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The anomalous positions in the microwave spectrum of ammonia of the lines originating
with the rotational levels E=3 are explained on the basis of a X-type splitting of these levels.
The splitting is due to a fourth-order perturbation originating with the 6rst-order correction
terms to the moments of inertia, I„')=I»('), and the first-order coriolis correction terms.
The Pauli exclusion principle permits only one of the two components to be present. Thus
in the lower vibration state when J is even only the lower component of the levels %=3 is
present, but when J is odd only the upper component is permitted. Similarly, for ihe upper
vibration state when J is even only the upper component of the levels %=3 may exist while
for J odd only the lower component may exist. Since in this spectrum b,J=AX=O, the lines
originating in levels where J is even will be displaced to shorter wave-lengths, while the lines
originating in levels where J is odd will be displaced to longer wave-lengths. The agreement
between computed shifts and measured shifts is satisfactory.

l. INTRODUCTION nearly the same amount. It is, therefore, clearly
a property of the molecule and not of the nitrogen
nucleus.

The qualitative explanation of the phe-
nomenon may be readily understood and has
been discussed by us in an earlier communica-
tion. ' It is well known that the rotational levels
for which X/0 are each double corresponding
to the two wave functions (that part depending
upon y, the angle of rotation about the sym-
metry axis) s'x~ and e

—'x~. The wave functions
for the levels where X is not a multiple of 3
possess a mixed symmetry denoted by the symbol
B. 'It has been rigorously proved that no per-
turbation, providing it has threefold sym-

metry, can ever remove the degeneracy of such
a pal1 of lcvcls. Slncc the thlcc protons ln NH3
are identical particles, no perturbation whose
origin lies within the ammonia molecule itself can
split these levels apart.

When E/0 and is a multiple of 3, the sym-
metry classification is quite different. One of the
two originally coincident levels will be sym-
metrical (denoted by A~) for an interchange of
any two of the protons while the other is anti-

EVENT measurements' of the microwave
spectrum of ammonia gas have shown that

the lines may be correlated by means of an
empirical f'ormula cont:aining the rotational
quantum numbers J and E. The simplest form
of function consists of a power-series develop-
ment in the variables J'+J and X'. It is found
that such a formula will account accurately for
the positions of nearly all of the lines, the ex-
ceptions being those lines originating in levels
where the number X ls equal to 3. (The hne
J=6, E =6 seems also to deviate from its pre-
dicted position. The reason for the anomaly of
this single line is at present obscure. ) When J is
even and %=3, the observed line possesses a
higher frequency than that predicted by the
empirical formula, while when J is odd it has a
lower frequency. The magnitude of the deviation
increases steadily as J increases. The effect
occurs in the spectrum of N"H3 as well as in
that of N"H3 and the lines are displaced by

' W. E.Good and D. K. Coles, Phys. Rev. 71, 383 (1947);
M. W. P. Strandberg, R. Kyhl, T. Wentink, Jr. , and R. E.
Hilliger, Phys. Rev. '7l, 639 (1947); B. Bleaney and R. P.
Pinrose, Nature 157, 339 (1946). We are also indebted to
Dr. Good and Dr. Coles for the numerical results stated
in this work which were sent to us in a private communi
cation.

2 H. H. Nielsen and D. M. Dennison, Phys. Rev. '72, 86
(1947).
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symmetric (denoted by A&). A perturbation
having the threefold symmetry is able to unde-
generate the levels and split them apart. The
source of a perturbation having the threefold
symmetry lies in the fact that the Hamiltonian
is not separable, except in zero-order approxi-
mation, into one part containing rotational coor-
dinates only and a second part containing vibra-
tional coordinates only. It is customary to
express the Hamiltonian by means of a series
expansion. All orders, with the exception of the
zero-order, contain both sets of coordinates and
hence constitute an interaction between vibra-
tion and rotation. Since these functions are
derived from the properties of the molecule
itself, they must necessarily possess threefold
symmetry about the axis of the molecule.

For the lowest of the vibration states and for
J odd, it will be shown that the perturbation
separates the two levels where E = 3 and that the
upper member of the pair has the antisymmetrical
character A2 while the lower one is symmetrical
or A &. For the next higher vibration state (these
two vibration states constitute the levels giving
rise to the microwave spectrum) the situation is

reversed, the upper level being A~ and the lower

A2. From the Pauli principle and from the fact
that the nuclear-spin wave functions of three
protons have the symmetry characters A & and 2,
but not A2, it is evident that the states which are
A~ as regards vibration and rotation will not
exist, whereas the A2 states will. Thus the transi-
tion J—+J, X=3—+%=3 will consist of a single
line. The displacement of this line from its
expected position will be just equal to the
splitting of one of the levels caused by the
threefold perturbation. (It should be remarked
that in the microwave spectrum of ND3, the
lines of %=3 will not be displaced, but will

consist of doublets. In the case of NDH2 or
ND2H every line will be doubled with the ex-
ception of those where E =0. This splitting
occurs already in zero-order and is a consequence
of the fact that these molecules are asymmetric
rotators. )

2. QUALITATIVE CONSIDERATIO NS

Certain qualitative features of the perturba-
tion may be obtained easily. The perturbed
energy levels will be compute& in the usual

manner by seeking the roots of the determinant

l (J, KIHI J', X') —ERJJ'Axe'I =0,

where (J, X
~

H
~

J', X') are the elements of the per-
turbed Hamiltonian expressed through the wave
functions of the unperturbed system (i.e. , the
zero-order Hamiltonian). The problem is greatly
simplified by three facts. (I) (J, X ~H~ J', .K') =0
unless J=J' (i.e. , H is diagonal in J) and conse-
quently the originally infinite determinant
factors into a product of determinants each with
its own value of J. (2) From the symmetry con-
siderations given earlier (J, X~H~ J, X') =0 un-

less X—X' is a multiple of 3. (3) Since the only
levels which can possibly be split by a threefold
perturbation are those where X itself is a mul-

tiple of 3, it will not be necessary to consider any
of the other levels. As an example consider the
case when J is equal to 3, 4 or 5. The deter-
minant reduces to:

a
=0

A —8
in which the quantities A and 8 are, respec-
tively, . (J, 3~H~ J', 3) and (J, 0~H~ J, 0). They
are large since these elements contain the zero-
order terms. u and b are (J, 3~H~ J, —3) and

(J, 3
~
H~ J, 0) and are small quantities produced

by the perturbing terms.
It has been shown by Shaffer' that for a

molecule of the ammonia type, the first con-
tributions which can be made to a and b are of
third order. It will appear later from the analysis
that in the case of a, the first non-vanishing con-
tribution comes from the fourth-order per-
turbation.

The roots of the secular determinant may be
designated as E3+, E3 and Eo. E3+ and E3 are
very close together and differ only slightly from

A, while Eo is nearly equal to B.An elementary
study of the determinant shows that 83+—A or
83 —A will depend upon a to the first power
but only upon b' as well as upon higher powers
of a and b. Since b is already at least a third-
order term, its influence upon E3+ and E3—will

be, at best, only of sixth order. It may therefore

~ W. H. Shaffer, J. Chem. Phys. 9, 607 (f941).
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be neglected. ' In that case the determinant
becomes very simple and the two roots are,

E3+=A+a, E3 =A —a.

The stabilized wave functions (those parts
depending upon (2) for E2+ and E2 are, respec-
tively, $2+= (e2(~+e 2"~) and p2

——(e2(~ e—"~)
The symmetry properties of these wave functions
may be readily obtained by performing a trans-
formation in which two of the hydrogen nuclei
are interchanged. ~ It is found that when J is an
even integer f2+ is symmetrical (has the character
A &) and f2 is antisymmetrical, or A2. If J is odd,
the symmetries are interchanged and $2+ is A2
while P2

—is A).
It has already been pointed out that the wave

functions of the protons have characters A ~ and
E, but not A2. The total wave function must be
antisymmetric or A2. Thus for the lower of the
pair of vibrational states giving rise to the inver-
sion frequency and for J even, only the state
defined by the wave function f2 exists. For the
higher of the two vibrational levels only $2+
exists. The observed absorption line will there-
fore be displaced towards higker frequencies by
the amount 2a. The analysis will show that a is a
positive quantity and is a function of J. In a
similar fashion one can show that when J is odd
the observed line will be displaced towards loner
frequencies. These qualitative results are in
complete agreement with the experimental ob-
servations.

3. ANALYSIS OF THE SPLITTING OF LEVELS WHERE %=3
The problem of the vibration-rotation energies of the pyramidal XY3 molecule has been studied

by Shaffer' who expanded the quantum-mechanical Hamiltonian to include second-order terms and
evaluated relations for the energies to this approximation. As has been mentioned, Shaffer demon-
strated that to second order the energy matrix contained elements only along the principal diagonal.
This is equivalent to stating that to this order the molecule remains a symmetric rotator and that
none of the degeneracies in X are removed. It is therefore necessary in our case to investigate the
energies to approximations beyond the second. We have, moreover, seen that no degeneracies in X
except for those states where X is an integer equal to a multiple of 3 can be removed by any per-
turbation which lies within the molecule itself. It is only necessary to consider, therefore, the elements
(K= ~3

I
K= %3) to the energy in a given approximation. It has been pointed out that elements

of the kind (K = &3
I
K =0) may be neglected, since they can only introduce exceedingly high order

terms. Since the expansion of the quantum-mechanical Hamiltonian contains the angular-momentum
operators at most quadratically in any approximation the elements (K = &3

I
K = w3) cannot arise

before in third order of approximation. It is readily shown that these will be equal in nth order to:

(r, Z'= +3IH "lr', K')(r'K'IH "Ir"K") .(r'" "K'" "'IH'"'I r, K= W3)=ZZ
T T' T(22 —~) (hc)" "cv(r, r')co(r, r") (d(r, r("—")

(r K=+3IH'"lr' K')(r'K'IH
I
r", K") (r" K" IH'( lr K= T3)+EX

T (kc)" 2(2(r, r')~(r, r") (d(r, r(" ")
(3)(. K=~3IH I(" K')(' K'IH'"Ir" K") ("" "K'" "IH'"Ir K=~3)+EX + 4 ~ ~

T(n -2) (l)c)" 2(g(7, 7.')~(r, r") ~ ~ ~ (d(7., r(" 2))

(r K = ~3 IH())
I

r' K') (r' K'IH(&)
I

r" K").. . (r(~—2)K(~—2) IH(2)
I
r K = ~3)+EX + 1 ~ ~

T (n —s) (I2c)n—2~(r r )~(r r ). . .~(r r(n —2))

where v is made to embrace all the vibration quantum numbers.
D

'Although our example was for J=3, 4 or 5 in order not to introduce the complication of X equalling higher
multiples of 3, it is evident that the argument may be extended to include any value of J.

The total wave function is a product of the vibrational wave function p„and a rotational wave function containing
the quantum numbers J, E. and M. Since the symmetry cannot depend upon the magnetic quantum number M it
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ShaRer made use of a method whereby the quantum-mechanical Hamiltonian is transformed by a
contact transformation such that the erst order transformed Hamiltonian, II(.")', will contain no
terms to second order except, the coriolis terms arising from the twofold degenerate oscillations. He
does not, therefore, state explicitly the quantum-mechanical Hamiltonian before transformation,
but gives only the erst- and second-order transformed Hamiltonians. Since these are good only to
second order it becomes necessary here to expand the quantum-mechanical Hamiltonian to the
second order of approximation. This may be accomplished by using the method of Howard and
Wilson, ' or what is actually simpler, the method of Nielsen' for the general polatomic molecule.

Retaining the notation of Shaffer except in minor respects we obtain

II~2) = (Il/2) { Q g,e(p.2/i)2+q, 2)+ Q l), ke(p2 12/I42+p2 22/jz2+g2 12+q2 22) }

+(i/2) {(I'+I'2')/I**"+(I'.'/I**")} (4a)

)e[(40'/1e))e) ~g')e, 2pe (4t)2/4e) ) ~g 12 2]+$'24[(402/4&4) '(g4, 2p2, 1+424 1p2, 2)
i=1, 2 k=2, 4

—(~4/~2)'*(v2, 1p4, 2+v, 2p; 1)]}(p./I*.")+{ 2 2 k'2[(~'/~2)'*4I2. 1p' (~./~')—'rf p2, 1]
i=1, 3 k=2, 4

52, 4[(4e)2/&4) (Q4, 1p2, 1 g4, 2p2, 2) (4e)4/4e)2) (g2, 1p4, 1 Q2, 2p4, 2)]}(I 2/Iee )

(f22/&1.)-',
-

{2 [(I (e) 1I (e)) e42 2p.(I (e)),](I2 2+ jD 2)/(I (e)) 2
}g,

i=1, 3

+-: Z V /~.):{(I.. ):~.(I. -I:)/(I.. ) }&:.,
k=2, 4

--' 2 (I4'/l1 )'{(I ")'~ (I'.I'.+I'.I'.)/(I**")'}42.
k=2, 4

+2 r, (&'/~')'{(2I* ")'(l —I**"/2I.*")~'(I'I'.+I'*P.)!(I.*")(I*.")}Q»
4

+ 2 2 (&'/&.)'{(».*")'(l—I*."l».*")~'(I'*I'*+&*I'*)/(I.*")(I*.")}92, 1+ i'1 (4h)
k=2, 4

2 { 2 (I'/&")'(3&"I=*"/4I*")(&, 1'+a; 2')+3 2 (I2'/l1*')'[(l —(I-"/2I**")') ~'
k=2, 4 i=1, 3

—(p/42)(I. ,~e&/2I &e)):]212'}(I'2+I' ')/(I ")'—-'{Q2 ()24/X22)*[42 —3(I.."/2I**")&2'

+4(I,."/2I..")262 ' —(I,."/2I..")262' —(l +(I.."/2I.*")') &24&2 —4)24] (q2, 1'+g2, 2')

—3Z'(I'/4') '~4*'}(I'./I*.")'+ 2 Z2 ()2'/l1") '*

{2&2'(l —I**"/2I.*")1I2, 1'

[g,'2(I (e)/2I (e)) (] 2+ $ 2) ]~„2}(I2 /I (e)) 2+1 p„(i24/) 2) e

X {2&2 '(l. —I.,"/2I*.")q2, 2' —[&2 '(I.."/2I..")—(4, 1'+4, 2'")]g2, 1'}(I',/I**"&)'

—
2 r. (I4'/~2')'{2~~''(& —I-"/2I-")+[~"(I-"/2I.*") (6 1'+—42'.)]},

k=2, 4

Xg2, )g2, 2(I'.I',+I'„I'.)/(I..")'+ V2+ (4c)

To test the relation H against computational errors, we may specialize it for the case of the
planar XF3 model by letting the height of the pyramid go to zero, i.e. , then I„&')= 2I„&'&. Inspection
reveals that (4) reduces to the relations (14) in the work of Silver and Sha8er. 2

mill be convenient to chose M=O. In that case, one has O'=P„sin'gF(cos8)f{q). %'hen J is even, F(cos8) is an odd
function of cos8 while for J odd it is even. For the level F~+, f(g) =cos3q while for F3, f{q)=sin3q. The process
of interchanging two of the protons may be accomplished through the following steps. (1) Invert the molecule. For the
lowest of the vibrational levels P,~p, while for the higher one p,~—p„. (2) Let 8-+x-8. Clearly F~—F when J is
even and F~Fwhen J is odd. (3) Let q ~x —q. In this process cos3@ —cos3q, but sin3y sin3q. (4) Let &~~+@.The
angle f is the third Eulerian angle and does not appear in the wave functions since M has been set equal to zero.

E. B.Wilson, Jr. and J. B. Howard, J. Chem. Phys. 4, 262 (1936).' H. H. Nielsen, Phys. Rev. 60, 794 (1941}.
8 S. Silver and W. H. ShaGer, J. Chem. Phys. 9, 599 (1941).



It is convenient to replace the coordinates gk, I and gk, 2 by rk cos gk and rk singk, respectively, and
the conjugate momenta, po, i and po, o, by their equivalents (cosxop~o —(singo/ro)p*o) and (singop~o

+(cosyo/ro}pzo) where pro= —ibad/Bro and pxo= i7i—8/8go When this is accomplished the relations
become:

IIo=(5/2) { p X,'(p'/5'+q')+ Q Xal[((1/ro) pporop. o)/A, '+( p~ o'/r o')+r „&']I.

+(1/2) {(&*'+I'.')/I**"+(&.'/I*'&'i) I (»)

{ 2 (oE'./2) s'" [(~'/~. )'«P' (~./~—*)'0'(P &.+op'&lr. )j
S

t

(o'$o, o/2)e '«+" '[(ooo/oo4) lr4(p. o i px o—/ro) —(&ool&oo)'*ro(pr4 op~—o/ro) $ I (P. oP„)/—I,&'&

—{ 2 (o'8*'/2)s *"[(~;/~o)'*rop;—(~o/~;)'g, (p o
—op*o/ro)]+(ob, o/2)s*'&x+«'

$ —173
k=2, 4

X[(-./-. )-:r (p"+ P'.l")-(-/-. ):"(P +'P*/ }jI (I.+'I,)/I..& &

—Y'/2) { 2 2L(I**"—lI-")n:—oP(I.*")"j(V'/l '') I (&*'+I'.')/(I'*")."

+(&'*/4)(I**&'i)'{ 2 (~'/l&i')r&:e*"(&.+o&.)'/(I*.")'+ 2 (~i!l&i')ros *"'(&*—o&o)'/(I**")'I
k=2, 4 k=2, 4

+(&'/4) (2I**")'(1—I=*"/2I**"){(7 /»')r s[(I'.—~'I'.)&.+& (I'*—~'I'.)j/(I'*")(I *")I

+( loi /4}( 2I.„'&&)'*(1 I &'&/2I —&'i) {(yo/Xyl)r&e '~

~[(I'*+I'.)P +I'*(I'*+ I'.)j/(I**")(I.*")I'+ 1'+ (~b)

'~"+ Z ")(~*+~')/(I**")'+(r. &*&"+ Z &""(~*/I*."}
i=1, 3 k=2, 4 s=l, 3 k=2, 4

+ ' 2 (&'/& )'r 's'*"[(~v '/4) (1—I**"/2I**")j[(I'.+o& ) '/(I**")'j
k 2„4

+4 2 (&'/1 o')'r"s ""[(37"/4}(1—I.."/2I-")j[(&.—o&.)'/(I**")'3+1'o+ (~c)

In the foregoing relations the constants ni and p& take the values n and P, respectively, defined by
Eqs. (10) in reference (3), while no and Po take the values P and n, respect—ively. Similarly, 8o and

y2 assume the values 6 and y in Shaffer's notation and 64 and y4 take the values —y and 6, respectively.
The subscripts k and k' take the values 2 and 4, but & 4k'. The quantities e;, b;, etc. , are constants
which we shall not state explicitly since they do not enter the 6nal result.

It Is readIly vcl Iflcd that H~" w111 have non-vanlshlng IHatr1x components of thc kind

(v;, vg„4, vo, 4, X { v;+1, vo+1, 4&1, vo, lg:, %&1),
(v,', vo, to, vo, lo, X

{ v,', vo& 1, 4&1, vo +1, 4& 1, X%1),
(v6 voo 4& vo'~ 4', It { vie 'A~ 11 4~ 11 vo'~ 4'~ It ~2)1

(v&~ vo~ 4i vo'i to'i It { v' 1 vo' 1
4' 1 vo' i 4' r It)

where lk is a quantum number characterizing the angular momentum associated with the degenerate
vibration ~k and has the values vk, vk —2, ~ . .1 or 0. The last type of matrix component stated above
originates with the potential energy terms t/'1 which is given by ShaR'er, but is not. stated explicitly
here. Except for the erst two terms, which are diagonal in X and therefore of no interest here, the

'The last two terms in Eq. (Sb) may be neglected from here on. They have matrix components of the same kind
as the erst term in (5b) but are of the order (8,/~k)& times these. The factor (8,jco@)& is, of course, small,
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non-vanishing matrix components of H2 are the following:

(v; vg, ly, vy, lg, K vi, vy&2, ly&2, vy, ly, K&2),
(vi, va, 4, va'~ 4'y K vii vs~ 4~2~ vs'i 4'~ K~2)

and (v;, v~, l~, v', tk, K Iv„', v~', l~, v~ ', t', K), the last of these originating with the quartic terms of
the potential-energy function.

We are interested in making the computations indicated here only for the normal-vibration state,
i.e., where the vibration quantum numbers v, , v~, l~ are all equal to zero. To make the calculation for
states beyond the normal state would be so laborious as to be hardly practicable and it is doubtful,
moreover, that the analysis presented here would be ~alid in highe'r states. If the relation (3) is
specialized for the case where n = 3 (i.e. , third approximation) it is readily seen that only the first
te™may yield matrixelements of the kind (v, , v~, 4, vq, tq, K= ~3IH&'& Iv, ', v~', lq', vq ', tq ', K= ~3)
and these must originate with the third type of matrix components of H('), i.e. , the elements
(v, , v~, lq, vq, Iq, KIH&'&Iv;, vq~1, /q~1, vq, tq, K~2). It is clear, however, that with v, =vq ——lan=0
the quantum numbers v, ', v~', t~' cannot. all be equal to zero. There are, theref ore, no
(K= ~3IH&3& IK= ~3) elements of third order of magnitude.

Turning now to fourth order we specialize the relation (3) for the case N =4. In this case elements
of the type (v;, v~, 4, vi, t', K = ~3

I
H&'& Iv, ', vi', I&', v~ ', 4 ', K = ~3) can originate from all the terms

in the expansion. It is quickly verified, however, that none but the first terms are significant here.
The latter terms are "cross product" terms between JJ(') and H(') which to give elements

( K=+3IH&"
I

K=+3) must arise with the matrix elements ( KIH"'I K+2) and

( KIH& &I K~2). It will be seen from the character of these, however, that if v, =vq=lq=o
the quantum numbers v, ', v~' and 4' cannot all be equal to zero. They do not, therefore, contribute
to the energy in fourth order.

There are essentially only two different kinds of contributions of the first type which are caused
by "cross product" terms of H&'&. There may be (v, , v&, t&, v&, Ii, K= ~3IH&" Iv, ', v~', l&', v& ', I" ',
K=~3) elements from ( . KIH&"

I
K+2) occurring three times and ( KIH"'I K)

occurring one time. Inspection reveals that if v;, v~, l~, etc. , are equal to zero, then, as before, the
values of v, v~', l~', etc. cannot all be equal to zero. Such contributions may therefore be neglected
for the normal state. The only ™'n'ngtypes of contributions originate from (v, , vi, I&, vz, t&,
K

I
H"'

I v;, v„', l~&1, v', t', K&2) elements occurring twice with (v;, v~, t~, v&, t&, K
I

H&" & Iv;&1„v~",
lq~1, v~, I~ K~ 1) elements also occurring twice and from (v;, vk, l~, v', l~ K

I

H&'&
I
v, , v~', l~~1, v", 4,

K~2) elements and (v, , v„, t&, v&. , I„K
I
H"'

I
v, , v~, 4, v~ ', lq ~1, K~2) elements each occurring once

with the elements (v;, vq, lq, vq, tq, KIH&'& Iv, +1, v„', I„+1,v„., 4, K+1) and (v, , vq, 4, vs, 4,
K IH'" Iv;&1, vq, lq, vq ', l~ ~1,K~1) each occurring once. These present a possibility since in the one

type of element l~ and X vary in the same sense while in the other type they vary in the opposite
sense. Thus the original and final X values may be X= ~3 and X= ~3, respectively, while v;, vk, l&„

etc. , and v, ', v&', lz', etc. , are all equal to zero. Typical examples of such products which go to make

up the sum of terms constituting (3) are these (0, 0, 0, 0, 0, K=3IH"'Io, 1, 1, 0, 0, K= 1)
(0, 1, 1, 0, 0, K=1IH&»IO, 2, 2, o, o, K= —1)(o, 2, 2, o, o, K= —1IH&»I1, 1, 1, o, o, K= —2)

(1, 1, 1, 0, 0, K= —2IH&" Io 0, 0, 0, 0, K= —3) and (0, 0, 0, 0, 0, K=3IH&'&I0, 1, 1, 0, 0, K=1)
(0 1 1 0 0 K=IIH'"I0, 1, 1, 1, 1, K= —1)(0, 1, 1, 1, 1 K= 1IH''I1, 1, 1, 0, 0, K= —3)
(1, 1, 1, 0, 0, K= —2IH&'& I0, 0, 0, 0, 0, K= —3). We have thus the rather surprising result that to
this approximation the splitting is independent of the anharmonic constants in the potential energy.

The actual evaluation of the matrix elements (0, 0, 0, 0, 0, K = &3
I

H&'& I0, 0, 0, 0, 0, K = %3) is
a very tedious and laborious task. This is particularly true since, while the matrix elements of e+'xr

have been given by ShaEer, &o the corresponding elements of e~'&(f'„+ipx/r) have not been investi-
gated. The matrix elements required in this calculation have all been evaluated here in the usual

' W. H. Shaffer, Rev. Mod. Phys. 16, 245 (1944).



AM MONIA MICRO tA'AVE SPECTRUM

quantum-mechanical manner, i.e. ,

(vg„ ts
~

vs', Ls') = )1 +.„, && f(rs, f&.s, &&(„ f&*&,,)4.s', &g,
'd r.

where the functions +„,~, used are the ones given by Dennison. "These have already been normalized.
No attempt will be made here to set down the details of this calculation. We shall point out only

that in the sum of terms which comprise (3) there are twenty components where (v, , vs, ls, vs, 4.,
E

~

H&'&
~
v;, vs', 4&1, vs, ls. , %&2) occur together with the elements (v, , vs, ls, vs, ls, X

~

H'"'
~
v, &1,

vs', is~1, vs', lt.', %&1), ten components for each value of It, and of the components where the
elements (v, , vs, ls, vt. , 4, X &H "~ v;, vs', l~~1, vs. , l&, , X&2) and (v;, vs, ls, vs, fs, X

~

H '
~
v, , vs, ls, v&, ',

ls %1,%+2) occur together with the elements (v;, vs, ls, vs, ls, X H
"&

~
v;&1, vs', is&1, vs, ls, %&1)

and (v, , vs, ls, vs. , ls X
~

H&'&
~

v„+1,vs, ts, vs ', 4 &1,K~1), each occurring once, there are twenty-four.
When a common denominator for all these components is found and they are all added together the
following surprisingly simple relation for. the elements which lie oH of the principal diagonal of the
energy matrix is obtained:"

(0, 0, 0, 0, 0, K = ~3
t

H&4&
~
0, 0, 0, 0, 0, Z = ~3) = Q (I„&'&/I„&'&)(h'/8&r'I„. &'&)

s=l, 3

X[(B/ .)'&& +(B/ -)'v&' ]'LJ(J+1)1[J(J+1)-2]LJ(J+1)-6l (6)

For the purpose of computation (6) is more conveniently written in the form:

(0, 0, 0, 0, 0, X= &3
i
H&4&

i 0, 0, 0, 0, 0, X= ~3) = (I„&'&/2I„&'&)(1+I,,&'&/2I„&'&) (hs/Sm'I„&'&)

X [(B./o&s) '+ (B./&s4) ']' I (ns'/asm) /L (4ns'/u sm) + (n t/ps —ns/m) ']}

X {[J(J+1)][J(J+1)—2][J(J+1)—6]}. (6')

The actual energy values of the molecule will, therefore, be the same as those given by Sha6er'
for all states except those where

~

K
~

= 3. In all cases save these the energies are given by the elements
along the principal diagonal and for the cases where

~
It

~

=3 the elements may be so arranged as to
form a little box with two rows and two columns each. These sub-matrices may then be diagonalized
independently and the energies will be found to be:

Z(~It~ =3)=Z(.)~.
E(s) being the values for the energy states where If =3 given by Shalfers and s has the values (6').
The actual separation in cm—' between the component levels will evidently be:

Dv = (2e/hc) = (I„&'&/I,,&'&) (1+I„&'&/2I &'&)B,[(B./a»)'+(B, /o&4)']'{ (ns'/asm)/[(4ns'/ysm)

+(nt/&as —ns/m)']} {[J(J+1)][J(J+1)2][J(J+1) 6]. (8)

It has been shown in the introduction that (8) is actually the amount by which the measured lines
will be displaced.

4. NUMERICAL RESULTS

The quantities which occur in the relation (8) may all be arrived at from the experimental data
on the ammonia and deutero-ammonia spectra and we shall make the calculations for these two
molecules where the nitrogen atom is taken to be the more abundant N". The frequencies co2 and

"D. M. Dennison, Rev. Mod. Phys. 3, 380 (1931).» This is a special case of the iZ
~
it&&I) matrix elements which may be shown to be

P(J+1)—E(E+1)]&IJ(J+1)—(E+1)(E+2)g&.-
1 J(J+1)—(E~S)(E~6)]&.
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TABLE I. Numerical values for rotational constants for
NH3 and ND8.

TABLE II. Numerical values of the E-type splitting and
line shifts.

I»&s) X104o g-Cm2 I8*&~) )(104o g-Cm2

2.816
5.448

4.437
8.868

9.941
5.138

A&4 for these molecules have been determined with
considerable precision by Dennison" who has
made corrections to the observed frequencies for
the anharmonicity of the oscillational motion.
His values are co2 ——3622 cm ' and ~4 ——1685 cm "

fo1 NH3 and a)2 = 2670 cm and +4 = 522 1 cm
for ND3. From these he has evaluated the con-
stants

"D.M. Dennison„Rev. Mod. Phys. 12, 175 (1940).
'4G. Herzberg, Infrared and Raman Spectra (D. Van

Nostrand Com. pany, Inc. , New York, 1945), p. 437.

k„kg, k3, (I„'/2I„')'n„(I„' /2I„")n&, ns

retaining Shaffer's notation. We need only the
last three of these constants and for these he
obtains

(I &'&/2I ~'&)'n, =10494
(I„&'/2l„.~'&)n2 ——4.168

and na ——4.098X10 dyne/cm.
The values for the moments of inertia and of

I3.=h/8x'I„'&c are known with considerable
accuracy for the NH3 and ND3 molecules from
their spectra. The values for these are set down

in Table I and are those given by Herzberg. "
When these constants are substituted into rela-

tion (8) one obtains the values for the X-type
splitting given in Table II. Here also are given,
for various J values, the shifts of the lines

originating in the levels where X= 3 as measured

by Good and Coles' as well as the shifts predicted
by this theory. In Table II are also given the
predicted shifts for the E =3 lines in ND3.

NH3
J Calculated Measured

value Av (Mc) shifts (Mc) shifts

0.26
1.80
7.21

21.63
54.27

—0.26
1.80
702

21.63—54.27

—0.30
1.76
70 17

22.3

ND3
Calculated

hv (Mc) shifts (Mc)

0.03 0.03
0.24 0.24
0.95 0.95
2.85 2.85
7.14 7.14

5 It may be shown that I~,(') = I»(') = ph0 +—,'I„('),
where h0 is the height of the pyramid and p is the reduced
mass 3mllI/(3m+ M). The moment of inertia I„(')depends
only upon the masses of the hydrogen atoms and their
distances from the center of gravity of the H3 triangle. It
remains the same for the N'4H8 and the N"Ha molecules
and for the N14D8 and N"D3 molecules. Also the pyramidal
height, h0, remains the same throughout.

The values of the constants required in (8)
to make the same calculations for the N"H3
and N"D3 molecules have not been evaluated
from the experimental data. The values of co2

and ~4 for these molecules can, however, be
calculated from a knowledge of the constants
k1, k2, k3, etc. which have been evaluated.
Similarly, the rotational constants for the
N "H3 and N "D3 molecules have not been deter-
mined from experiment. They can, nevertheless,
be calculated from geometrical considerations. "
It may be shown, however, that the constants
for the ammonia molecules with the isotope N"
are the same within a fraction of a percent as
those for the molecules with the ordinary nitrogen
atom. We shall, therefore, not here give the
shifts of the lines for these molecules since within
the limits to which these calculations may be
regarded as accurate they will be the same as
those given in Table II. This is particularly true
since (4n2'/p~m)&&(n&/y2 —na/m)' for all these
molecules so that the constant (4n2'/p2m) /
L(4n2'/p&m) —(n&/p2 —n3/m) '] approaches unity.


