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The correction factor for the effect of nuclear motion on the hyperfine structure of hydrogen
is discussed. It is found that this factor can be represented by (1-4m/M)3 to within terms
of order (m/M)a? loga, where m, M are, respectively, the masses of the electron and nucleus
while « is the fine structure constant. It is assumed that the Coulomb potential is that of a
point charge for distances greater than 7o=e¢?/mc? and that for distances smaller than 7, it
is of the order mc?. This assumption makes it possible to treat the problem by means of existing
theories. First-order perturbation theory for the effect of the nuclear magnetic field is employed.
The reasons for doing the work are explained in the introduction. The calculations for the
part of the proton’s magnetic moment following from Dirac’s equation are described in Section
II. Section III is concerned with the effect of the part of the magnetic moment of the proton
which is not accounted for by Dirac’s equation and is referred to as the Pauli part. The deu-

teron is also discussed in Section III.

I. INTRODUCTION

HE recent results! on the hyperfine struc-
ture of hydrogen make it desirable to make
sure of the correction for the nuclear mass motion
to the theoretically expected formula for the
hyperfine structure splitting. Fermi’s result? for
the energy splitting of s terms of single-electron
spectra for a stationary nucleus is proportional
to the product of the magnetic moments of the
electron and the nucleus and contains besides,
as a factor, the square of the non-relativistic
Schrodinger function at the stationary nucleus
¥5%(0). The latter quantity has the dimensions
of the cube of a reciprocal length. Together with
the product of the magnetic moments it gives a
dimensionally correct combination for the ex-
pression of an energy. The quantity ¢s%(0) is
for hydrogen 1/wag*n3, where ay is the Bohr
radius. Its appearance suggests that to within a
constant factor it replaces the mean of the
reciprocal electron-nucleus distance and that for
a nucleus of finite rather than infinite mass the
formula for the energy splitting has to be modi-
fied by the introduction of the factor

(I+m/M)73,
which represents the reciprocal of the cube of
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the ratio of the spatial extension of the wave
function for finite and infinite mass. Here m, M
stand, respectively, for the masses of the electron
and the nucleus. It is in fact well-known that
for the non-relativistic quantum-mechanical two-
body problem the unnormalized wave function
is obtainable from that of the one-body problem
of mass m with M = » by stretching a graph of
the latter in such a way as to increase all inter-
particle distances in the ratio 14+m/M, which is
the reciprocal of the corresponding ratio of
reduced masses.

The above simple arguments make it plausible
to assume that the inverse cube of the reduced
mass ratio represents the correction factor to
Fermi’s formula apart from typically relativistic
corrections.? A partial confirmation of this view
has been obtained previously in connection with
estimates of the magnetic energy contribution
to the binding energy of the deuteron and is
referred to below in connection with Eq. (6.1)
of the present paper. It was found that the non-
relativistic limit for this energy is obtained by
employing Fermi’s formula with the interpreta-
tion of ¥ ¢*(0) as the square of the non-relativistic
Schrédinger function for the relative motion of
proton and neutron. By the non-relativistic limit
one means here the asymptotic form in the limit
¢= o, where ¢ is the velocity of light.

The arguments given above are not .as. corn-

3 G. Breit, Phys. Rev. 35, 1447 (1930).
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vincing, however, as is desirable. The accuracy
of the experiments at Columbia is very high, and
there is a need for a careful analysis of the effects
neglected in the inverse cube of reduced mass-
correction factor. The arguments for the em-
ployment of this factor have, in fact, a number
of defects. In the first place the mean of the
inverse cube of the interparticle distance diverges
in the non-relativistic limit for s terms. The
simple argument based on the similarity trans-
formation which has been given above is, there-
fore, not correct even though there is no doubt
that it has something to do with the true state
of things. Secondly, the considerations concern-
ing the magnetic energy of proton and neutron
in the deuteron have to do only with the special
case of particles of equal masses. Besides, they
have been carried out on the assumption that
the interaction energy between the proton and
neutron is of a non-singular type. Characteristic
effects of the inverse-square field of force might
have been overlooked. Thirdly, the order of mag-
nitude of what is neglected in the (1+m/ M)~ cor-
rection factor has not been previously estimated.

The calculations reported on below are re-
assuring concerning the validity of the simple
correction factor. They show that the effects
neglected are of the order (m/M)a? loga, where
a is the fine structure constant. In obtaining
this result it was assumed that the nucleus has a
finite radius of the order e?/mc?, where e is the
electronic charge. For distances smaller than
this amount the inverse-square law potential
was supposed to be inapplicable. The calcula-
tions would have failed if the inverse-square law
of force were supposed to apply at all distances.
Some of the integrals entering the answer would
have diverged logarithmically. The starting point
for the calculation would also be an uncertain
one if the assumption of a finite radius were not
made. By making the potential finite rather
than infinite at small distances the velocity of
the nucleus is kept small, and the discussion by
means of a Hamiltonian of known type is possible.

II. EFFECT FOR PROTON OBEYING
DIRAC’S EQUATION

A. General Assumptions
The wave equation will be taken to be
(po+ epet earpu~+Bemc+BuMc—Y/c)y=0, (1)
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where

¥=16 component wave function ¥u; (a,b)
=1, 2, 3, 4.
po= —hd/icdt+e*/cr.
V= (e*/2)[(eean)/7+ () (eur) /7*].
o= (0lezy Aoy, tez) =Vector having for compo-
nents direct products of the first three
Dirac matrices for the electron index, «a,
and a unit matrix for the proton index b;
the original representation of Dirac is
used here so that the parts of a., ag
referring to the subscript @ have, respec-
tively, elements 1, 1,1, 1 and —3,4, —1,1
on the diagonal perpendicular to the
principal diagonal starting at the upper
right-hand corner.
wy=vector having for components the first
three Dirac matrices for proton index b;
conventions followed for e are similar
to those for a,, reversing ¢ with b and
the words proton and electron.
B.=matrix diagonal in b and operating on a as
Dirac’s «4; the representation is such
that the only non-vanishing matrix ele-
ments of a4 are on the principal diagonal
and have the values 1, 1, —1, —1 start-
ing at the upper left-hand corner.
Ba=matrix diagonal in @, operating on b as
Dirac’s a4; the conventions regarding
representation are like those for g.,.
m=electron mass.
M =proton mass.
e=electronic charge—a positive number.
c=velocity of light.
Po=(1/1)(0/9xe, 8/0ye, 9/02.).
par= (/) (8%, 3/0yar, 0/0281).
o= (X, Y., 3,) =electron coordinates.
tar = (%, Y, 2ar) = proton coordinates.
r =distance between nucleus and electron.

It is convenient to list at this stage the
meaning of some of the symbols which are
introduced later in this paper as well.

a=fine structure constant e*/%c.
¥ s =non-relativistic Schrédinger function.
¥ s(0) =value of ¥ g for r=0.
wo=-eh/2mc=electronic Bohr magneton.
wosr =eh/2 Mc=nuclear Bohr magneton.
Jh=angular momentum of relative motion.
p=(1—a?)k
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R.P. stands for the real part of quantity to the
right of symbol R.P.

Equation (1) is only approximate. Arguments
previously* discussed show that it is a good
equation to within the order v2/c2, where v stands
for the velocity of either particle. The velocity
of the electron is, of course, large when it is
close to the proton and in the corresponding
region of configuration space the validity of Eq.
(1) may be questioned. It is clear, however, that
the error introduced by this effect can be made
to be vanishingly small by making M very large,
because the effect of high electron velocity is
represented in a relativistically consistent and
supposedly correct manner by Dirac’s equation
for an electron subject to the action of an
electromagnetic field.

The term in Y represents the combined effect
of the magnetic interaction between the particles
and the correction to the electrostatic interaction
owing to the finiteness of the velocity of light.
It will be omitted at first, and its effect will be
taken into account later by means of a first-order
perturbation calculation. Omitting the term in
—Y/c, one finds from Eq. (1) that

(po+Mc+ a.pet+Banc)®+ (ypar) ¥ =0,

(1.1)
(po— Mc+ a;petBemc) ¥+ (oapar)® =0,

where ¥ and ® are 8-component wave functions
obtained from ¢ by restricting the proton index
b in Y, to the values 3, 4, in the case of ¥, and
to the values 1, 2 in the case of ®. In the notation
employed from Eq. (1.1) on the rows correspond-
ing to b=1, 2 are arranged to have the same
position and order in ® as the rows corresponding
to b=3,4 have in ¥. The vectors oy have for
components matrices which are direct products
of unit matrices in the electron index @ and
Pauli matrices in the proton index. The operator
P.+Du represents the total momentum. It com-
mutes with the Hamiltonian which corresponds
to Eq. (1) whether one neglects ¥ or not. It is,
therefore, possible to confine the discussion to
such ¢ that

(Pe+PM)¢=0- (12)

It follows from the last equation that every ¥,

4 G. Breit, Phys. Rev. 34, 553 (1929); Phys. Rev. 36,
383 (1930); Phys. Rev. 39, 616 (1932).
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is a function only of the relative coordinates

X=X.—%Xy, VY=Ye—Vu, 2=32.—2zu, (1.3)

and is independent of the centroid coordinates
(mr,4+Mry)/(m+ M). Consequently, one has
also

(Pe+pa)¥ =0,

Because of Eq. (1.3), the relative momentum
operator,

(pet+pi)®=0.  (1.4)

p=(/7)(0/9x, 3/dy, 9/0z), (1.5)
has the property
pY =pV, pb=pb. (1.6)

For states of definite total energy E one has
cpo=E+e/r=_(M~+m)ct+e+e2/r, (1.7)

where e is the energy of the system in excess of
the sum of the rest mass energies of the two
particles. In view of Eq. (1.6), one may replace
p. in Eq. (1.1) by p, and, similarly, on account
of Eq. (1.4) one may replace py in Eq. (1.1) by
—p. From now on the subscript e will be dropped
in @, and B.. The first line in Eq. (1.1) is used
next to express ® in terms of ¥. Substitution of
the result into the second line gives

(po— Mc+ep+pBmc—A/c)¥ =0, 2)

where

A =clonp)(pot+Mc+ap+pme)~(oup). (2.1)

Denoting by the sign 1 the conjugate trans-
posed of a matrix one finds also

bl = \]11'(0Mp)

X (po+ Mc+ ap+-Bme) 2(ewp)¥. (2.2)
Since po¥~ Mc¥, one finds that through most
of the configuration space

BIOTH (p2/4 M2 Ut (m /2 M)W,  (2.3)

where « is the fine-structure constant. The
factor multiplying ¥{¥ in Eq. (2.3) is of the
order of 1.5X1078 The effect of ® on the
normalization integral may be neglected there-
fore. Calculations with Eq. (2) may be carried
on accordingly without reference to ®, The
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operator 4 of Eq. (2.1) is expanded by means of
(po+Mc+ap+pBme)~!
= (po+Mc)~'— (po+Mc)~"(ep+pmc)
X (po+ M)+ (pot+Mc)™?
X[ (ap+Bme) (po+ Mc) =1 ]2+ - -

In view of the fact that (ap+Bmc)¥ is of the
order mc2e®¥, the second term in the above
expansion is of the order ma?/M of the first, and
the third term is of the order ma?/M of the
second. The contributions to the energy arising
from the first term are of the order of the non-
relativistic effect of the nuclear motion, those
arising from the second term are still of interest
for the hyperfine structure being of the order

(2.4)

(€2/2an)(m/M)2a2~0.5X10"% cm~".

The third term is of the order 103 c¢cm™! and
may be neglected. In view of the fact that the
second term in Eq. (2.4) is on the limit of what
is of interest it will be taken account of at the
end of the calculation, and it will be neglected
at first. The consideration of the first and main
term in Eq. (2.4) has to be carried out in more
detail, however. One has

c(o3p) (Po+Mc)*(onp) = c(po+ Mc)~1p?

—h2(e?/r®) (po+Mc)~2(rd/or)+ A1, (2.5)

where

A= (he*/r®) (po+Mc) [t Xp]-ou. (2.6)

The term A1 is the analog of the Thomas term.
If the Thomas terms were appreciable, compli-
cations would arise. An estimate of the effect of
A will be made, therefore, at this stage. The
estimate may be carried out in the approximation
of neglecting nuclear motion. One finds that in
the state in which the proton spin and the
electronic angular momentum are parallel, the
expectation value of 4, is

(A)=(am/3M)a*(eh/mc)(eh/ Mc)p s*(0).  (2.7)

The intermediate steps leading to this formula
are straightforward and are omitted. The contri-
bution to the hyperfine-structure separation
arising from the operator 4, is 4 times the
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value of (4;) given in Eq. (2.7) and is thus
(167m/3 M) oo 5*(0).

This is ma?/2M=21.5X10~8 times the hyperfine
structure splitting

(327/3) pomony s*(0),

which is expected according to Fermi’'s formula.
The effect of 41 is seen to be negligible, and it
will be omitted below.

By means of Egs. (2), (2.1), (2.5), and with
the omission of 4, as well as of the second term
in Eq. (2.4), one obtains

[po— Mc+ ap+Bmc— (po+ Mc)~'p?

-+h2(e?/cr?) (po+Mc)~20/dr [¥=0. (3)
A special solution is found by arranging for ¥
to be the direct product of the function for
index b, which corresponds to ((1)) upward

orientation of the proton spin and of a column
matrix in the index ¢ having elements depending
on angles in the same way as for Dirac’s equation
in a central field for upward orientation of the
electronic angular momentum. The non-vanish-
ing components of ¥ are then

‘111,1=izf/r, ‘If2,1=i(x+’iy)f/7’,

Substitution into Eq. (3) shows that it suffices
to satisfy the radial equations

V3 1=¢.

(po— Mc—mc)g
h*d 72 dg h d(r2f)
+— ————) ——=0
r2dr \ po-+ Mc dr r:  dr
(po— Mc+me)f

ht d rt df hdg
_+_____(___~_______.__ _«—z()
r2dr\po+Mc dr ar

’

(3.1)

The angles and spin orientations have been
eliminated at this stage and only the radial
motion has been left. The possibility of sepa-
rating variables in this manner is not unexpected.
It is, in fact, readily verified that the Hamil-
tonian

Hy= —e?/r —c(a.p.)

—C((prM) —mch——ﬂMMcz (315)
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commutes with the total angular-momentum
components. Thus, for instance,

[Ho, xpy—yps+h(oetou:) /27 =0 (3.16)

for any ¢ satisfying Eq. (1.2). In this equation
0oz Oy are the z components of the Dirac 4-row
matrix vectors o., oy, referring to the electron
and proton. The original Eq. (1), with ¥ omitted,
can be satisfied, therefore, by a wave function
for which the total momentum is zero and for
which also the z component as well as the square
of the total angular momentum can have eigen-
values. It will be noted that the orbital angular
momentum entering the problem is that of
relative motion and that the elimination of @
does not spoil the validity of the conservation of
angular momentum. ‘

If M is made to approach « in Eq. (3.1), and
if po is expressed in terms of e by means of
Eq. (1.7), the radial equations become identical
with corresponding radial equations for Dirac’s
electron in a central field, and aside from ques-
tions connected with the polarization of a
vacuum they are the correct equations for an
electron in the field of a point charge within the
limitations of present day theory.

It has been shown by Bechert and Meixner,®
and by Lowen,® that the effect of nuclear motion
on the energy is not changed by relativistic
effects within the first-order correction terms of
order m/M. It is to be expected, therefore, that
the main effect of m/M on the wave function is
that of changing the linear scale, since this is its
effect for the non-relativistic Schrédinger wave
function ¢ g.

The Schrodinger radial equation is obtained
by replacing the quantity po+ Mc¢ occurring in
the first line of Eq. (3.1) by 2Mc¢ expressing f as
approximately (%/2mc)dg/dr by means of the
second line and substituting this value of f into
the first line. One obtains in this way

e? Kty 1 1 N\d(@dys/dr)
(es+~)¢s+-—(-——+— - —=0, (3.2)
7 2\m M

ridr

which is the non-relativistic Schrédinger equa-
tion. The largest error in this reduction is intro-

(1;31§5 Bechert and J. Meixner, Ann. d. Physik 22, 525
s 1. S Lowen, Phys. Rev. 51, 190 (1937).
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duced by the replacement of (po— Mc+mc)f by
2mcf, when f is solved for in terms of g. The
fractional error introduced into f is of the order
(e+e€*/r)/(2mc?), and this is of the order a2/4
for large ». At the turning point of the Bohr
orbit the error vanishes. For sufficiently small »
the fractional error becomes large, but for
r~ag/10 the fractional error in f is still of the
order 10~% For smaller distances the fractional
error in f introduced by the approximation used
here increases, and one cannot claim that this
approximation is good enough on the grounds of
numerical smallness of the effect everywhere.
On the other hand, it is readily verified that if
M=« the approximation made in approxi-
mating f by (%/2mc)dg/dr is harmless and can
be taken care of by the correction factor to
hyperfine structure splitting having the value

[2(1—a?) — (1 —a®) i1 +302/2, (3.3)

which has to be taken into account for large
atomic numbers® but is negligible for hydrogen.
This correction factor arises as the quotient of
the exact and approximate value of

j;w fedr.

The approximate value of the integral being
obtained by replacement of g by ¢ s and of f by
(h/2mc)dy s/dr. The order of magnitude of the
correction factor is what one would estimate from
the fact that the average value of /7 is —2e
and that e~ —mc?a?/2. The value of the correc-
tion factor cannot be correctly estimated in this
manner, however, because the function g is
only approximately represented by 5. Aside
from the normalization factor, this difference
consists only in the presence of an extra factor,

p=(1—a?),

(3.4)

—1 —02/2.
prlty—atiz,

in g, which results again in effects of order o2
The smallness of the difference between the
correction factor Eq. (3.3) and unity has just
been explained for M= «. The corresponding
correction factor for M « will be studied next.
It will be found in connection with Egs. (5.5)
that the radial integrals needed for the evaluation
of the expectation value of Y are of the form
listed in Eq. (3.4). The examination of the
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radial equations will be made first, and the
reduction of the expectation value to radial
integrals will follow.

B. Orientation Regarding Radial Functions by
the Ritz Method

Expressing energy in units mc’a?, and length
in ag = h*/me*=Bohr radius, one obtains in place
of Eq. (3.1)

1 a(r’f)
a( e+—)g+
r r2dr
d dg/d
+a r riag/dr ]=0,
rdrl2/8--1+a2(e+1/7) )
1 adg o
|1+ (=) [r-oF
. 7 2dr
ad [ r*df/dr
202rL2/8-+14-a2(e4-1/7)
where ,
B=m/M<]1. (3.6)

These equations can be derived from the varia-
tional equation

5 f (3014 (02/2) (e+1/0) 1
— (a/2)fdg/dr+ (o /4) (e-+1/r)g?
— (/[ (df /dr)*+(dg/dn)*]/
[@2/8+1+4+a2(e+1/r)]}r2dr=0.

The smallness of a?, in comparison with 2/8,
allows the replacement of € by egs in the last
term and the restatement of the variational
equation for the ground state in the form

3.7)

__aZGf (f2+g2)7,2d1,
0

- f ((2+a2/1) o4 ag?/r—2afig/dr

—a?[(df/dr)*+(dg/dr)*]/
[(2/B)+1+a?(est+1/r) 1}rdr,

(e+a~2)?=minimum.

(3.8)
(3.9)

Minimizing the energy gives e= — «. This is a
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consequence of the existence of negative energy
states. The problem is stated, therefore, in the
form of minimizing the square of the energy.

The minimum of (e+a?)? for M= is
(1—a2)a™ and corresponds to the normal state
of hydrogen.

By means of the variational equation the best
values of the parameters 4, ¢, v will now be
determined for the trial functions

g=rie”, f=Arie, 4)
by the Ritz method. One has

0

f g21'2/l1'=/1“2f faridr
0 0

=(29)"¥=T(20+3), (4.1)

and, similarly, the other needed integrals are
readily obtained. One finds

14+a2e=(1—-4%/(1+4?)
»»»»»» yla?+2ad/(14+A4%)]/(o+1)
+aBy?/(246)(20+1),
where the approximation
2/B)+1+aP(es+1/r)=(2/8)+1  (4.21)

has been made in the last term of the integral
on the right side of Eq. (3.8). Minimizing the
square of the energy with respect to v, 4 and ¢
in accordance with Eq. (3.9), one obtains,

(4.2)

respectively,

a?+2a4 /(14 42)
=2a?By(c+1)/(2+8)(20+1), (4.22)
24+ay(1—A9)/(1+6)=0,  (4.23)

a?+2a4 /(1442
=2a%8y(c+1)%/(2+8) (20 +1)2  (4.24)

From Eqgs. (4.22) and (4.24) it follows that
o=0, and the solution of the remaining two
independent relations gives
A=—ay/24+a*/8(1+B)*+- - -,
Y=/ (B +a?/2 4,
where the quantities 4, y are being represented

in descending powers of 143. It is seen that if
A and v are approximated by the first term in

(4.3)
(4.31)



GROUND TERM
the expansions on the right side of Egs. (4.3),
(4.31), the error introduced into the radial inte-
gral in Eq. (3.4) is of the order «’8 which may
be neglected. It is natural that the adjustment
of ¢ to the best value gives ¢=0 rather than
—a?/2 because the Ritz method is not sensitive
to errors of the wave function close to r=0. It is
this region that is responsible for the occurrence
of the exponent —a?/2. On the other hand, the
presence of the factor exp[ —(«?/2) Inr] in the
wave function produces an error of the order of
10~ in the density as » changes by a factor
2.722="17.4. It is, therefore, natural to expect that
the integral of Eq. (3.4), as well as the variational
principle expressions for the energy, are not
sensitive to the difference between oc=0 and
o= —a?/2. That the integral is not sensitive to
this difference has been shown in connection with
Eq. (3.3). :

In view of the lack of sensitivity of the varia-
tional principle to ¢, the question arises regarding
the error introduced by the failure of Eqs. (4.3),
(4.31) to reproduce correctly the wave function
close to #=0 for M= ». An estimate of the
error can be made by assigning to ¢ the value
—a?/2 and adjusting ¥ and 4 by the Ritz
method by means of Eqgs. (4.22), (4.23). It is
then found that 4, v have values 4,, v, given by

A= —(av/2)[1—o—a2/4(1+B)2+ -],
Yo=1/(1+p) —Ba?/(1+B)*+- - -.

The second term of the formula for v, is negligible
compared with the first. The term —o¢ on the
right side of Eq. (4.32) changes 4, by one part
in 30,000 and is the largest correction. From the
point of view of over-all adjustment by the
Ritz method, with the three parameters which
have been used above, the radial integral which
matters for hyperfine structure is seen to be
stable to within fractional errors of order o2
The answer just obtained for the radial inte-
gral by the variational method leads to a correc-
tion factor involving the cube of the ratio of the
electronic and reduced mass ratios. Considera-
tions will be given next, however, which show
that the form of the wave function assumed in
Eq. (4) is not sufficiently flexible and that a more
accurate solution modifies the result for the wave
function without affecting, however, the radial

(4.32)
(4.33)

OF HYDROGEN 1029
integrals that are important for hyperfine
structure. ‘

For larger » the last term in the second Eq.
(3.5) can be neglected, and the equation just
mentioned yields then an expression for f in
terms of g which, when substituted into the first
of the two Egs. (3.5), gives a second-order
equation in one variable g. In this one can
replace the denominator 2/8+1+4a?(e+1/7) by
2/B for r>a? and even for smaller r. Replacing
g by

G=rg, (4.4)
one has
a*G P'(r)dG [e+1/r P'(r)
— — l - ]G =0, (4.5)
dr* P(r) dr Py rP(n]-
where
Plr)=1/A4+a2/r)+1/(B+a?/r), (4.51)
/() =atr [ (A+at/r) 2+ (Bkat/r) ], (452)
A=24a%, B=2/84a’. (4.53)

Equation (4.5) can be discussed by standard
methods. The term in the first derivative can be
removed by the transformation

G=o/[P(r) |},

and it is found from the differential equation
satisfied by v that the asymptotic form of v is a
constant multiple of

(4.54)

r* exp(—r), (4.55)
where
v —2e(1+B)71(1+a2e/2), (4.56)
and
n=[(1+B) +a]/v. (4.57)

Equations (4.54), (4.55), (4.56), and (4.57)
determine the asymptotic value of the loga-
rithmic derivative of g for large 7.

C. Perturbation Calculation of the
Radial Functions

The calculation of g will next be made by
determining first its logarithmic derivative. The
latter will be found by means of a perturbation
calculation in which the radial equations for
B =0 serve as the reference point. The logarithmic
derivative

y=dG/Gdr (4.6)



1030

is expressed in terms of

y0=dG0/God7’ (461)

as

y=y0+08y. (4.62)

It is found from the second-order differential
equation by first converting to the Riccati type
of equation in ¥ and then introducing the inte-
grating factor corresponding to the terms linear
in &y that

d
d—(Go2P6y) +Go?P {6 (e+1/r)/P—P'/rP]
r

+308(P'/P)+(8y)*} =0,

where the following conventions are employed:
(a) all quantities with the exception of € are
functions of 7, (b) the quantity P’ is the deriva-
tive of P with respect to 7 in agreement with
the notation of Eq. (4.52), (c) the symbol §
before a parenthesis or a bracket indicates that
one subtracts from the quantity in parentheses
or brackets the value of the quantity for §=0.
Since according to Eqs. (4.56), (4.57) the quan-
tity &y is finite at »= «, and since G¢* vanishes
exponentially at = o, one can neglect the value
of G??Pdy at r= ». Integration of Eq. (4.63)
yields, therefore,

(4.63)

Go2Poy = f GP o[ (e+1/r)/P—P' JrP]

+y08(P’'/P)+(8y)*}dr. (4.64)

The determination of the effect of 8 has been
now put into the form of obtaining a solution of
an integral equation which is suitable for itera-
tion. The process of joining smoothly the branch
of g extending to »= « with the branch starting
at =0 involves an adjustment of de. The joining
of the two branches of the curve will be made at
r=0a?, which is the value of » in units of Bohr
radii, which corresponds to the classical electron
radius €2/mc?.

The right side of Eq. (4.64) contains under
the integral sign the quantity &y, which has to
be determined. The practicability of employing
the above equation depends on the fact that the
first-order result which is obtained by neglecting
(8y)? in the integrand yields a small value of &y
if the adjustment of e is made so as to secure
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smooth joining of the two branches of the wave
function.

Neglecting (6y)? under the integral sign of
Eq. (4.64) for the present, one obtains

0

oy=(Ao+ta?/r)r2ee> f rer

>

X {oe+(8/2)[1—(2/r) —a*(r—2—r)]
+a28/[2r2(Ao+a2/r)]}dr. (4.65)

In addition to the approximation, consisting of
neglecting quadratic effects, which has already
been mentioned, the following approximations
have been made at this stage: (a) A term in
yoa’3%/r? has been omitted since it occurs side by
side with a term in y¢8a?/7%; (b) The quantity
Ba2(1—a?)¥~2 has been replaced by Ba?~2; (c)
The energy e has been expressed as —%—a?/8.
By means of Eq. (4.65) one finds by straight-
forward calculation

Sy=(14a2/2r) {(6e—pB/2)[1/2r*
+1/r+a2e? Ei(—2r)/2r®
+1—(a2/2)(1/r+3/2r2) J+B8[1 — a2/4r?

+ale¥ Ei(—2r)/47%]}, (4.66)
where

—uEi(~x)=f (e7#/x)dx. (4.67)
T
In this calculation termms of higher order than
o?8 have been dropped, with the exception of
those containing «!B8Ei/7?, since it is not clear
without further considerationythat their effect
is negligible. In the evaluation of the integral of
(2+a?/r)"texp(—2r) the factor exp(e?) multi-
plying the Ei has been dropped. This term is
multiplied by &*8. Inclusion of the factor exp(a?)
would amount to taking into account effects of
order a3 and it is not done for this reason.
Equations (1), (1.1) are not valid at very
small 7. If the interparticle distance becomes
small enough, and if the Coulomb force is
assumed to act at small distances, then the
velocity of both the proton and the electron
becomes comparable to the velocity of light, and
there is no reason for expecting Eq. (1) to apply
under such conditions. Equations (1.1), which
are obtained from Eq. (1) by omitting the term
in ¥, are also not directly applicable at »=0. If
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one had to rely on Eq. (1) altogether, it would
be impossible to obtain a solution with any
certainty.

It is questionable, however, whether the
Coulomb law is valid at distances much smaller
than e?/mc% There is a definite indication of a
modification of the inverse-square law of force
at this distance for two protons, and whether

the origin of the specific proton-proton force at

short distances be of the nature of a meson or
some other type of field, it would not be sur-
prising if the force between a proton and an
electron should also turn out to be modified at
distances comparable to those at which proton-
proton interactions set in. In view of the likeli-
hood of the absence of a strong increase in the
velocity of the proton at distances smaller than
the electronic radius and the gain in definiteness
of discussion which results through the removal
of the problem of finding a suitable Hamiltonian
for the description of the motion of two rapidly
moving point charges, it will now be assumed that
at distances smaller than e*/mc?* the potential
energy —e*/r is modified so as to be approxi-
mately constant. For simplicity it will be taken
to have a constant value —mc? for 0 <r <e?/mc?.
- The conclusions do not depend, however, on
whether one takes the potential energy to be
exactly constant in this range of values of 7
or not. -

Inasmuch as the last term in the second Eq.
(3.5) is of the order o?8 of the first, it will be
neglected in the calculation that will be made
now. Since f<g, the effect on the term in
d(r*f)/r*dr in the first of the two Eqgs. (3.5) is
small. One obtains in this manner, on elimination
of f, a simplified special case of Eq. (3.5)

@*G/dr*+K*G=0, (4.68)
with
K?=(1+a%)a[1/(3+a%)
+(8/2)(1+B8+a*Be/2)71 ], (4.69)
so that
ry=Kr cot(Kr)=1—K%?/3+4---. (4.7)

Substituting K? and evaluating for » =«?, one has
(7Y) rmar=1 — a2+ 3a28/2. (4.71)

On the other hand, the solution for the ground
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state corresponding to 8=0 is, apart from a
normalizing factor common to f and g,

fom ~ (1= p)rete;

(4.72)
go=(1+p)trr—te,

where p is as explained in the list of notations
following Eq. (1). It follows that

y0=P/7’—‘1, (”’3’0)7-=a2=(1—a2)"—a2

=1—3a2/2. (4.73)

Combining Eqs. (4.71) and (4.73), one obtains
(76Y) rma2 = a2/2+3a28/2. (4.74)

In this formula the first term o2/2 has to do with
the modification introduced by changing the
inverse first-power potential to a constant in the
range 0<r<o? It has nothing to do with the
effect of the mass of the proton on &§y. Its
inclusion in the calculation would correspond to
making a combined estimate of the effect of the
proton’s size and of the effect of nuclear motion.
In order to keep the two effects separate from
each other, only the part of 8y containing 8 will
be kept at this stage. By separating the effects
in this manner one obtains the effect of changing
B from 0 to its experimental value. A slight error
is introduced at this point through the employ-
ment of the functions given by Eqs. (4.72) .
rather than functions corresponding to

(78Y) rma?, o= %/2, (4.75)
which correspond to infinite proton mass and a
constant potential energy in 0 <r <a?. The differ-
ence between these functions and the functions
of Eq. (4.72) is very slight, however. The right
side of Eq. (4.66) is equated, therefore, to 33/2,
which is the part of §y corresponding to the
term containing B on the right side of Eq.
(4.74). Calculation gives then

B (1/4a*) — Ei(—2a?) (exp2a?) /4

2 (1/20)+(1/40?)
+Ei(—2a?) (exp2a?) /2a2+1/2

4.8)

=~(a’/2)[1—-2a2Ei(—2a?%) —a?/2],

and the value of the first-order effect 8y corre-
sponding to this value of 6e—(8/2) is obtained
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from Eq. (4.66) as
5928 (14+a2/24a?/r
(/27" [ Ei(—27) — Bi( —2a%) ]

(AN Ei(—2a2) ). (4.81)

The factor 8, which is present in all terms of the
above formula, makes the result small, and the
quadratic term in the integrand of Eq. (4.64) is
negligible on account of the presence of the
factor 2 This is the result of making §y small
atr=oa’

The integral which matters for the hyperfine
structure splitting is

wagdr.

The effect of §y on this integral can be broken
down into: (a) The presence of the factor
exp(JS(8y)dr) in both f and g, which results in
a net factor exp(2/7(8y)dr), (b) an extra term
arising in f because it is expressible in terms of
dg/dr, so that the exponential just referred to
brings in an extra term on differentiation. The
correction factor to the integrand resulting from
both causes is

(4.82)

[1+(gudr/dgo)dy ] eXp[Z f (5y)dr],
which on substituting go becomes
[1—(4a2/2r)"16y] exp(?.f 5ydr). (4.83)

This correction factor does not include the change
in the normalization constant. It will be simpler
to take this change into account later. It will
first be explained that in Eq. (4.81) the only
important term inside the brace is 1. The other
terms give effects of the order o?8. For r=a? the
largest additional term inside the brace is that
containing «?/r. In the exponent of Eq. (4.83)
it brings in a factor, 2¢?8 logr, which is entirely
negligible in a larger range of values of 7 than
a2 <r <103, For the factor multiplying the expo-
nential in Eq. (4.83) the term in o?/r has the
effect of multiplying the integrand by 1—pga?,
which is a negligible effect. At r=a? the effect
is greater, but an estimate of it shows that the in-
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tegral of Eq. (4.82) is changed by the fractional
amout — a8 In 2a?, which is also negligible. The
term in square brackets containing FEi(—27r)
vanishes at r=a% The square bracket changes
slowly at » = a?, because at small 7 the dependence
of the Ez-function on its argument is logarithmic.
The effect of the square bracket is thus also
negligible.

It is thus seen that the effect of 8 on the
integral of Eq. (4.82) is to multiply it by the
factor

f (1—8) exp(28r) fogodr

f fogodr

f(f02+g02)1'2d7
>< )
f(f02+g02) exp(26r)ridr

correction factor =

(4.84)

all integrals being taken from 0 to «. To within
first-order terms in B this is simply (148)73.
The justification for employing the integral of
Eq. (4.82) is given in the next section.

D. The Hyperfine Structure

The expectation value (Y), of the operator ¥
of Eq. (1), will now be computed. One has from
the first Eq. (1.1) with the aid of Egs. (1.6) and
(2.4)

®=[(po+Mc)™" — (po+Mc)~*(ep+pmc)
X (pot+Me)~* J(oup)¥, (5)

where the subscript e is dropped and c.g.s. units
are used. The operator cp, is

cpo=(M-+m)ct+e+e?/r. (5.1)

The first term in Eq. (5) contributed the main
part of the expectation value. The second term
contributes a correction of order 8. Relationship
to familiar expressions is secured by means of

the approximation
cpo=Mct. (5.1)

This approximation is not good enough for the
evaluation of contributions arising from the first
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term on the right side of Eq. (5), but suffices for
the calculation of effects arising from the second
term. The integral representing (V) contains &
linearly, and the approximation made in Eq.
(5.1") is taken care of for the first term of Eq.
(5) by the correction factor

2M/(2M~+m) =1/(1+8/2). (5.2)

The quantity e+e?/7 in Eq. (5.1) contributes
terms of the order o? in comparison with mc2.
The correction factor of Eq. (5.2) is, therefore,
good enough. The second term of Eq. (5) can be
taken into account by noting that commuting
ap~+Bmc with (po+Mc)™! brings in terms of
still higher order and

(ap+Bmc) Y= —mc 'V,

The correction factor brought in by the second
term of Eq. (5) is thus

1— (—mc)(2Mc) /(2 Mc)*=1+8/2. (5.2')

Combining this correction factor with that of
Eq. (5.2) one obtains a correction factor of
unity to within terms of order o?@. It is, there-
fore, good enough to calculate with the simple
approximation of Eq. (5.1’), which corresponds
to

= (oup)¥/(2Mc). (5.3)

One obtains in this manner

2V)= (e2/2M0) f [ (aom) /7

+ (ar) (1) /73 J(0up)¥ +comp. conj.}dr,

where comp. conj. stands for the complex conju-
gate of the immediately preceding expression.
Linearizing in o one obtains

@)= (e2/2]c) f (¥Tr1(ap) +ir-on[aXD]

+773(ar) (rp+i[r X plon) J¥

+comp. conj.}dr. (5.4)

The value of this quantity is calculated for the
state in which the 2 component of ¢/2, which
represents the nuclear spin, has the character-
istic value 3 and in which the projection of the
electronic angular momentum on the z axis is

also 4. This state is one of the three magnetic
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levels with hyperfine-structure quantum number
f=1. It suffices to calculate (Y) for this state
because according to well-known relations it has
the same value for the other magnetic:levels of
f=1; the value of (V) for f=0 is known to be
(—3) times the value for f=1. Straightforward
substitution and calculation gives

(V)= ——(87r/3)(e2h/Mc)f fedr. (5.5)
0
The normalization is supposed to be

41rf (f2+ed)ridr=1. (5.5)
[}

The integral of Eq. (4.82) is seen to occur in
Eq. (5.5). The normalization integrals of Eq.
(4.84) are also seen to be in agreement with
Eq. (5.5"). It remains to evaluate the right side
of Eq. (4.84).

The factor (1—p) exp(287) of the first integral
in the numerator of Eq. (4.84) just suffices to
change it into the first integral in the denomi-
nator by a change of variable

'=r/(14+8), (5.5")

which corresponds to the non-relativistic effect
of expansion of the wave-function space in the
ratio (148):1. A slight inaccuracy is involved
at this point. The factor [1+4(a?/2)(e+1/7)]
in the expression for f in terms of dg/dr does not
have its 1/7 changed into 1/7’ by the transfor-
mation of Eq. (5.5”). The error involved in this
inaccuracy is of the order o?8 and will be neg-
lected. It may be well to recall here. that the
whole term (a2/2)(e+1/7) could be omitted
without affecting the result to more than terms
of relative order o2 and that Fermi's well-known
result involving the Schrédinger ¥2(0) has been
obtained in this manner. The ratio of the first
integral of Eq. (4.84) in the numerator to the
first integral in the denominator is thus unity to
within terms of relative order o?8. The ratio of
the second integral in the numerator to the
second integral in the denominator can again be
considered by means of the transformation of
Eq. (5.5"). The factor exp(28r) suffices for the
change to 7’ in g,® and within errors of relative
order 28 or 82 in fi2. The conversion of #%dr in
the denominator brings about the appearance of



1034 G.

the factor (14-8)® in the denominator, which
amounts to 1/(1+8)3 for the correction factor.

Another way .of explaining the result just
arrived at is to note that the factors (1—38) and
exp(2@r) in the first integral in the numerator
of Eq. (4.84) suffice to make the integrand
(a/4)dg?/dr with an error of relative order o283,
while the factor exp(28r) makes the second
integrand of the second integral in the denomi-
nator in the same approximation as previously
g%?. Similarly, the integrands of the first integral
in the denominator and the second integral in
the numerator are f,g, and g¢? respectively. The
right side of Eq. (4.84) is thus g2(0)/g*(0). The
difference between g2(r) and gg(r), aside from
normalization, is that

g(r) = const.go(r/(1+6)).

Since the normalization of g? is obtained by

division by
47rfg2(1')72dr=41r(1+ﬂ)3fg02(r)r2dr,

the correction factor is (148)-3.

In both explanations f?/go* has been neglected
in the normalization integral. The error intro-
duced by doing so is represented according to
Eq. (3.5) by the factor

1—(a2/4) f (dg/dr)*rdr / f ridrl —a?/4.

~ This factor is compensated for, however, by the
fact that
fo=—(a/2)(1+a?/4)g.

The remaining inaccuracy is thus represented
to relative order a? by the factor

[ f (rr=ter)dr / f 72(7”"’e—’)2dr]
fren/ o]

=[T(20—1)/T(2p+1)][I'(3)/T(2)]
=1/(2p*— p)=1+-3a?/2,

in agreement with the exact result? for 8=0.
A check on the validity of the factor (148)—3
can be obtained by going to the extreme case of

(5.6)
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two equal masses. For this case the problem has
been essentially worked out previously.” The
scheme employed a limiting process in which the
potential energy —e?/r was first replaced by a
function —e?{1/r} which was kept finite at »=0.
The range of values of » within which the func-
tion was assumed to differ from —e?/7 was made
to approach zero, and the value of the function
at =0 was made to approach «. At all stages
in the limiting process the Laplacian of the
modified function was well defined. In the limit
it approached a multiple of the Dirac § function
as below,

limA(—e2{1/r}) =4mwe2s(r). (6)

The spin interactions between the particles were
brought in by a generalization of the operator Y.
The expectation value of the perturbing energy
for parallel spin orientations was calculated to
be the same as that of

H' = —(e*h*/6M*c?)A{1/r}, (6.1)

where M is the common mass of the two particles
with the understanding that the unperturbed
Hamiltonian is that of the non-relativistic
Schroédinger equation. The expectation value of
H’ is, therefore, according to Egs. (6), (6.1)

(H")=(87/3)(he/2Mc)*} s*(0)

=(E1—Eq)/4, (6.2)

where ygs is the non-relativistic Schrédinger
function for the relative motion of the two
particles. The energy difference between levels
having fine quantum numbers f=1 and 0 should
be 4 times the above (H’), as is also indicated in
Eq. (6.2). Since #e/2Mc is the magnetic moment
appropriate to each particle, according to the
Dirac equation which was supposed to be obeyed
by each particle, this result is in agreement with
Fermi’s formula

Eipy—Eiy=(87/3)(2+1/1)puoy s*(0),

where ¢ is the nuclear spin and pu, uo are, respec-
tively, the magnetic moments of the nucleus and
the electron. In the present case Z=12. According

(6.3)

7G. Breit, Phys. Rev. 51, 249 (1936), see Eqs. (17.7),
(17.8). These are practically the same as the equations for
spin-spin interactions of electrons referred to in reference 4.
Ibid., 53, 153 (1938) pp. 159-160 discusses the relations of
Casimir, Physica 3, 936 (1936).
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to Eq. (6.2) the hyperfine-structure splitting
depends on the mass of one of the particles partly
through u and partly through ¢%(0). The latter
dependence is taken care of by the transforma-
tion of Eq. (5.5""), which brings the factor
(14B)~2 into the answer.

III. THE PAULI PART OF THE MOMENT.
THE DEUTERON

Since the proton does not have a magnetic
moment which would be expected for it according
to Dirac’s equation, it is necessary to take into
account the additional moment of ~1.79 nuclear
Bohr magnetons. An understanding of the origin
of this addition is lacking, and the additional
moment will be treated, therefore, as an intrinsic
property of the proton. Pauli® gave an equation
suitable for the representation of a particle obey-
ing an equation of the general Dirac form but
having in addition to the Bohr magneton an
intrinsic moment. The excess of ~1.79 nuclear
Bohr magnetons will be represented by a term in
the Hamiltonian of the type invented by Pauli
and will be referred to as the Pauli part of the
proton’s moment. The part of p corresponding
to it will be referred to as up. The interaction
with an external field is represented by an
addition to the Hamiltonian

Hp' = pp[ psar(3Coar) — par(Eonr) |, (7)

where for a discussion of a single particle p2, ps
are four row four column matrices introduced
by Dirac in his original notation. The matrix p;
is the same as B.- The matrix p, is

00 — 0
00 0 —i

PP=l s 0 0 0 (7.1)
0 i 0 0

In Eq. (7) the matrices o) are four row matrices
in the proton index identical with Dirac’s vector
matrix . For two particles psy operates on the
proton indices as though there were no electron
and is diagonal in electron indices. For a single
particle in an external field Eq. (7) gives a
rigorously consistent relativistic description. If
the electron’s motion could be considered as
preassigned one could substitute for § and 3C the

8 W. Pauli, Handbuch der Physik (Verlagsbuchhandlung,
Julius Springer, Berlin, 1933), Vol. 24/1, p. 221.
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values for the electric and magnetic fields at the
proton produced by the electron without bringing
into question the propriety of employing Eq. (7).
Since the electron’s motion is not preassigned,
however, one has to examine the errors intro-
duced by borrowing an interaction Hamiltonian
from single particle theory.

In employing Eq. (7) for two particles, the
proton’s equations of motion are still formally
correct. The addition to the x component of the
force on the proton brought about by Hp’ is

8P = (4/B)[H', pm]= — o[ pasr(0d3C/ 3% 2r)
' — pon(0188/3x) ], (7.2)

corresponding to magnetic moment —uppsyon
and electric moment uppayoy. For a proton at
rest the magnetic moment is represented by
wpoy, and there is no electric moment. The
densities of electric- and magnetic-moment
distributions can be verified to transform them-
selves correctly under Lorentz transformations.
The relation between & and ay is left undis-
turbed by Eq. (7). From the point of view of the
correspondence principle the proton’s motion is,
therefore, represented satisfactorily by Eq. (7).
For the consideration of the electron’s motion
Eq. (7) would be exact if the proton could be
considered as stationary. The operator, psu,
would then be equivalent to multiplication by
—1, the operator psy to multiplication by 0.
The interaction Hamiltonian in this limit be-
comes the same form as that commonly used for
a stationary nucleus. It is well known that this
form represents satisfactorily the electron’s mo-
tion, the expressions for 3¢ at the nucleus in
terms of Dirac’s « matrices for the electron
being just right to make the magnetic vector
potential of the nucleus appear in the right
linear combination with electrons momentum
operator. The inaccuracies of Eq. (7) for the
discussion of the electron’s motion have their
origin, therefore, in the finiteness of the velocity
of the nucleus. For a slowly moving nucleus
these inaccuracies are small, because so far as
the motion of the electron is concerned only the
retardation of the effects of the nucleus at the
electron caused by the finiteness of the velocity
of light is neglected by the employment of Eq.
(7). The retardation effects of nuclear motion
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are of relative order (m/M)2%(v*/c%), where v is
the electron velocity, and are negligible since
v2/c% is ~a?. .

In terms of the electron operators employed
in Eq. (1)

H,' = ppel psuou[ tX a.]— pom(ros)]/rs.  (7.3)
The second term in the brackets requires special
consideration. One finds by calculation that

f Wl pat(xaar)r=3dr = (1) Mc)R.P. f Py

{(xv)+tiou[rtX V] Wdr, (7.31)

where the o5 are four row matrices in the nuclear
subscript when they multiply ¢ and two row
matrices when they multiply ¥. The quantity &
has been eliminated in this calculation by means
of Eq. (5.3). The integrand of the right side of
Eq. (7.31) depends on the orientation of the
nuclear spin only through the term in oy which
contains also the orbital angular-momentum
operator [rXp]. Non-relativistically the latter
factor is equal to zero for s terms. In the approxi-
mation of the present paper it is

(h/ M) f (—8n/3)(f/ndr,  (1.32)

the expression having been evaluated for parallel
spin orientations. This expression has to be
multiplied by (—ppe) in order to give the
contribution to the expectation value of Hp'. If
the integration in the last formula were carried
out for a value of f corresponding to a Coulomb
field, one would obtain an infinite result. For a
Coulomb potential modified so as to have finite
value for 0 <7 <e?/mc? the integral is finite, and
only a logarithmic term in mc?/e? is brought in.
The ratio f/g being of the order «, the contribu-
tion of the term under discussion to the hyperfine
structure is of the order (m/M)a? loga and may
be neglected.

It may be noted that the effect just discussed
is that of the mutual energy of the electron’s
electric field and of the nuclear electric dipole
produced by the nuclear motion of translation as
a result of the nuclear magnetic moment. In
non-quantum analogy the effect is zero for s
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terms. It is also zero in any approximation in
which L is a good quantum number.

The first term of Eq. (7.3) differs from the
interaction Hamiltonian generally employed for
a fixed nucleus only through the presence of the
factor psy. The effect introduced by this factor
is that of changing the sign of the terms con-
taining ® and is of the relative order (m/M)%a2.

The effect of the electric-dipole moment in-
duced by nuclear translation is present also for
the Dirac part of the moment. Calculation
shows, in fact, that the part of the particle-
density formula which is spin dependent when
expressed in terms of ¥ alone gives an electric-
dipole contribution of the same order as the
second term in brackets in Eq. (7.3). This effect
is also of order (m/M)a? loga.

It is seen that for the Pauli part of the proton'’s
moment the mass effect is represented by the
same factor (1+4-m/M)* as for the Dirac part
within terms of the order (m/M)a? loga.

All of the deuteron’s moment is reasonably
represented as an intrinsic one. The magnetic
moment of the Dirac type does not enter the
deuteron problem because the proton contained
in the deuteron is moving in the field of the
neutron. The circulation of the proton’s charge
contributes to the magnetic moment of the
deuteron, but its perturbation by recoil action
from the electron is negligibly small because of
the much larger force to which the proton is
subjected as a result of the forces acting on it
within the deuteron.

A few arguments concerned with physical
plausibility will be dealt with first. It will be
supposed that the neutron is not interacting
with the electron in any way except through the
rather small effect of its magnetic moment. If
the neutron’s mass were negligible and if its mass
were instead assigned to the proton, one could
construct a substitute model for the deuteron
which would behave in weak external fields in the
same way as the deuteron. To obtain this result
one would have to arrange for the magnetic
model of the model to be the same as that of
the deuteron. It is plausible to assume that such
a model will be equivalent to the deuteron in its
action on the electron. For the state with
magnetic-quantum number 3/2 this model shows
a simple relationship to the case of magnetic-
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quantum number 1 which has been worked out
for the case of the proton. The spins of the
proton and neutron are parallel to the angular
momentum of relative electronic motion. Since
the neutron does not interact with the electron
except through its magnetic moment, and since
in the present model the neutron’s mass has
been transferred to the proton, the calculations
made for ordinary hydrogen are directly appli-
cable. The only changes that have to be made
are: (a) the mass of the deuteron has to be
substituted for the mass of the proton, (b) the
magnetic moment of the neutron has to be
added to the magnetic moment of the proton.
The formula for the hyperfine-structure splitting
expected on the basis of the above model is,
therefore, the one derived by Fermi with the
modification of the factor (1+m/Mp)=>.

The applicability of the correction to deu-
terium can also be demonstrated along more
rigorous lines. The Hamiltonian for three parti-
cles can be written down so as to describe the
system of proton, neutron, and electron. The
term corresponding to ¥ of the present paper is
neglected at first. Solutions of the proton-neutron
relative motion problem are introduced. These
solutions have to be modified first for the effect
of the momentum of the deuteron. The magnetic
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momentum changes slightly, and a small electric
moment results. Both of these changes are
insignificant as in the case of the single proton.
The wave function of the whole system is
expanded in products of the internal deuteron
function and the function describing the relative
motion of the electron with respect to the center
of mass of the deuteron. Radial equations for
relative motion analogous to those dealt with
for the single proton are obtained. The term in
Y for the proton, the Pauli part of the proton’s
magnetic moment, and the magnetic. moment of
the deuteron combine into one term correspond-
ing to the magnetic moment of the deuteron.
The result of this consideration is the same as
that of the simplified model just considered.?

A preliminary report on the present work was
made at the conference on The Foundations of
Quantum Mechanics held at Shelter Island, New
York on June 2-4, 1947. The conference was
sponsored by the National Academy of Sciences
at the suggestion of Dr. D. A. Maclnnes who
has organized it. It is a pleasure to acknowledge
the stimulus derived from the conference for
finishing this work.

9 After this manuscript had been completed there
appeared a note on the same subject by O. Halpern in

Phys. Rev. 72, 245(L) (1947). The results obtained in the
present paper differ from Halpern’s.



