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The Double Current Sheet in Diffraction
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(Received August 1, 1947)

The electromagnetic radiation from an aperture in a plane-conducting screen is identical
with that which would exist if screen and aperture were replaced by a double current sheet
fitting the aperture. The current density i is equal and opposite in the two layers of the sheet
and is determined by the original tangential electric field E over the opening so that 8 is
—~jcopbi. The distance 8 between layers is infinitesimal. A rigorous. expression for the vector
potential of the emergent radiation in terms of B is given. This is the expression used by
Bethe in finding the diffraction from small holes. It is shown to provide a simpler method
of getting the results of Stratton and Chu for rectangular openings. It is then applied to. the
calculation of the excitation of a rectangular wave guide by a coaxial line termination in one
side. An expression for the output resistance is given.

&HERE is a simple but apparently little
used method of setting up certain electro-

magnetic boundary value problems. It applies
to the radiation from apertures in plane-con-
ducting surfaces such as the wall of a rectangular
wave guide. The uniqueness theorem" for electro-
magnetic waves, when modified to fit the steady-
state condition, asserts that an electromagnetic
field is uniquely determined within an empty
bounded region by the values of the tangential
component of the electric vector (or of the
magnetic vector) over the boundary. Evidently
with conducting boundaries the electric field,
whose tangential component over the screen is
zero, must be used because the tangential mag-
netic field, which is not in. general zero, is
unknown. To use this theorem we need a source
giving a tangential electric field that has any
desired arbitrary value over an area S of an
infinite plane and is zero over the remainder.
Consider a thin plane, double current sheet in
which the distance 5 between layers is very
small and the current densities in the two layers
at any point of the sheet are equal and opposite.
Such a sheet, with the thickness exaggerated,
and with the dotted portion cut away along a
line of How is shown in Fig. 1(a). If the sheet is
uniform in the direction of How all the current
passes around the edge, but if it is stronger in
the center, as shown in Fig. 1(b), part will turn
back before reaching the edge. Because the sheet
is very thin the external magnetic induction i

negligible compared with its value 8; between
layers. Hence an application of the magneto-
motance law to the rectangle abed, which is
normal to i and fits closely a section of the upper
layer, shows'b B; to be ILti. The changing Aux
X=B;bdl through the rectangle a'b'c'd' produces
an electromotance dN/dt= J'—E ds around it.
As 8—+0 half of this appears along the side a'b'

so that the electric field strength 8 just above
the sheet is —~j~IJ,bi. Clearly a double current
sheet giving any desired values of E can be built
up out of infinitesimal solenoids of cross-sectional
area bdl and length dc whose magnetic moment is
n X iMldc or 2(j &up) 'nX—EdS. It is evident from
symmetry that E is normal to the plane of the
sheet outside the hole's boundaries. The vector
potentiaP at 2' of the radiation from a small,
oscillating current loop is normal to the loop
axis and proportional to the sine of the angle
between this axis and the radius vector r from
the loop to P. Thus for the diffracted field, in
m. K.S. units, the vector potential is

r (p~ —j)(nxE) xr
e~"' e—»"dS (1)

S r'
A=

2%M

where rl is a unit vector in the direction of r,
P is the wave number and a& the angular fre-

quency. The electric and magnetic fields are
given by

(2)E= —jcoA, &=V XA.

~ J. A. Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, Inc. , New York, 1941), p. 487.

Throughout this paper m. K.S. units are used and
Z= (—1)~.

'W. R. Smythe, Static and Dynamic Electricity (Mc-
Graw-Hill Book Company, Inc. , New York, 1939), p. 477.
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If 4 is written for r 'e—»" then the factors
multiplying nXE in the integrand can be re-
placed by VC. In this form the integral is seen
to be twice one of those obtained by Stratton
(reference 1, p. 466) by direct integration of the
field equations. It is the only one used by Bethe'
in his rigorous calculation of the diffraction from
a small hole. When the correct value of E is used
the expression is exact. This double current
shell replaces the fictitious magnetic currents
and charges used by Stratton.

The few cases in which the value of E over
the aperture can be calculated rigorously are
those in which at least one dimension of the
aperture and the thickness of the screen are
small compared with a wave-length. These in-
clude small circular holes in thin sheets and
narrow slits. The first of these has been worked
out by Bethe' who assumes that near the hole
phase differences are negligible so static field
values, multiplied by e&"', can be used. He shows
that any incident wave can be broken up into
an electric field Z„normal to the sheet, and a
magnetic induction 8, tangent to it. Both static
problems are very simple in the spheroidal co-
ordinate system (reference 2, p. 156) $, I', g in
which the sheet is )=0 and the hole of radius c
is (=0. Positive values of g cover the space on
the incident side and negative values that on
the emergent side. The electric field component
in the hole in the plane of the sheet due to 8, is
radial, and is found from the potential function
(reference 2, p. 160, Eq. 6) for a sheet bounding
a uniform static field, thus

side of the hole is

@80 28' 1 BEy

&281 r o s'(c' —p') ' /co Bx

This relation between 8, and B„on the emergent
face of the hole follows because BE„/Bx equals
the time derivative of the flux leakage BX/Bx or
—8, in the double current sheet. Integration
gives

Ey —(22(uB——./s') (c' p') &. — (4)

Insertion of (3) and (4), suitably weighted
according to polarization and incident angle, in

(1) gives Bethe's results.
W'hen the tangential electric field over the

aperture is unknown, distant radiation patterns
can usually be found with considerable accuracy
by using its unperturbed value. This is sur-

prising in view of Andrews'4 measurements on
circular apertures. Unlike Kirchhoff's method
this makes no assumption that the magnetic and
normal electric fields are unperturbed. Neither
does it neglect the currents and charges on the
emergent face of the screen. For these reasons
it gives good results where Kirchhoff's formula
breaks down at wave-lengths comparable with
the aperture dimensions. An example proving
this was worked out by Stratton and Chu' whose
results compare favorably with such rigorous
solutions as are known. Their results for the
distant radiation from a rectangular aperture in

a thin plane-conducting sheet, upon which a
plane wave impinges at any angle, can be derived

1 BV
P

hg Bg r=p

Ec —Ep
(3)

s kg r=0 s (c' —p') &

It is easily verified that a scalar magnetic
potential 0 that gives a uniform induction 8
parallel to the sheet when g is + ~, zero induc-
tion when f is —~, and makes B everywhere
tangential to the sheet is

pII =&"DI' '(~I)+ 'Q 'UI. )-7&"(f) - ~

= -(a~/~) Pal+tan-~I. +I./(&+ I') 7.

The normal component of B on the emergent

3 H. A. Bethe, Phys. Rev. 66, 163 (1944).

Screen
7PP/ZZA

Screen

FIG. 1. Schematic diagram of the double current sheet.

4 C. L. Andrews, Phys. Rev. 71, 777 (1947).
~ J.A. Stratton and L. J. Chu, Phys. Rev, 56, 106 (1939).
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B

A straightforward integration gives

2' cosn sing sin(-,'Pa) sin(-,'Qb)
s/'(rat —ps) ($)

RP

A ~ = —Ag cot@ cos8. (6)

FEG. 2. Relations for an incident plane wave. (The notation
—',d should read ~&a.)

much more simply by using the double current
sheet.

Consider a plane wave whose electric vector
lies in the plane of incidence and which is incident
at any angle a on an aperture in the z=0 plane
bounded by x= ~-', a and y= ~-', b, as shown in
Fig. 2. Let x~ and y» be the coordinates of an
area element dS in the aperture, and let x and y
be those of the field point P at a distance z from
the screen. Let r be the radius vector from dS
to P and R that from 0 to P. Then if R»a and
R»b, we may take r parallel to R and

r =R—xy cosp sine —yi sing sine.

The tangential component of E varies in phase
at z=O, so that

Z~ ——B cosa expj(&vt —yi sinn).

Since nXE~ parallels the x axis, (nXE~) XR is
normal to DP and R, parallel to the yz plane
and proportional to sino'. Thus

(n XE~) X ri =Z&(—jcos8+k sin8 sing).

Substitution of these values in (1) gives A„and
A,. The spherical components are given by the
equations

A ~
——A„sing cos8 —A, sine, A ~ =A„cosp, A„=0.

If we write

I'=P cos@ sin8, Q=P(sing sin8 —sinn),

the resultant expression for Ay is

pE cosn sin@ — p+& p+&'
sir «d~i il s/s»rIy&.

2 ll'4lR —gg

Stratton and Chus obtained this formula by quite
a different method which involved the super-
position or "reflection" of two solutions of
Maxwell's equations, each of which assumed
unperturbed electric and magnetic fields over
the openings. This was necessary to eliminate
the tangential electric field over the screen, and
is exactly equivalent to discarding the three
integrals derived from the tangential magnetic
field and doubling the remaining integral. Six
figures~ comparing their formulas with the rigor-
ous ones of Morse and Rubenstein' for a slit

FIG. 3. Coaxial line attached to a rectangular wave guide.

show that the initial assumption of an unper-
turbed tangential electric field gives surprisingly
accurate results. They also show the total failure
of Kirchhoff's formula, which ignores polariza-
tion when the slit width is much less than a
wave-length.

It has been shown that the double current
sheet yields correct known solutions; it can
now be applied to a new problem. Suppose that
the propagation space of a coaxial line, which has
internal and external radii ri and r2, terminates
in an annular opening whose center is at x=d,
y =0, z =c in the bottom of a rectangular wave
guide closed at z=0. The walls of the guide are
at x=O, x=u, y=0, and y=b and the frequency
is such that only the 1AM mode is transmitted.
The arrangement is shown. in Fig. 3. At some

6 P. M. Morse and Pearl J. Rubenstein, Phys. Rev. 54,
898 I;1938).



positive value of s the transmitted wave is
completely absorbed and we desire to find the
output resistance of the coaxial line. To make
B„zero when z is zero requires tw o double
current sheets of opposite sign, one at s =c and
one at s = —c. Each consists of a Hat torus in
the xs plane of a guide bounded by x =0, x =a,
y = —b, and y =b. To calculate the excitation of
the TE~O mode, whose electric field is everywhere
parallel to the y axis, the thickness 8 of the torus
is exaggerated as shown in Fig. 4. The exact
value of E over the annular opening is unknown
but the field of the principal coaxial mode,
which carries the energy and is the only field far
from the opening, is inversely proportional to r.
If the potential of the center conductor is V and
the current density in the double layer in amperes
per radian is i, then

E= ,'j a&pi 8/r = V/-[r ln(r p/ri)],

current elements of width dH, whose x and s
coordinates are d+r2 sinH and c&r2 cosH, as
shown by crosses in Fig. 5. The resultant dA &0 is

[2pi8/(P'ab)] sin(mx/a) [expj(u&t —P'(z —c)]}
Xsin(md/a) f(8)d8,

where

f(8) =cos[(~rp/a) sin8] cos(P'rp cos8).

If we write Prp for (~P/a'+P") &rp, where P'= cuoyp,

and tan@ for n./(P'a), the integral of the 8 terms
takes the form

Icosi Pro cos(8 —Q)]
0

+cos[Prp cos(8+@)]}d8.

Both terms in the integrand have a period of —,'~
so that the value of the integral is independent
of @. By choosing & =0 the integral takes the
standard Bessel integral form

i =2V/Pj a)t'8 In(r, /ri)]. (&)

Thus all currents encircle the entire section of
the torus. The only current elements that excite
the TIt &0 mode are parallel to the y axis and so
are those of length 8 that form the curved edges
of the torus. The TZ~O term, A ~0, in the vector
potential of the waves excited in an a by 2b

guide, extending from s= —~ to s= + ~, by a
current element Idy 0 at x =x(), 3=so, is in the
y direction.

2
"0

cos(Prp cos8)d8= p~Jo(Pfp) = p~Jp(2wrp/X),

where X is the free-space wave-length. Addition
of a similar expression for the currents at the
inner edge of the torus and for the edges of the
image sheet and substitution for i from P) give

A ip ——C sin(mx/a) expj(cot —p's),
w here

4m V sin(md/a) sin(P'c)
C= j a P'ab 1n(rp/ri)

XLJo(2nrp/X) —Jo(2mri/&)].

FrG. 4. Form of the toroidal currerit sheet for the
wave guide.

A ip = (pIdy p/2P'ab) sin(vrxp/a)

Xsin(~x/a) exp jacet —P'(s —sp) ],
where

p~p = capp p 'lip/a2 —4~2/giop

and ) &0 is the guide wave-length. This is easily
verified by multiplication of 8 by sin(mx/a) dxdy
and integration over one face of the so plane.
The integral vanishes except over the element
where its value is ,'pIdypsin(exp/a) by the-

magnetomotance law. %e shall calculate first
the contribution from four similarly directed

The TEM electric field and magnetic induction
are

8 = —8Aip/8s=jP Aip, Ep= —jMAio.

'I'he mean Poynting vector (II,)„„is

(n,) „=,'Ea*/ =(', p'/&-) ICI »n (-xia). (9)

The upper half of the tube, from y =0 to y =b,

)p

Cg

FIG. 5. Arrangement of associated current elements.
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satisfies the boundary conditions of the original
guide of Fig. 3, so that integration of (II,)A„over
its area gives the rate of power dissipation or
—', V /R where R is the radiation resistance. Thus
we find

I ~P'ab 1n'(rp/r g)R=
8s' sin'(sd/a) sin'P'c

XLJp(2srp/X) —Jp(2+re/X)] '. (10)

The same result is obtained by the integration
of Poynting's vector over the coaxial opening,
using r&VLr 1n(r&/r&)] ' for E and v'&&Ayp for
B, but the integration is a little more difficult.
The integration of Poynting's vector for the other
non-transmitted modes over the annular opening
should give the output reactance of the line.
Unfortunately it does not seem possible to evalu-
ate the resultant integrals analytically.
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X-Ray Emitting Isotopes of Radioactive Sb and Sn
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Three new x-ray emitting activities in Sb with half-lives of 2.8 hours, 5.1 hours and 39
hours have been found by the use of the curved crystal camera in conjunction with the x-ray
decay curves. The assignments are Sb" Sb" and Sb" respectively. All three decay by
E'-electron capture giving characteristic Sn x-rays. The 2.8-hour Sb"" also emits 0.46-Mev
electrons while the 5.1-hour Sb"8 gives 0.20-Mev electrons and 1.5-Mev gamma-rays.

X-ray periods of 1.25 days and 9 days have been found in Sn. The reported decay scheme
for Sn"' was verified but the 0.085-Mev gamma-ray was not found.

1. INTRODUCTION

~ F the severa1 activities which have been
attributed to radioactive Sb isotopes, those

of half-lives of 2.8 days ' 60 days' and 17 minutes
have been assigned to Sb"' Sb"' and Sb"'
respectively. The first two activities emit beta-
rays and gamma-rays, while the third emits
positrons. These three periods have been made
by four different reactions. '

A 2.7-year activity, emitting low energy elec-
trons and gamma-rays, has been obtained from
fission, 4 and tentatively assigned to Sb"~. A
3.6-minute positron activity obtained from In+ a
activation~ has been assigned to either Sb"' or
Sb"'. In addition, several Sb activities are found

* Major, U. S.Army Air Corps, Research under auspices
of Air University, Maxwell Field, Alabama. Now stationed
Wright Field, Dayton, Ohio.

J. J. Livingood and G. T. Seaborg, Phys. Rev. 55, 414
(1939).'E. B. Hales and E. B. Jordon, Phys. Rev. 64, 202
(1943).

3 G. T. Seaborg, Rev. Mod. Phys. 16, 1 (1944).
4 Plutonium Project, J. Am. Chem. Soc. 68, 2411 (1946).
~ J. R. Risser, K. Lark-Horovitz, arid R, N. Smith,

Phys. Rev. 57, 355 (1940).

in fission fragments' with masses greater than
125.

Approximately fifteen activities have been
reported as belonging to Sn isotopes. "Because
of the large number of stable isotopes and
because of the limited possibilities for making
these activities by use of different bombarding
particles and target materials, the only one
which has been assigned with certainty is the
105-day7 activity of Sn'".

The present investigation was undertaken to
study the application of the Cauchois curved-
crystal camera, to the x-ray activities induced in
Sn when activated with 10-Mev deuterons.
Bombardments were also made using 5-Mev
protons on Sn and 20-Mev alpha particles on In.

2. EXPERIMENTAL PROCEDURE

Characteristic x-ray lines were photographed
by using a pair of Cauchois cameras' equipped

' J. J. Livingood and G. T. Seaborg, Phys. Rev. SS, 667
(1939).' S. W. Barnes, Phys. Rev. 56, 414 (1939).' J. E. Edwards, M. L. Pool, and F. C. Blake, Phys.
Rev. 67, 150 (1945).


