
P H YSI CAL REVIEW VOLUME 72, NUMBER 11 DECEMBER j. , 1947

Disintegration of the Deuteron in Flight
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A calculation is made of the cross section for the disintegration of high velocity deuterons by
nuclei in their paths. In this paper attention is centered on those processes in which there is no
direct nuclear collision, and where the disintegration is due to electric forces. The cross section
for 200-Mev deuterons proves to be of the order 2)&10 "Z' cm where Z is the atomic number
of the bombarded element. Large yields may be expected in typical cases. The two ejected
particles need not share the energy equally; neutrons of energy 75 Mev to 125 Mev may be
expected. They emerge in a fairly well collimated beam whose half-width at half-maximum
is about 4'.

Quantitatively this process proves usually to be less important than the disintegration
involving a direct nuclear collision in which one of the two particles escapes.

&. INTRODUCTION

~HE possibility that projected deuterons of
sufFiciently high energy will be disintegrated

by collision with nuclei in their paths has been
pointed out by Oppenheimer. ' His calculations
are supplemented in this paper by methods
suitable for the case of very high energy deu-
terons, such as are produced in the Berkeley
200-Mev synchro-cyclotron. A distinction must
be made between direct nuclear collisions, in
which one or both of the particles in the deuteron
collide with the nuclear matter, and electric
collisions, in which only the long-range electric
forces play a part. A detailed treatment is given
here for the latter process.

2. THEORY

We calculate the probability of the disintegra-
tion of the deuteron by the electric forces en-
countered on its collision with a heavy nucleus
of charge Ze. We carry out the calculation in

the frame in which the center of gravity of the
deuteron is initially at rest. The heavy nucleus
is taken to be incident along the x axis with
velocity v. The electrostatic potential energy of
the deuteron is

i'=~ '/L( ~ )'+( *= ~)'j'

verse to it. We write

where R is the position vector of the deuteron's
center of gravity and p is the vector from neutron
to proton. Transitions are induced from an
initial state

po =I ~ exp'(ko R) Uo(p)e's"~@

to a 6nal state

p~ ——I. &, expo(k~ R) U&(p)e's"'"

Zo and B~ are the total energies of the respective
states. For the energies involved here, the Born
approximation should give reasonably good re-
sults except for the heaviest elements. Accord-
ingly, plane waves are taken for the center of
gravity wave functions and they are normalized
to unit integral in a cube of side I.. The initial
propagation vector, , ko, will henceforth be set
equal to zero. Uo(p) is the 'S ground state wave
function of the deuteron and U~(p) is a state in

the continuum which will prove to be a 'P, as in

the usual photoelectric disintegration of the
deuteron. Uo is normalized to unit quadratic
integral and U& to unit energy.

After the collision has taken place the proba-
bihty amplitude of P& has grown (in first order)
to-a value

where r~. and r» are the components of the
protons coordinate along the x axis and trans-

' J. R. Oppenheimer, Phys. Rev. 47, 845 (1945). where fico=Z~ —Eo and Vol is the spatial part
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of the matrix element. This is

A =2i(Ze'/kv)~ ~~ dRdv

XI.'exp (ik R) Ug*(p) Uo(p)

)&exp( —i~r„~/v)Xp(car„~/v) (3)

where Xo is the Bessel function of imaginary
argument. Now the volume element may as well
be written dr„d{0 and, accordingly

2 g = (2i/L') (Ze'/kv) I„Ip,

I,= dr„exp[~(k r, cur„/ —)v]E (od/ )v,

I,= J"dp expL ~k( v)—]U~*(~)Uo(~)

Now foI d1s1ntcgI atlons of dcutclons of cncIgy
up to 200 Mev the center of gravity recoil, k, is
quite small and the product (k p/2) is well under
0.1 for the important range of the variables.
Consequently we expand the exponential and
keep only the second term (—ik. y/2). It follows
that U~ must be a 'P state with (cos9) angular
dependence about k as an axis. Ke have

I.= 2~k(p.)». —

The matrix element is that of the dipole moment
and is well known from the literature. ' We
obtain

the respective vectors. Also

I /2

dr„. exp[fr„(k.—~/v)]

= 2 sin[(k. —(o/v) L/2]/(k. —co/v). (8)

As we let L-+~, the integral (8) will result in
the restriction k, —co/v =0, which means that (7)
may be replaced by (2v/k'). Finally

I„=4m sin[(k. —co/v)L/2]/k'(k. —(o/v). (9)

Now the probability that a transition has taken
place is ~A~~' and the cross section is

o = {Ag{'L',

odegdkdQg ——(16 8v/3L') (Ze'/kv)'

x ($ /3A ) (EoE1)*/('eo+ el)

X {»n'[(k*—~iv)L/2]/(k* —~/v)'}

X(I /2v)'dkdo~{ (3/4v) cos'y}dQi.

This gives the differential cross section for
transition to a state for which the center of
g1av1ty propagat1on vcc t01 1s Ul Zk~ the dls-
1ntcglat1on cnerg'y 1s 1n AI, and thc proton s
direction is in dQ~. The factor (L /2m. )' is necessary
to convert the normalization of the wave func-
tions to unit k. The factor (3/4v. ) cos'y takes
account of the angular distribution of the ejected
protons, y being the angle between I'„and k.

Ke are not interested in the k distribution so
we 6rst integrate over that variable. If Hq is the
polar angle of k and 01 is the polar angle of the
proton direction (with the x axis as pole), then

I,= 'ikk(8/—3 M}l( o ')'/( + )"(6)'.

+sm Hy'ln cosejg](coao~) ~ . (11)

Here the integral over k has been carried out
6rst and the c11cumstance that 5~ guarantees
that contributions to this integral are restricted
to the point

=2v/(k~'+(~/v)') ('0

) dk{cos2p sin'[(k. —~/v)L/2]/k'(k. —~/v)'}
M is the proton mass, « the binding energy of
the deuteron, and e1 the disintegration energy in
state $y.

To get I~, we note 6rst that the two-dimen-
sional Integral

kj aIKl fp~ be1ng the transverse components of

~ H; Bethe and R. PeierIs, Proc. Roy. Soc, A148, 146
(1935).

Thus, when the integral over cos8J, is performed,
the variable has a lower limit corresponding to
the largest value that k may take; and this
lower limit is indicated in (11).
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The fact that k is really bounded may be
verified by going back to (7). For large k, the
integral comes mainly from small values of r„~,
i.e., from small impact parameters. Now in fact,
for impact parameters smaller than a certain
distance, R0, the collision has the character of a
direct nuclear collision. It is not our purpose to
consider such collisions in this paper. We have
therefore to restrict the values of r» included to
those equal to or greater than R0. This can be
approximately achieved by setting k,„=(1/R0);
this is certainly the right order of magnitude,
and any better specification of k, is made
difficult by the somewhat hazy character of the
separation between "nuclear" and "electric"
collisions. The sensitiveness of the results to the
details of the cut-off will be discussed in a later
section. Now Ace is the energy exchange:

ka) =ei+e +5'k'/43E (13)

The last' term, which is the energy in the center
of gravity motion, is very small and may be
dropped from (13) as far as the determination
of the lower limit is concerned. We have

(cos8g); = (e0+ei)Rp/kv = 1/I', (l4)

RD may be taken as the radius of the nucleus
plus the radius of the deuteron. The integral (11)
becomes

~v'Lgi2(3 cos'8i —1)(1—P ')+sin'8i ~ Inp] (15)

and the differential cross section becomes

0 de idQ, = (2/v ) (Ze2/$v) 2(g&j~)
Xf(epe, ') /(ep+ei)']deidQi

[-,'(3 cos'8i —1)(1—I' ')+sin'8 ini']. (16)

It is instructive to compare this formula with
the corresponding one obtained on calculating
this process by the method of virtual quanta. In
this picture the field of the passing heavy nucleus
is replaced by a superposition of quanta; each
travelling parallel to the path of the nucleus,
and each capable of producing the photoelectric
effect in the deuteron if its frequency is suAi-

ciently high.
The calculation results in the formula:

odeidQi ——(2/v) (Ze'/kv)'(5' /3f)

X [(eaei )'/(ea+ei)']dEidQi sin'8i lnI". (17)

The quantity F' is identical with I' above except
for a factor (1—v'jc')& which appears in the
denominator of the former and which makes a
negligible difference in the present connection.
Otherwise (17) is just the part of (16) that comes
from the second term in the bracket. This is to
be understood as follows. For the method of
virtual quanta to be valid, the velocity must be
sufficiently high so that the electric field is
essentially transverse and the Poynting flux
longitudinal. Now if the Poynting flux in the
field of the passing particle is separated into a
longitudinal and a transverse part, it can be
shown that the total momentum transfer asso-
ciated with the longitudinal flux is greater than
that of the transverse flux by just a factor lnI",
providing I" is large compared to unity. Thus the
first term in the bracket of (16), which will be
negligible in the limit of large values of 1, is to
be identified with the effect of longitudinal
electric fields (transverse Poynting vector). In
the case under consideration the two terms are
of the same order of magnitude, the important
values of F being in the range 2 to 3.

The first term gives no contribution to the
total cross section, but only affects the angular
distribution. Ke account for this by remarking
that a longitudinal electric field cannot by itself
break up the deuteron, since it can supply no
net impulse. However, it can change the direction
of emergence of the ejected protons. In particular
it can cause particles to be ejected in the forward
direction. Whereas there are no particles in the
forward direction for a transverse electric field
alone, in the present case of 200 Mev deuterons,
the distribution has almost a maximum in the
forward direction.

3. TOTAL CROSS SECTION

Integration of (16) over the angles gives for
the distribution in e~ .

dpi ——(16/3) (Ze'/kv) '(5'/M)

X L(eoei')'/(eo+ei)'j(dei) 1ni'. (18)

The integration over ~~ is carried out numeri-
cally. A value of R0 of 1.1& 10 "cm is chosen,
corresponding to the sum of deuteron and nuclear
radii for about atomic weight 100. This implies a
maximum disintegration energy, (e&),„,of about
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Fro. 1. N(8): Angu1ar distribution of emergent neutrons
)Number in d8 is Z~N(8)d(eos8) j.

5.6 Mev. At this energy, both proton and neutron
have very low velocities and the neglect, implied
in (1), of all interaction except the instantaneous
coulomb interaction, is here justi6ed, The result
of the integration for 200 Mev deuterGns 18

0 = 2.01 & 10 298' cm'. (1~)

The same calculation has been carried out for
185-Mev deuterons on U"'. For this case the
Born approximation is more questionable. It is
nevertheless included, since only for large values
of Z will the effect discussed here be experi-
mentally prominent. The total cross section be-
comes

0.= 1.35 &(10 29Z' cm'. (19')

The yield is most conveniently expressed by the
method of the erst reference. For 200-Mev
deuterons, A =100, the total cross section may
also be written

o =0.338Z'e'/Ms'ea.

This formula gives fairly accurately the variation
with energy in the neighborhood of 200 Mev.

If the deuteron traverses material with X
atoms/cm' and loses energy dE by ionization
then the yield of the above process in that thick-
ness is

Yield in dE= XadE/(dE/dx)

dE/dx = (4s Ze'X/ms') ln(2niv'/Q

ionization potential of about 80 ev. If we neglect
the, variation of the logarithm over a small
range of velocities, then

Yield in dE= 1.90&(10 'Z dE/eo.

Thus the yieM. per unit energy interval is approxi-
mately independent of the energy. If the deu-
teron loses by ionization an amount hE (in
Mev), then the yield is

Yield (hE) =8.72X10-'Z(hE). (20)

The corresponding formula for 185-Mev deu-
terons, A =238 is

Yield (AE) =5.85)&10 'Z(d E) (20').

4. ANGULAR DISTRIBUTION

We now wish to transform the differential
cross section into the laboratory system. %'e

propose to use as independent variables, instead
of the ei, 8i of (16), the total kinetic energy and
angle of ejection of the proton (or neutron)
measured in the laboratory system of coordinates.
The Lorentz equations of transformation are

p cos8 =y '(p' cos8' —sW/c'),
p sin8= p' sin8',

W= y
—'( —sP' cos8'+ W').

The unprimed system is the laboratory system,
the primed system is one moving in the —x direc-
tion with the initial velocity v of the deuteron.
y = (1—s'/c') &. The momenta of the ejected
proton in the two systems are p and p'. 8 and
8" are the respective total energies. The polar
angles of the momentum vector in the two
systems (the +x axis being pole) are 8 and 8'.

Since the motions are always non-relativistic
in the primed system, we may set

W' = 3Ec'+ (p') '/2M;

We may also write

p' = +pi+kk/2

the 6rst term being the momentum of the proton
(or neutron) in the deuteron system, the second
being the contribution of the center of gravity
momentum, Now

P' cosO'= +Py cosOj+ —', kk cosOg

and m is the electronic mass. I is an average the angles having been defined in (11). If we
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use the relation obtained from (12) and (13),

fikv cos8p =e~+ep+5'k'/4M

= ep+ (fi'Ip'/4M) + (pg'!M) . (22)

Ke arrive at the following:

W= Y-'[Mc' ——,'e,

aPrv cos8qak(pr. k)/2Mj. (23)

The sum of the energies of proton and neutron
in the laboratory system is thus

W„+W = (2Mc' —eo) /Y (24)

which guarantees the covariance of energy in the
collision.

Now we can show that the last; term in (23)
is considerably smaller than any other, and we
will neglect it in the following. If we add to the
resulting equation the second of (21), the re-

sulting pair is

Pr cos8~ = [Mc' —y W ——',pp]/v,
(25)

Pi siIloy =P sino.

In the second of Eq. (25), the transverse com-
ponent of k has been neglected. A numerical
study shows that this is valid for the cases under
consideration. These may be used to calculate the
Jacobian of the transformation from (or, cos8r) to
(T, cos8), T being the kinetic energy of one of
the ejected particles: T= W—Mc'. We get

deed�(cos8r)

=d Td (cos8)

X { 4T cos8/v(M—er)-'{ (1+e) (26)

where &= To/2Mcs, Tp being the initial kinetic
energy per particle. In obtaining (26) we have for
brevity neglected terms of the order (T Tp)/Mc'—
compared to unity, introducing errors of the order
of one to two percent.

Since in the present setup the deuteron is
incident in the —x direction the angle 0~ that the
emergent particle makes with the direction of
incidence is the supplement of 0 above. If we
write p, =cose~, then the differential cross sec-
tion ls

o d Td p =4 (Ze'/Sv) P (II'/M)

where

e, = 2T(1 —pp) (1+&)

+((I+35)/2 To) (To —T—
pep) ',

cos8], = [(Tp T pp/2—)/(2erTp)'](I+ p&).

Equation (27) has been integrated numerically.
Figure 1 shows the angular distribution of all
neutrons (or protons) regardless of energy, and
Fig. 2 shows the energy distribution integrated
over all angle. Both figures are for 185-Mev
deuterons on U'".

Graphical integration to get the total cross
section from Figs. 1 Or 2 yields a value of 1.31
&10 " cm' which is in reasonable agreement
with the value of 1.35)&10—"cm' found by
staying in the deuteron system. The remaining
discrepancy is due to the neglect of the center
of gravity recoil at several points.

Angle-energy distributions were also derived
for the case of 200-Mev deuterons, A =100.
There are no significantly different features from
the case presented in the figures. Again the total
cross section checks the value previously ob-
tained.

S. DISCUSSION OF CUT-OFF PROCEDURE

The numerical results obtained here are to
some extent sensitive to the details of the cut-o8'

applied to the coulomb potential at the nuclear
radius (or to the momentum transferred to the
center of gravity of the deuteron. See Eq. (14)
and preceding. ). The procedure employed above

5 ~IO Ote.
u

X [(oper') *'/(co+op) '7d TdiJ(4'/v (Meq) '*)

X (1+$) [-,' (3 cos'8r —1)(1 —I'—')
70 80 90 I 00 I IO l20

ENERGY IN L AB SYSTEM IN M EV

FIG. 2. N(R): Energy distribution of emergent neutrons
+sins8q InP] (27) { Number in dB is Z'N(E)d(B/T~), where To=92.5 Mev].
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of cutting oR the momentum transfer is equiva-
lent to replacing the singular coulomb potential
by one identical with it except for having deleted
from it all spatial fourier components with wave
number ) (1/Ro). In this way it was hoped to
calculate only the eRect of the acceleration
experienced outside Ro and to-omit all eRects
concerned with the direct nuclear collision. An
alternative procedure is to make the cut-off in
configuration space, permitting the potential to
keep its coulomb shape down to R0, then flatten-
ing it out for smaller separation. The resulting
spectrum of fourier components does not end
abruptly at (1/Ro) but contains also higher wave
numbers whose intensity depends on the precise
shape of the fictitious potential. For example, if
the potential is taken to be constant inside Ro,
the spectrum of components above (1/Ro) is of
some importance, due to the kink in the potential
at the point R0. An estimate of the results that
would be obtained with this model indicates that
the total cross section for 185-Mev deuterons
on uranium would be increased from 1.35
&(10 "Z' cm' to 2.5 && 10 "Z' cm' the estimate of
the latter number being good to about 15 percent.
At the same time the angular distribution would
be modified since the large angle scattering
processes are somewhat more dependent on the
high fourier components than are the small
angle processes. Thus the half angle would be
increased from 4.05', as on Fig. 1, to 4.4'.

On the other hand, if the fictitious potential
is cut oR in a smooth way inside R0, without the
introduction of a kink, the results are very little
diRerent from those previously calculated on
the basis of the momentum cut-off. On physical
grounds, such a smooth model seems more
reasonable for the purpose of this calculation.

The point is mentioned because a comparison
with experiment seems to indicate that the
angular distribution of Fig. 1 (when compounded
with the curve of Serber for the stripping

process) is too narrow to agree with observation.
The use of the "Hat" cut-oR would leave the
discrepancy almost as large. Although from a
theoretical point of view the question still con-
tains the uncertainty mentioned above, the
extent of this uncertainty seems much too small
to permit a hope of reconciling the calculations
with observation.

6. CONCLUSIONS

Electric disintegration of 200-Mev deuterons
occurs with fairly high probability. For example,
in a target with Z=40, the disintegration cross
section is 3.2 )& 10 " cm'. The products are
widely spread in energy, values of 80 Mev up to
120 Mev occurring with prominence. The re-
sultant neutron or proton beam is well collimated,
having a half width at half maximum of slightly
over 4';

The electric disintegration is to be compared
in importance with the disintegration involving
a direct nuclear collision in which one of the
particles collides with the nucleus while the other
escapes (shearing). Assuming that the deuteron
is so energetic as to be undeflected by the
coulomb field„-and assuming also that the average
proton-neutron separation, p, is small compared
to the nuclear radius, u, the cross section for the
shearing process is (s.ap/4). This is considerably
larger than that for the electric process, except
for very high Z. For uranium, the processes
should be of comparable importance (although
the formulae used above to estimate the cross
sections for the two processes can hardly be
quantitatively trustworthy for so large a nuclear
charge). A detailed discussion of the shearing
process will be given by Serber, to whom thanks
are due for critical discussions of the problems
treated above.

This work was carried out in part under the
auspices of the Manhattan District at the Radia-
tion Laboratory, University of California.


