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Statistical fluctuations in the number of neutrons in a pile which is just under critical and
contains distributed neutron sources such as spontaneous fissions, @ —# reactions, etc., are
considered for the following two cases: (a) The delayed neutrons are taken into account, but
the pile is assumed to be operating at a steady power, and (b), the power at which the pile
operates is assumed to change periodically, but the delayed neutrons are neglected.

For both cases the expression for the standard deviation of the number of neutrons is derived,
and in case (a) the expression for the coefficient of correlation between the number of neutrons
and the number of excited nuclei of each particular type, which lead to the formation of the
delayed neutrons, is also given.

The method used throughout the calculations is that of the probability generating function.

For the case of a steadily operating pile, the effect of a finite resolving time of the recording
instrument upon the observed value of the standard deviation of the number of neutrons is also
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determined through a study of the spectrum of the fluctuations.

I. INTRODUCTION

X 7 E consider a chain-reacting pile in which
there is a source of neutrons (spontaneous
fissions, e —# reactions, cosmic rays, etc.). Let N
be the number of neutrons present in the pile,
and let Qy, Q2, Q3+ Qn be the number of radio-
active fission-product nuclei of decay constants
a1, @3-+ *@m, respectively, capable of giving off
delayed neutrons. The time-dependent equations
for N and Q; are

AN/di=S~(1~K[ON+Y a Qs (1.1)
(dQ:/dt) = (¢i/T)N—a Q.

Here S=theé number of neutrons emitted by the
source per unit time,

k' =the mean number of neutrons formed
instantaneously per neutron lost in
the pile through absorption or escape,

¢;=the mean number of radioactive nuclei
of type ¢ formed per neutron lost,

7=the mean lifetime of a neutron in the
pile.
It is also convenient to define

(1.2)

¢=32_ c;=the mean number of delayed

t=1
neutrons formed per neutron lost,

1 Contribution from the Chalk River Laboratories of the
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k=Fk +c=the effective multiplication fac-
tor of the system.

Equations (1.1) and (1.2) would be satisfied
exactly if neutron capture and production were
continuous processes. Since they are, in fact,
discrete elementary processes occurring at ran-
dom, the rates dN/dt and dQ./dt given by (1.1)
and (1.2) are only average rates, and -the true
rates will fluctuate about these average rates.
As a result, the actual values of N and Q; at any
given time will not be given exactly by the solu-
tion of (1.1) and (1.2), but will fluctuate at
random about these solutions. It is the object of
this paper to estimate the magnitude of these
fluctuations in a number of cases.

Let P(N, Qi, Qs, - -+ ; t)- be the probability that
N neutrons, Q; nuclei of type 1, Q. nuclei of
type 2, etc., are present in the system at time £.
The average number of neutrons is

Nw=22 2+ NP(N, Qu, Qo+ 3 1),

N Q1 Q2

(1.3)

and the average number of nuclei of type 7 is

Q=2 2 2+ QiP(N,Q1, Qz, -+ 1). (1.4)

N Q1 Q2

A measure of the fluctuations in N is given by
the standard deviation

‘PNN=<N2>AV—<N>AV2=N§.N2P(N: Qi; t)
—[ X NP(N, Qi1 (1.5)

N,Qi
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We also define

o= (NQn— (N Qi
=N§5NQ1P(N, Q:; 1)
- [N%iNP(N, Q)]
X[N§inP(N, Qs8] (1.6)
@1 ={QiQin— (O n(Qinu
=N§iQkaP(N1 Qi3 1)
—[N,Z(:“Q;’P(N, Qs; t)][NgthP(N, Qs8] (1.7)
The problem is to obtain values for (N, (O},

onn, ¢nj, and @i To do this we define the
‘‘probability generating function”

GH=E T T

N Q1 Q2

F(xr Y1, Yo

XNy @ys@2e -« P(N, Q1, Qn, -+ -5 1) (1.8)
This function has the property that
Flo=yi=1=1, (1.9)
(N)n=x0F/0x|z=y;=1, (1.10)
(Qin=y:0F/dy;| z=yi=1, (1.11)
onn =[(x0/0x)2F — (xdF/3x)? Jo=y;=1, (1.12)
ovi=[%(3/0x)y;(3/9y;) F
—xy;0F/3x:0F/dy;Jo=yi=1, (1.13)
o= [y1(0/0y)y(3/dy:) F
—yVk0F/0y;* dF /0y Ja=y;=1, (1.14)

as is easily verified by differentiation of (1.8),
since

2 P(N,Qi;)=1.

NQi

In the next section, a partial differential equa-

tion for F will be derived. From this equation it
is possible to obtain expressions for the deriva-
tives of F when x and all the y; are equal to unity,
and from Egs. (1.9) to (1.14) we can then obtain
the mean values and mean deviation of N
and Q..

II. DIFFERENTIAL EQUATION FOR THE
GENERATING FUNCTION

We wish to establish equations for the rates of
variation of the probabilities P(N, Qy, Qs, - - - ; )
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and, consequently, for the probability generating
function F defined by (1.8). To do this, let us
suppose that we know the probabilities at time ¢,
and let us try to determine what they become at
time t-4dt, i.e., after an infinitesimal time in-
terval.

The probability that in such an interval fwo
fundamental processes occur is O(df?) ; we need
only consider, therefore, the effect of a single
process (emission by the source, capture with
possible fission, or emission by excited fission-
product nuclei).

Let us introduce the function

f(x, Y1, y2. . ) — Z pnm1m2...x"y1ml' yzmz. oo (2'1)

n,msg
in which prmims--- is the probability that a cap-
ture process will lead to formation of # instan-
taneous fission neutrons, and m; radioactive
fission-product nuclei of type 4. pamimg--- will
certainly be zero for ) m;>2, and perhaps even
for > m;>1, i.e., at most one or two delayed
neutrons are emitted in one fission. We note the
identity
f| r=yi=1=1.

The multiplication factor (i.e., the average
number of neutrons released in the system per
neutron lost through escape or absorption) is

E= X (13 m)pamim -
= (x9/3x+3. v:8/3y)f| zwi=1.

The mean square of the number of neutrons
formed per neutron lost is

ky= Z I:n+z Mi:|2p7zm1m2- .-

(2.2)

=[x/0x+2 y:0/3y:i ) f|2wi=1. (2.3)
We may then write
orf o*f o%f
ky—k=—+23 +2 . (24)
dx? i 9x0y; i i 0Y0Y;

In the notation of paragraph 1, we may break &
down into its component parts:

k’=af/axlz,y,‘=1 (25)
due to instantaneous neutrons, and
c,-=af/6y,~|x.yi=1 (26)
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due to delayed neutrons of class 7, where
k=k'+3 ci=k +c.
Let us also introduce the abbreviation
d=[23 0%f/0xdys+2. 9°f/9yi0y;la=vi=1, (2.8)
i

so that

(2.7

ko—k=0%f/dx2+c'. (2.9)

For the source emission, we may introduce a
similar function,

g(x; Y1, Y2* ') =Z gnmimg- XYY" ¢ o (210)

where the gnmimg--- are source emission proba-
bilities similar to the pnmims---. We shall, how-
ever, for simplicity, assume that the source
produces only one neutron at a time, i.e., that
g(x, ;- - -)=x. It can be shown that this assump-
tion does not seriously affect any of the results
of this paper.

Given the probabilities for different numbers
of neutrons and radioactive fission-product nuclei
at time ¢, what is the probability that there are
N neutrons, Q; nuclei of type 4, at time ¢+4dt?
It is made up of four terms:

(i) the probability that there are (N—1)
neutrons, Q; nuclei of type ¢ at time ¢, multiplied
by the probability that a source emission gives
rise to one neutron in time d¢. This is

P(N—1, Q4, Qg - - - ; £)Sdt.

(ii) the probability that there are (N—n-+1)
neutrons, (Q;—m;) nuclei at time ¢, multiplied
by the probability that a neutron loss gives rise
to the production of # neutrons and m; nuclei
in time d¢. This is

Zn.m; P(N—n+1, Q1—m1, Qa—mg, * -+ )
(N—n-+1)dt

< pumima -+ -
r

(iii) the probability that there are (IN—1)
neutrons, (Qr+1) nuclei of a particular type I
and Q.(¢#1I) of all others, multiplied by the
probability that a nucleus of type I decays in
time dt. This is

SrP(N—-1,Qy -+ Qr+1, -+ )(QOr+1)asdt,

where ar is the decay exponent of radioactive
nuclei of type I.
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(iv) the probability that no source emission,
neutron loss, or radioactive decay takes place in
time dt, multiplied by the probability that there
were at the beginning of this time N neutrons,
Q: nuclei. This is

d
(1-—-Sdt—N~f—Z aIQIdt)P(Ny Q1, Q20+ 5 0).

Combining the above results we get
P(N, Qy, Qa- - - ; t+di)
=P(N—1, Q1, Qo « -+ ; )Sdt
+2 P(N=n+1, Qu—=m1, Qr—ma, « - ;1)
XZ?}V—W+1)dt/T)pnm1m2---
+§ P(N—1,Qy, -+, Qr+1, -+ - 50)ar(Qr+1)dt
+[1—Sdt—N(dt/7) — 3 a:Qrdt]
I XP(N, Q1, Qs+ 51).
Let us now multiply both sides of the above by

xNlelyzQ?.. ..,

and sum over N, Q1, Qs, -+ . The left-hand side
becomes F(t+dt), and the terms on the right
become, respectively,

dt
SdtxF, —f(x,y:)0F/dx, x3 a,0F/dy;,
T 2

and

dt oF dF
[F(t) —SFdt——x——73, ay: dt].
T 0x % 9y
By equating the two sides, dividing by d¢, and
letting di—0, we get

dF/dt=(x—1)SF+7r(f(x, v;) —x)0F/dx
-{—Z ai(x—y)0F/dy;. (2.11)

It should be noted that the derivation of this
equation does not demand the assumption of the
constancy in time of S, f(x, ¥.), or 7. We shall, in
fact, in later sections, deal with cases in which
some of these quantities vary with time.

From the equation for F, it is possible, by
differentiating successively and putting x, y:=1,
to obtain equations for (N)a, (Qin, oxn, eNj Cij
and also, if desired, the higher moments of the
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probability distribution. In simple particular
cases it may even be possible to solve Eq. (2.11)
completely for F.

III. STEADILY OPERATING PILE
In the case of a pile operating at a constant
mean intensity, all the probabilities P(N, Q; ¢)
are independent of time, and therefore
OF /ot =0.
The differential equation (2.11) thus becomes
S—=1)F+r'[f(x, yi) —x1F.
+2 aix—y) Fi=0, (3.1)
i=1

where the subscripts «, ¢ indicate differentiation
with respect to x, y;, respectively.
Differentiating (3.1) in turn by x and each
of the y,, adding the resulting equations, and
setting x=y;=1, we obtain, with the help of
(1.10), (2.2), and (2.6),
{ —F = 7).
(N)w=F.=Sr/(1—Fk); 3.2)
<Qi>Av = Fi = E,’ST/E{(l - k),

where e;=a;7.

Differentiating (3.1), in turn, by all sets of
two of the variables x and y; and setting x=y,=1,
we obtain the following set of equations for the
moments ¢nn, ¢ni, Qik:

(I —k4c)onn—2 eions
=[3fuat (1 —k+0) UN)n,
—cionn+(1—k+cte)ovi— 2 €joi;
= (f;— 2¢)(Nyw, (3.4)
—cionk—Crenit (eiter) pa
= (fa+2ci8){N)n.

We shall solve these equations for the case when
there are no delayed neutrons, for one delayed-
neutron period, and for many delayed-neutron
periods.

(3.3)

(3.5)

A. No Delayed Neutrons

When the delayed neutrons are neglected, Egs.
(3.3) to (3.5) reduce to the single equation

(=R ony =[3(ka—k)+ (1 —k) AN)w, (3.6)
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so that
oy =[14(k2—k)/2(1 — k) KN )n
=[(koa—k) /257 N )n?+(Nw).

Thus when the power level is changed by
varying k, the mean square fluctuations are
essentially proportional to the square of the
number of neutrons; in other words the mean
fractional deviation of the number of neutrons
from the mean is independent of the number.
We shall see in the following sections how this
conclusion is modified when the delayed neutrons
are taken into account.

3.7

B. One Delayed-Neutron Period

Let us assume that only one type of fission-
product nucleus gives rise to delayed neutrons.
Equations (3.3) to (3.5) then become

(I—k+c) onn —eong

=[3feat(1=k+) A N)a, (3.8)
—conn+(1—k+c+e) ono—epqq
=(foy—2c){(NV)w, (3.9)
—convotepee=(ct+3fw){Nin.  (3.10)
Adding (3.8), (3.9), and (3.10), we obtain
(1—k)(enn+one)
=[3(ka—k)+(1—=k) AN (3.11)
Solving (3.8), (3.10), and (3.11), we find
(1—k+e)(k2—k)
‘pNN:(NM[H2(1~k)(1—-k+e+c)
3¢’
—m], (3.12)
c(ka—k)
sON"=<N>A'[2(1—k)(1—k+e+c)
+——-—~—] (313)
1—k+4e+tc
A(ka—k)
aa= (/o) i
$ec!

+——+C2+%nyy]~ (3.14)
1—k+edtc
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In practice the second term in the bracket of
(3.12) will be large compared to the first and
third, so that we have, approximately,

(1—k+e)(ka—k)
20—k)(1 —k+e+tc)
(ka—k)(1—k-+¢€)
=<N>Av2 A .
2S7(1—k+e+c)

YNN = <N>Av

(3.15)

When 1—E£>>c and 1 —Ek>>¢, this is identical with
the expression (3.7) for the case in which there
are no delayed neutrons. However, when the
number of neutrons is increased by bringing %
closer to unity, (3.15) increases more slowly than
(3.7), i.e., the delayed neutrons tend to smooth
out the fluctuations.

In practice ¢ will be much smaller than c:
(¢=~0.01; e=7/(lifetime of delayed-neutron emit-
ters) ~ 1073 sec./10 sec. = 10~*). There will, there-
fore, be a range of values of % for which
eK(1—k)Kc, so that

PNN = ((kz"' k)/25)<N>Av:

i.e., in this range the fluctuations increase with
the square root of (N)u. Finally, if 1—k>e,
(3.15) becomes

(3.16)

kz—‘k
@ONN = <N>Av2 ( )é

TR 3.17
2S7(c+e) (3.17)

i.e., the fluctuations are again proportional to
(N)an, but with a smaller constant of propor-
tionality than in the case of no delayed neutrons.

C. Several Delayed-Neutron Groups

When there are m distinct groups of delayed
neutrons, the equations to be solved are (3.3),
the m equations (3.4), and the im(m+1) equa-
tions (3.5). These equations determine the
3(m+1)(m+2) quantities onn, oni, and @g.
Adding (3.3), all Eq. (3.4), and all Eq. (3.5)
multiplied by %, we obtain

(I—Fk)(env+22 oni)
=(N)u[3(k2—k)+(1—Fk)].
Let us define €* by

2 eioni=€* 2 o
[ 7

(3.18)

(3.19)
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Equations (3.3) and (3.18) for ¢wy and 3 ¢w:
are now exactly similar to Egs. (3.8) and (3.11)
for oyny and ¢wg, with €* taking the place of e.
The solutions are, therefore,

(1 —k+e*) (ks —k)
21 —k)(1 —k4c+e*)

ONN = <N>Av[1 +

/

. 3.20
—2(1—k+c+e_*)]’ (3.20)
5 -—(N [ c(ke—k)
o= (N 2(1—k)(1—k+cte®)
CI
+——-—————]. (3.21)
2(1—k+cte¥)

The problem is to find €*. To do this, in other
words to determine the proper weight function
to be used in averaging the ¢;, we have to solve
Egs. (3.3) to (3.5) numerically. This can be
done if the number of delayed-neutron periods is
not too great.

In the special case where 1 —£ is small enough,
it is possible to obtain approximate explicit ex-
pressions for the ¢'s.

We first solve (3.5) for ¢, obtaining

oian=[cionetcron:
FH(NVn(fir+2¢ida) 1/ (eitex).

Equation (3.4) becomes

(3.22)

€4CLONE — €CLON i

(1 “‘k‘f‘ei)som—z
ko €ite;

=Ci§0NN+<N>Av|:fxi_Ci+Z exfin/(eiter) ] (3.23)

Let us now assume

Since x> (N)w -and @yy>S7, the right-hand
side of (3.23) is approximately equal to c;own.
Let us assume for a moment that the summation
on the left-hand side may be neglected. Equation
(3.23) then becomes, approximately,

PN [Ci/fi(l +I~h‘):]€0NN =~ (Ci/ei) enn(1 "#z‘)- (3-25)

We now substitute this into the summation to
see whether the assumption that the summation
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may be neglected is justified. We find
2 (escionj—ecioni)/ (eite;)
7

=ciony 2 (mi—py)ci/ (eite)).  (3.26)

Our assumption is justified if

|2 (wi—pidei/ (ete) <1 (3.27)

for all 4. This will be true if
wiL1/3 (cj/e;) for all 1.
Neglecting g, in (3.25), we have
eNim Cionn /€ (3.28)
substituting in (3.19), we find
e*=3 ci/2 (ci/es)-

Since we have assumed 1—£<e;, we must have
1 —k<KLe*, so that (3.20) becomes

(3.29)

e*(ka—Fk)

PONN R
2c+e¥)(1—Fk)

(N

*(by—k)

“aerens

(3.30)

for the limiting case 1—k<e;/Y (ci/€;) =e,-e*/c,
i.e., for sufficiently high power levels.

IV. CASE OF VARIABLE %k IN THE ABSENCE
OF DELAYED NEUTRONS

Let us consider the problem of fluctuations in
intensity, in the absence of delayed neutrons, in a
pile in which the relative probabilities of loss
and reproduction of neutrons varies with time.
Such a time variation will be met in a “pulse
generator,” or in the application of cyclical
variations for determining the operating charac-
teristics of any pile.

It will be justifiable in a first approximation to
neglect the delayed-neutron term, and include
the contribution of delayed neutrons in the
source, if the period of time variation of the
function f is short compared to the delayed-
neutron periods. This will of course give a
constant source only if the mean level of opera-
tion of the pile is held constant.
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The derivation of the differential equations for
(N)w and ¢ny does not differ from that when the
function f has constant coefficients. The equa-
tions are

(i(N)Av/dt=S—K<N>Av (K= (1 _k)/T)a
donn/dt= —2konn+ ko N)a+S,

4.1)
(4.2)

where ko= (k:—2k+1) /7= (k2—1)/7. Thisis very
nearly constant if k2 remains near unity.
The solution of (4.1) is

(N)A,,=exp(—j;txdt’)
x{s fo texp( fo ’ xdt”)dt'—}—(N(O))Av}. 4.3)

Inserting this into (4.2) we get

t
ONN =exp( ——Zf Kdt’)
0

x| J V) a5

tl
Xexp(Zf Kdt”)dt'-i-goNN(O) } (4.4)
0

Let us consider the case in which % is constant.
We find then that

NOm—S/k=e[(NO)w—S/x], (4.5)

i.e., any excess of (N(0))s over the steady-state
value will decay or grow exponentially, according
to whether k<1 or k> 1.

Substituting (4.5) into (4.2) and simplifying,
we obtain

enn (t) = (S/2x) (1 +k2/x)
=Loww(0) = (S/2x) (1 +x2/x) Je~2*¢
+ (k2/ ) [AN(0) ) — S/kJ (et —e72xt).

Thus, in addition to a decay or growth of the
excess of the initial value of gyx over the steady-
state value, there is another term which is due to
the deviation of (N(0))s from its steady-state
value.

(4.6)
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Case of Periodic “k”

Let us consider now the case in which &, and
consequently «, is periodic with period T, i.e.,

k(t+T) = x(2). (4.7)

Let us introduce the following notations:

t
f ' = o (1), (4.8)
0
o(T)=1. (4.9)
Now suppose mT <t' <(m~+1)T. Then
tl
f wdt"! =mI+o( —mT).  (4.10)
0
Now put
t
f e di’ = x (1), (4.11)
0
x(1)=4. (4.12)

We then find that, for 7 <t<(n+1)T,

¢ t’
f exp( - f xdt")
0 0

=A(14el e - elwDI) fenly (t—nT)

e —1

=4 +erlx(t—nT).

el —

It follows that, if we put n=t—n»T (thatis, if  is
time elapsed since the end of the last completed
period)

(N (t) =e=n1=s

enl

><{(N>Av(0)+S[A;;11+e"’x(n)]}-

As n—o0, that is, when the oscillation has been
in effect for a sufficient length of time so that the
effect of starting has disappeared, this reduces to

4

el—1

(Ww(T) =Se"(’7>l +x(n) } (4.13)

If we now substitute into Eq. (4.4), and, as

AND P. R. WALLACE

above, make use of the periodicity of «, we get

¢NN=e_(2"I+2”(n)>{ (1+e21+e41+ e —-l—e?(”‘l)I)S

r A
el
0 el—1 v
K A
+Se2"’f [:cze“’(’?”( +x(n’))+1]
0 el—1

X e2u(n’)dn’ + onn (0) } .

We must again let z— to neglect the transient
effects. We then obtain

1 1
onn () =Se*2‘7(v){ [KgAZ( +%) +A2]
e —1 ef—1

- A
-»+-x2x<n>[——-+%x<n>]+m<n>|, (4.14)
el —1

where

n
X2(7I)=f e>dy’, (4.15)
0

x2(T)=4.. (4.16)

V. EFFECT OF RESOLVING TIME OF THE
MEASURING INSTRUMENT ON THE
MEASUREMENT OF STATISTICAL
FLUCTUATIONS IN A PILE

Any practical measurement of fluctuations
will be subject to limitations imposed by the
resolving time of the measuring instrument and
by the fact that the measurements will extend
over only a finite time interval.

The effect of a resolving time of the measuring
instrument is that the quantity measured is not
an instantaneous value of N (or of the neutron
intensity), but rather a value averaged over an
interval of length Af, where A¢ is the resolving
time.

Thus fluctuations whose period is appreciably
shorter than A¢ will not be observed. Similarly,
if the measurements extend over a time T,
fluctuations whose period are appreciably longer
than 7" will not be observed. In order to interpret
experimental measurements, it is therefore neces-
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sary to know the frequency distribution of the
fluctuations.

Let oxn®?® be the standard deviation of the
number of neutrons averaged over an interval
At, i.e., the standard deviation observed when
measurements with an instrument of resolving
time At extend over an infinite time. If sharp
measurements (resolving time zero) could be
taken over a finite interval, T, the standard
deviation observed would be then, on the average,

PNN(T) = $NN — @NN(T)*

For
ONN = <N2>Av - <A/>I\v2 5
ovn D =N wrDa— (N)n?,

where “AvT”’ denotes averaging over the time
interval, T, and

onn(ry = (N — (N wra = (N — (N )ar)n.

The standard deviation observed when meas-
urements with resolving time At extend over an
interval T is then

At —

onn | 2t = oxn 0 — oyn .

We now determine the function oyy®?. The
quantity (V2)u, which was used in Section II for
the calculation of fluctuations in the case of
sharp measurements, must be replaced by

t

1
<N2>AvAt= Z N/N//f dt’
(At)z N’ N\ Qi", Qi t—At

t
xf d’R(N', N"; Q/, Q/"; ¢, t"), (5.1)
—At

where R(N', N""; Q./, Q" ; ¢/, ¢'’) is the probability
that there are N’ neutrons, Q," excited nuclei at
time ¢/, and N”' neutrons, Q; excited nuclei at
time ¢/. Equation (5.1) may be transformed to

t

2
> N’N”f dy
(At)Q N/, N, Qi Qi At

<N2>AVA t=

t—t/
% f de-RH(N', N5 07, 0054, ), (5.2)
0

where R* is the probability that there are N’
neutrons, Q; excited nuclei at time ¢, and N”
neutrons, Q; excited nuclei at a time £ later
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(i.e., at the time #'+£). We may write

R*(N', N"; Q, Q"5 ¥, §)
= (the probability P(V’, Q/;¢) of N’
neutrons, Q. excited nuclei at ¢)
X (the probability Pa’q,/N'' Q"' (£) that

N’, Q. giverise to N, Q;" in time £). (5.3)

We may introduce the probability-generating
function

Glx, x" ;94 v 58, &)

= Z R*(Nr N,;Qir i’;ty E)
N, N, Qi Q4

XxNx’N'Hi{yiQiy/Qi’}, (54)

where the II;{ } indicates a product over the ¥'s
corresponding to the wvarious delayed-neutron
periods. Then

(N%uae=(2/(A1)?) ar

t—-At
l..._tl
Xf dfazG/axax’Ix:a;’myi=yi'=l. (55)
0

This may be written alternatively, on inter-
changing the order of integrations,

(V2 o= (2/(A0)?) j de

t—§
X dt’a2G/axax’Ix=x'=yi=yi’=1.

t—At

(5.6)

Our problem is now to find the function G.

Let us now introduce the following proba-
bility-generating functions:

(a) Let

¢<xy Vi, t) = N%./‘PN’Qi’(t)leniyiQi, (5'7)

be the function whose coefficients are the proba-
bilities that, in the absence of sources, 1 neutron
at time 0 will give rise to N’ neutrons, Q. excited
nuclei at time ¢.

(b) Let

YD (e, yi, )= 2 Ynrg POV My (5.8)
N'Qi

be the function whose coefficients are the proba-
bilities that, in the absence of sources, one excited
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nucleus of type j at time 0 will give rise to N’
neutrons, Q; excited nuclei at time ¢.
(c) Let

Fy(x,vi;,t)= > Pwn@s@@)xN' Ty (5.9)
NI’Q/.-!

be the function whose coefficients are the proba-
bilities that N’ neutrons, Q. excited nuclei are
produced by a source of strength S in time ¢,
there being no neutrons or excited nuclei present
at t=0. It is then easily demonstrated that in
the absence of sources, ¢V is the probability-
generating function for the initial condition of N
neutrons alone present at t=0; @i is that for
the initial condition of Q; excited nuclei of type j
alone present at ¢=0. The function ¥II"®i is
the probability-generating function correspond-
ing to N neutrons, Q. excited nuclei of type 1,
etc., at t=0. Finally, the function

Qvar0s (%, ¥i; ) = Fo@ I (P (5.10)

is the probability-generating function for the
same problem when sources are present.

It is easily verified that @ satisfies the appro-
priate differential equation (2.11).

We may now write down the function

Gx, &5 34, ¥4 5 4, §).
It is, in fact, equal to
Fo(x', v, §) Flxe(', y/, §)
P, ¥, E), ot

where F(x, y1, y2, - - - ; t) is the probability-gener-
ating function for the number of neutrons and
excited nuclei in the system at time ¢, as defined
in Section II. For this is equal to

F: 2 P(N, Qi; ) (x@)V (yp )@ - -

=2 P(N, Qs; )9y, (", yi'; £)xVy .
Comparison with (5.4) enables us to identify
this function with G.

Differentiating (5.11) with respect to x and «’,

and setting all the x, &/, ¥;, ¥/ equal to unity, we
find

62G/6x6x’[ z=z'=y;=y; =1
= (No(EMN )+ (N a(E)IWNV () n
+ 22 (N H(ENMNQ 5wy

(5.11)

(5.12)

(5.13)
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where (V,(¢))w is the mean number of neutrons
present at time £ arising from the action of the
source if N(0)=Q;(0)=0; (N.(£)) is the mean
number of neutrons at time £ if S=0, N(0) =1,
Q:(0)=0; (N ;j(£))a is the mean number of neu-
trons at time £ if S=0, N(0)=0, Q:(0)=0 for
1#j7, and Q;(0)=1.

In the steady state G(x, ., « - - ; ¢, £ does not
depend on ¢, and (5.6) becomes

At
oy @0 = (2/(A1)?) f (At—8)

XN () N2+ 22 (N (ENal NQ j)nv
= (V) (N ) — (N o(£))) JdE.

But (N)w—{(N:(£))a is the average number of
neutrons which would exist at time ¢ if S=0,

N(0) =(N)w, Q;(0)=(Qn:
(Nae = (N s (E) ) = (N )ad NV () Inv
+Z <QJ>AV<N7(£)>AV' (515)

(5.14)

Substituting in (5.14) we get
At
o0 =@/ [ (@at=p)
0
XL oan(Nal@m+ T ox iV (OW]dE. (5.16)

(Nu)n(t) is determined by Egs. (1.1) and (1.2),

“with S=0 and the initial conditions (N)x(0) =1,

(Q:)m(0) =0. Let us look for solutions of the form
(N)w=(DN)n(0)e7¢,
(Qn={(Qn(0)e .

We find that v must satisfy the equation

K —y=(1/r) i:ldici/(ai—”y), (5.17)

which has (z+1) solutions y;. Here «' = (1 —%") /7.
The general solution is then

(N)w= Z ps€™7e", (5.18)

8=0

(Qan=(ci/7) é pse~ 7t/ (ai—vs). (5.19)

With the initial condition N(0)=1, Q:(0) =0,
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we get the equations for p,:

2 ps=1, (5.20)
éps/<a,-—vs>=o, (i=1,2, -, m). (5.21)

Alternatively, the p,’'s may be determined by
solving (1.1) and (1.2) above, for the case S=0,

by Laplace transforms. It is then easily verified

that
pe=7s7/Lkr+20 cif (1 —ai/v)*] (5.22)

Since if there is only an excited nucleus present
at £=0, it must first decay, and this is followed
by the decay of the resulting neutron, we have

13
(Ni®m=a; f e (N (E—E))adE . (5.23)

0
Explicitly,
(Ni(EOn=a;2 [ps/(@;—rs) (e~ 78 —eai¥)

=a; Z pse—'rsf/(aj-—»ys)’ (524)

because of (5.21). Substituting from (5.17) and
(5.20) into (5.16), we get

2ps
onn 0= 3 (vsAt—1+4e77e4%)
s=0 ('YsAt)Z
" @son O
X[¢NN(0)+Z ik ] (5.25)
=1 a;—"s

Expression (5.25) may be simplified for the
case of very small or very large values of At If
v:4t<K1 for all v,, we may write

2(ysAt— 14788 /(v,Af)2 =1 — Ly AL (5.26)

With the help of (5.20) and (5.21) and the
relation

2 pYe =«

§=0

(5.27)

(which follows from (5.17)), we can transform
(5.25) to

(PNN(A ) = (PNN(I - %K,At) + (Al/37’) Z €PN (528)
12
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From (3.19), (3.20), and (3.21) we have
ONN = (1 —k+6*)¢/(1 —k+€*+C) :
Z elgoNl’—‘é*Cq)/(l—k—{-e*—{—C),

where
P =3(ks—k)(N)n/(1—F),
so that

ennv A9/ enn =1
— kAt —k+c+e¥) /(1 —k+€¥).

Similarly, it can be shown that, if y,A>>1 for
all v;, i.e., if At is longer than the longest relaxa-
tion period of the pile,

(5.29)

onn @D/ oy =28/ kAt ony

=2(1—k4e*4c)/kAt(1 —k+€*). (5.30)

In practice At will often be longer than the
shortest relaxation period and shorter than the
longest. Let us assume that the various relaxation
periods are well separated, and that

Y r+ 1At<< 1 <<"Y ,«At.

Then, by writing

1, s>r+1
(2/(vsA8)%) (vsAt—1+4-e~7s88) =

Z/VsAt, N < 7
we obtain
ennA?/ onn

m m

= Z Pa[1+z aWNz/(al—’Ys)sﬂNN:]-

s=r+1 =1

(5.31)

In particular, if =0, i.e., At is large compared to
the shortest period but small compared to all
others, (5.31) can be transformed to

onv®?/onn =1
—(1=k)e*/(1—k+c)(1 —k+c+e¥),

and for r=m—1, i.e., for At large compared to
all except the longest relaxation period of the
pile,

(5.32)

onn 0/ onn
=pn(1—k+e*+c)/(1—k+€*).
We may further deduce the ‘‘normalized spec-

trum’’ of the fluctuations. For, if S(¢)de is the
proportion of fluctuations corresponding to the

(5.33)
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frequency o, it follows from a theorem of Wang
and Uhlenbeck,* that S(¢) is the Fourier cosine
transform of

LNON ) — N/ enw;
in fact, according to Wang and Uhlenbeck,

© (NN (4 £))a— (N)a?
S(o) =4 f < )

©ONN

Xcos2rotds. (5.34)
Using the relation

(N@N(t+ ) — (N)n?
= v (N n(€))n+ ; enidN1(£) )n,

we get
4 n PsYs
S(o) =—1 enn 2,
$NN s=0 v 244 mie?
n Ps
+ Z QIPONT —
=1 ar—"s

(5.35)

Vs 12
X - I
vs24+4r%e?  a?+4nie?

4 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17,
326 (1945).
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One can easily calculate the proportion of
fluctuations of period greater than T°; it is

r 2 n 2
f S(o)do = { ovn 2 ps tan™1
0 PNNT

s=0 'YsT

Ps

n n
+2 awen 2
=1

s=0Qq1—"s

27 2
X [tan‘l— — tan—l—] } . (5.36)
'ysT azT

The terms for which v,7'<1 are approximately
equal to the corresponding term in the expression
(5.25) for onn @9 /oyn if

T=u2At/3;

the terms with y,7>>1 are approximately equal
to the corresponding terms in (5.25) if

T=2At.

In other words, one can get the order of magni-
tude of the ratio by which the resolving time
cuts down the fluctuations by omitting those
fluctuations whose period is more than two or
three times the resolving time.

Such a result is to be expected, since the effect
of resolving time and finite measuring time is,
approximately, to eliminate from observation
those fluctuations of periods shorter than the
resolving time or longer than the measuring time.



