When
these results are employed with the definition
of 0, one obtains

pD' U'y U—
-1/e=

] D' )G
1 p (

X —+ —(1+a)+
R pp E p)

U'
-(1-g)~

~
dP/PdZ . (25)

)2 U2)

We note that in the limit of infinite detonation
velocity, Eq. (25) reduces to the expression
for the one-dimensional cylindrical wave, given
in LI7. For an exponential pressure-time curve,

along a path of constant r and constant s —Dt.
If the excess pressure p' has a negative phase,
the positive impulse is obtained if the time
integral is extended not to infinity, but to the
time at which the excess pressure vanishes. The
pressure-time integral can be expressed in re-
duced form in a manner analogous to the reduc-
tion of Eq. (15).

I= v*P0,

1/0 = —(8 logP'/Bt)vz nt, , t=t—q(a),

the reduced pressure-time integral v~ is equal to
unity, and for the asymptotic linear pressure-
time curve, consistent with the asymptotic quad-
ratic energy-time curve, v*=-', for the positive
phase of the wave. As in [I7, we employ

v' =1—
2 exp( —P/po)'' (26)

as an empirical interpolation formula becween
the two values.

4. INITIAL CONDITIONS

The two constants of integration may be
determined from the considerations given in LI7.
The initial pressure p~, on the generating surface,
is determined by the fact that the Riemann
r-function, computed normal to the generating
surface, initially vanishes in the receding rarefac-
tion wave. In the development of the theory,
the rate of energy delivery has been approxi-
mated by an exponential function of time. For
shock waves from explosive sources in air, it is
assumed that the integral of this expression is
equal to the total energy of explosion, since
experimental evidence suggests that there is little
energy available for second shocks. For shock
waves in water, experimental evidence suggests
that approximately one-half the energy of ex-
plosion is delivered to the first shock. The initial
value of E is readily calculated from these con-
siderations, and the disadvantages of the approxi-
mate nature of this procedure are minimized by
the circumstance that except in the immediate
vicinity of the explosive charge, the shock wave
parameters are not very sensitive to the initial
energy.


