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%hen a target is bombarded with high energy deuterons,
a narrow beam of high energy neutrons is produced by a
process in which the proton in the deuteron strikes the
edge of the nucleus and is stripped off, while the neutron
misses and continues on its way. The cross section for this
stripping process is 0 =-,'mRRq, where R is the nuclear
radius and Rd is the deuteron radius, or 0.=52 &)&10 "cm'.
The yield of neutrons from a —,'-in. Be target (in which the
energy loss for 190-Mev deuterons is 20 Mev) is nearly
2 percent. The neutrons come out with an energy spread
amund -', Eq having a half-width ABy=1.5(Eyed)&. Here Zq

is the kinetic energy of the deuteron, ez its binding energy.

.For light nuclei the half-width of the neutron angular
distribution is 68g=1.6(ed/Ed)&. The half-width increases
somewhat with atomic number, primarily because of the
deHection of the deuteron by the Coulomb held as it
approaches the nucleus, and, to a lesser extent, because of
multiple scattering in the target. The increase in half-width
f'rom Be to U is about 25 percent. The calculated half-
widths and angular distributions agree well with the
measurements of Helmholz, McMillan, and Sewell.

An equal number of high energy protons are produced
by stripping processes in which it is the neutron that hits
the nucleus.

I. INTRODUCTION

HERE are several processes by which high

energy neutrons may be produced when a
target is bombarded by high energy deuterons.
A deuteron passing at some distance from an
atomic nucleus, say two or three times the
nuclear radius, may be disintegrated by the
Coulomb field of the nucleus. ' Or, when the
deuteron grazes the edge of the nucleus, the
proton may strike it and be stripped off, while

the neutron misses and continues with almost
the velocity of the incident deuteron. And,
finally, a high energy neutron can be produced

by a direct collision between one of the particles
of the deuteron and a nuclear particle.

It is the second process, the stripping process,
which will be discussed in this paper. Its char-
acteristics depend primarily on the fact that the
deuteron is a very loosely-bound system, the
proton and neutron actually spending most of
their time outside the range of their mutual
forces. For deuterons of kinetic energy consider-

ably larger than the deuteron binding energy,
the collision time of the proton with a nuclear
particle will be small compared to the period of
the relative motion of neutron and proton within
the deuteron, and the momentum transferred to
the proton will be large compared to the mo-

*Originally reported at the July 1947 meeting of the
American Physical Society.' J. R. Oppenheimer, Phys. Rev. 4'7, 845 (1935); S. M.
Dancoff, Phys. Rev. '72, 163 (1947).
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mentum of the relative motion. The proton is
thus effectively stripped oB instantaneously;
there is no reaction on the neutron, which
continues its Hight with the momentum it had
at the instant of collision. This momentum is
the sum of the momentum attributable to the
motion of the center of mass of the deuteron,
plus that attributable to the motion of the
neutron within the deuteron. The former is

po ——(MEq) &, where M is the proton mass and E~
is the kinetic energy of the deuteron, while the
latter is of the order p~= (Meq)&, with ez=2. 18
Mev the binding energy of the deuteron. The
neutron will therefore emerge within an angle to
the direction of the deuteron beam of about
e (py/pp) = (eg/Eg)i 6' for Eq= 190 Mev. The
energy of the neutrons will mostly be in a band
given by

E = (p,ap, )'/2M~-, 'Eg[1a2(ed/Eg)&j
~B~~20 Mev.

The most striking feature of the stripping
effect is thus the production of a very narrow
cone of neutrons with energy about half that of
the deuterons. This prediction has been con-
6rmed on the 184-in. cyclotron in a series of
experiments carried out by Helmholz, McMillan,
and Sewell; these are reported in the preceding
paper.

It is just the narrowness of the cone which
distinguishes the stripped neutrons from those
produced by direct nuclear encounters, although
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the total number of neutrons from the two
processes are expected to be about the same.
For the latter, the formula for the characteristic
angle would have, in place of e&, an energy e of
the order of the kinetic energy of particles in
the nucleus, ~„20 Mev. The cone would be
over three times as wide, and, since the intensity
in the forward direction is proportional to. the
inverse square of the cone width, only a 10
percent contribution might be expected from
these neutrons. Furthermore, it can be shown
that in consequence of the fact that the struck
particle is bound in the nucleus, collisions with
small momentum transfers are discouraged, and
the forward intensity is smaller even than the
above estimate would indicate. The other process
which produces high energy neutrons, the dis-
integration by the electric field, has a cross
section which is proportional to Z', and small
compared to the stripping cross section except
for the heaviest nuclei. Even for U, according
to estimates by Dancoff, ' the cross section for
the electric 6eld disintegration is only one-
quarter the stripping cross section.

.If the incident deuterons have high energy,
the neutron passes the nucleus so quickly that
its displacement perpendicular to the line of
motion of the deuteron during the time of
passage is negligible. In a typical impact, the
proton will fail to clear the edge of the nucleus
by a distance of the order of the "deuteron
radius", R~ = -', 5/(Mad)'* = 2.1 X 10 " cm, while
the neutron will miss by a like distance. The
proton will strike the nucleus a distance
l = (2RRd)' in front of a.plane through the center
of the nucleus. Here R is the nuclear radius,
which we suppose appreciably larger than R&.
The neutron traverses this distance in a time
l/v, where v is the deuteron velocity. The neutron
(or proton) will have a velocity normal to the
direction of the deuteron motion of the order
(eq/M)', so its displacement in this direction is
(eq/M)V/v. This displacement is unimportant
provided it is small compared. to Rg, i e. ,
(~q/M)'*f/v&Rd, a relation which may be re-
written, remembering that Bd, ——Mv',

Eg) 2(R/Rg) ed

M. Danco6, private communication.

I
/

/
/

/

I

1

FrG. 1.

The limiting energy given by (1) is, even for
the heaviest nuclei, Bg&20 Mev.

The above argument shows that only the
(projected) positions of neutron and proton in a
plane perpendicular to the deuteron motion need
be considered in calculating the cross section:
we have only to ask for the probability that at
the instant of collision the proton will be within
a circle in this plane of radius equal to the
nuclear radius, while the neutron will be outside
it. Consider a collision in which the separation
between proton and neutron (projected in the
plane) is p. The cross section for the proton
hitting a distance x inside the nucleus, within
an interval dx, and within an interval dl along
the circumference of the nucleus, is just dxdl.
In the interest of simplicity, we suppose the
nuclear radius, R, large compared to the deuteron
radius, R~, so that the curvature of the edge of
the nucleus within a distance R~ can be neglected,
and the edge considered straight. The probability
that the neutron will miss the nucleus is just the
fraction of the circumference of a circle of radius

p which lies outside the nucleus (see Fig. 1); its
value is ///v. The total cross section for proton
hitting and neutron missing is thus

(p) =)f)l (/// )dxdl.

The integration over dl gives just the circum-
ference of the nucleus, 2mR. Since x= p cos8, we
have dx= —psin8d0, and the integral over dx
becomes

~
m//2

(p/v)
~

0 sined8= p/v,
0

so
o(p) =2Rp.

Equation (2) gives the cross section when
proton and neutron are separated a distance p.,
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to get the total cross section we must multiply
(2) by the probability of finding such a separa-
tion, and integrate over all values of p. If fd(r)
is the wave function of the deuteron in its ground
state, 1$~(r) I'dr is the probability of finding an
n —p separation r in the three-dimensional vol-
ume element dr. Thus, introducing cylindrical
coordinates, the probability of a separation p is

2mpdp d t' ds,

and the total stripping cross section is

a =2~'R, t Ifd(r)1'r'dr
~o

= (~/2)RJI r!Pd(r) I'dr, (4)

remembering that dx'=4vrr'dr. The integral in
(4) has a simple interpretation: it gives just r
the average separation of neutron and proton
in the deuteron. Calling this separation Rd, we
have for the stripping cross section

a. = (vr/2)RRg
If we take

yg= (n/2s)ie «"/r, n= (~ed)'*/Ii, (6)
0' =4% R

J
ds

—ao 0

14'(r) I'p'd p.

@le can change the variable of integration from
s to r by using the relation r'=p'+s', which
gives de = rdr/(r' p')', and —transforms (3) into

0 = 87rR
~, gg(r)1 rdr (p'd p)/(r' p') '—J, 0

The integration over p gives (m/4)r', so .finally
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FIG. 2. Neutron angular distributions for transparent
and opaque nuclei. Relative number of neutrons per unit
solid angle plotted against g= 8/80.

we find Rq=1/(2n) =2.1)&10 " cm, the result
previously quoted.

In actuality, the deuteron wave function has
the form (6) only outside the range of n p for—ces.
If the finite range of the forces were taken into
account, a somewhat larger value of Rq would
be obtained. However, in considering the strip-
ping effect we are only interested in the narrow
neutron beam which comes off nearly in the
forward direction, and these neutrons are pro-
duced in collisions in which the neutron and
proton are outside the range of their forces at
the instant of collision. Collisions which occur
with neutron and proton within the range of the
forces will give rise to a wide angular distribution,
similar to that resulting from direct nuclear
encounters, and may be lumped with the latter
effect. Thus, within the limits of unambiguity
inherent in the separation of the effects, it is
proper to ignore the finite range of the forces.

The derivation of (5) has been carried out as
if the nucleus were completely opaque to the
neutron and proton. In fact, there will be a
firiite mean-free path, of the order of 4 X 10 "cm,
for a particle to make a collision in traversing
nuclear matter. So in some cases, even though
the neutron does not miss the nucleus, it may
pass through the edge without being disturbed.
However, this effect is balanced out by the
approximately equal number of cases in which
the proton passes through the edge without a
collision.

If we take R = 1.5A&X 10 "cm, (5) becomes

0.=5A~X10 "cm'. (7)

The stripping cross section ranges from 0.1 barn
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FIG. 3. Energy distribution of
neutrons from 190-Mev deu-
terons. Solid curve, opaque nu-
cleus; dotted curve, transparent
nucleus.
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for Be to 0.3 barn for U. The yield of neutrons
in one passage of the deuteron beam through a
=6 "1n. target, such, as 1s often used 111 tllc 184-1n.
cyclotron, is I/500 for Be, I/400 for U.

There is, of course, an equal yield of high
energy protons from collisions in which it is the
neutron that strikes the nucleus, Rnd the proton
which misses.

Ke shall first calculate the angular distribution
with the assumption that the nucleus is com-
pletely transparent to neutrons. The reason, in
addition to thc 81IIlplicl ty of this case, 18 tha t
the model of a transparent nucleus is one limiting
case, of which the model of a completely opaque
nucleus is the other. Since, as we shall see, the
angular distributions to be expected of these two
limits turn out to be very little different, we gain
by the comparison a considerable confidence in
the reliability of the results. Alternatively, we
can describe the transparent case as that to be
expected in the limit of a very small nucleus,
R«R~. In our treatment of the opaque case we
consider R&&R~. Treatment of the opposite limit
therefore provides some insight into the error
likely to be caused by applying the opaque model
to hght nuclei, where R is not very large com-
pared to Rg, and effects of curvature of the edge
of the nucleus and transparency might be
expected to show,

y(p) =(I/a:))"P, expL —(i/a)p r7dr. (8)

Using (6), we find

~(p) =(«-)L(~"):/(~"+P )7,

-p(p) = (~/~') L(~«) '/(~«+P') '7

To get the total momentum of the emergent
neutron) wc h.Rvc to Rdd to p thc momentum 1n

the z direction

Po = (~&~)'LI+ (&~/8~r') 7

caused by the motion of the center of mass of
the deuteron. The second term in the bracket is
a small relativistic correction term.

If we denote by P~ the magnitude of the
component, of y perpendicular to s, the angle of
emergence of the deuteron is

~ = (Pi/Po). (I0)

The simplicity of the transparent nucleus case
lies in the fact that the distribution of neutron
momenta due to its motion in the deuteron is
just that characteristic of the ground state of
the deuteron, without any modification resulting
from adding a condition that the neutron has to
miss the nucleus.

The probability, P(p), that the neutron in the
deuteron has a momentum p in the interval dp is

~(p) = It(p) I',
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where
I'(8)dQ = (1/2pr) L8p/(8p'+8') &]dQ, (11)

8p = («/E. )'L1 —(E./8M~')], (12)

and d0=2xMO is the element of solid angle.
Or, if angles are measured in terms of 8p, l = 8/8p,

I'(f)da„= (1/2x) L1/(1+1.P)1]dn„, (13).

with Q~ =2xgdg.
A graph of 2m.P(f) is given in Fig. 2; E(f)

falls to half its maximum value at &=0.1'664.

Thus the half-width of the angular distribution
(full width at half-maximum) is fi ——2X0.7664
= 1.533, or 8)= 1.53380.

The energy of the emergent neutron is

E= (1/2M) L(pp+P*)'+Pi']
=(1'/2M) ~p"+2P.P.+p ]

Since, for the main part of the distribution,
po)&p, we may neglect the last term and write

More strictly, we should write 8=P~/(pp+ps)
However, p, is small compared to po, and since

p, is equally likely to be positive or negative, the
correction terms in the angular distribution
linear in p, /pp drop out, and we are left with a
correction only of the order (p, /pp)' «/Eg
percent. It can readily be verified explicitly that
this correction term is negligible.

The probability of a given value of P~ is

(Mpg) &dp,
P(p )2xp~dp~=~ ' 2x'pgdP~" „pr'(Mpg+pg'+ p.') '

(Mpg) &

' 2' pgdpg.
2m. (Mpg+ pg') &

Expressing this in terms of 8 by means of (10),
we find

Changing variables from p, to 8 by means of
(14), we find for the energy distribution

(pdEa)'
P(E)dE= — dE. . (15)

xt (E——',E ) '+ pug]

This gives an eriergy distribution centered around
E= ',Eq, wi-th a half-width AEi=2(«Eq)1=41
1VIev for Ep=190 Mev. A plot of Eq. (15) is
given by the dotted curve in Fig. 3.

The extreme tails of this distribution are, of
course, not to be believed, in particular the part
for which Z)Z~, which violates energy con-
servation. Here it is no longer true that pp))p,
and, concomitantly, our assumption that the
collision of the proton with the nucleus can be
regarded as sudden, with no reaction on the
neutron, is evidently no longer valid.

%'e now turn to the calculation of the angular
distribution for an opaque nucleus. Referring to
Fig. 1, we introduce the coordinates s in the
direction of the deuteron, x perpendicular to the
edge of the nucleus, and y parallel to the edge of
the nucleus. In doing the calculation analogous
to (8) we now have to impose the condition that
the neutron misses and the proton hits the
nucleus, i.e., we are to take iPq=0 unless x„)0
and x„(0.The y and s integrations in (8) are
unaltered„after performing them we are left
with a wave function which can be written

&(Pp P* x- xn) =@ '')~ f(p*', P., P.)

Xexp[(f/fp) p, '(x„—x„)]dp, ', (16)

with iP(p„p„, p,) given by (9). We next express
the wave function in terms of the momentum
variables p, for the neutron, p „for the proton:

1t will be noted that, while the angular distribu-
tion depends on p~, the energy distribution
depends on p, .

From (9) we find for the probability of a given

dx.
i dx, iP(p„, p., x., x„)
t'

J

Xexp| —(p/&) (Pu.+P.„x,)]
4 (P-'P.P.)= —&'(2x) '

i~ dP*'"-- (P*' P*)(P'+P*.)—
P~dP~

p(p*)dp*=(2/~)(M«)' . l' —dPz
~. (M"+p.'+p.*)'

L = ',Eg+ (Eg/M)'p, . - (14)
O(P„P., P., P..)

(Mpd) &

dPz.
pr(M pg+ p.')

The poles in the denominator are to be avoided
by deforming the contour of integration into the
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upper half-plane. Since ip(p, ', p„, p,) has one pole
in the upper half-plane, this integral can be
evaluated in terms of the residue at the pole.
%le 6nd

kl(Meg) *

4(p. , p., p*, p") =
(2~)'*I'(p. II')—(p*.+2P)

where
P = (Mad+ p„'+p, 2) '

The probability of a given neutron momentum

Equation (17) gives the differential cross section
per unit length of the circumference of the
nucleus. We have now to integrate around the
circumference, in analogy with the integral over
d/ in the derivation of the total cross section.
We must remember that the x and y axes rotate
as we go around the nucleus. If @ is the azimuthal
angle around the circumference, we can write

p, =p~ cos@, p„=p~ sing, d/= Rd@, and the
diA'erential cross section is

Pl(p) = 14(p. p. p. , p', ) ('.dp'

A(Mcg) l

t
dp.„

8~8+2(p 2+.+2) J (p . 2~P2)

l'I (Meg) '

82r2 P2(p 2+22)

Il(Meg) ~R
do' =—

82r2(Meg+P2)

dQ
X — dp. (18)

"o (M2~+p, 2+p2, 2 sin2@)&

(17) To get the angular distribution, we integrate
(18) over p.,

dp,
d0= (5( M~g)'* R/82'r] ( d@ — 2+pgdpg.

(Meg+ p~2+ p, ') (Meg+ p, '+ p~2 sin2y) &

To carry out the integrations, ' we change variable from P, to a new variable iP, defined by

tang= p~/(M2g+p~ sill Q)~.

The double integral in (19) becomes

~(2 2K dQ

0 "2 (M2a+P&2 sin2$) (M2g+P&2 cos2iP+Pi2 sin' iPsin2$)

2 m(2 2
sin 2'

cosiPdiP t — dQ
(Meg+p22) Med+P&2 sin2$ Med+P&2 cos2$+P22 sin2iP sin2$

42r t~i2 1 sin2IP

(Meg+Pg2)' ~2 (Mad)' (Meg+P22 cos2iP)1
cosgdIP

where l' is the same variable used in (13),
f' =p2/(M2g) ' = H/Hp. Puttlllg tl11S 111 (19) glv'es

d&r = t'RRq/Ir(1+12) Ij
&& I1—(1/2f')L(1+12) tan 'j' —1 jIdQI. (20)

It can readily be verihed that integration over
dQr again gives (5) for the total cross section.

' I am indebted to Dr. Joseph Weinberg for this inte-
gration.

Comparing (20) and (13), we see that the
angular distribution for the opaque nucleus
differs from that for the transparent. nucleus by
the factor in the curly bracket. The angular
distribution given by (20) is also plotted in Fig.
2, and we see the two distributions are not very
different. The half-width given by (20) is
Og = 1.6010p, only 4 percent wider than that given
by (13). The distribution (20) has a higher tail
at large angles than (13), an eifect that can be
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interpreted as caused by the additional diffrac-
tion of the neutrons around the edge of the
nucleus.

The calculation of the energy distribution of
the neutrons parallels the derivation of (15).
We first integrate (18) over p~; this integral is
elementary, and gives

p~dp*

(Meg+p, '+p ')(Meg+p, '+ p ' sin'@)'

1 I'1+cospp
in[2(~~a+P.')i cos'y cosy k1 —cosy'

The integration over p gives just a numerical
factor, which is equal to m'. Finally, changing
variables from p, to E by means of (14), (18)
becomes

The energy distribution (21) has a half-width
AEq ——1.533(Zqeq)', i.e. , AE, =31 Mev for Bd, ——190
Mev. A plot of the enelgy dlstrlbutlon for this

TIQNS
S

deuteron energy is given by the solid curve in

Fig. 3. It will be remarked that some neutrons
are to be expected with an energy considerably
larger than ~Kg. 3 percent of the area of the
curve lies between 150 Mev and 190 Mev.

Comparison of (15) and (21) shows that the
energy distribution, unlike the angular distribu-
tion, is appreciably different in the transparent
and opaque cases, the latter giving a narrower
distribution.

IV. EFFECT OF THE COULOMB FIELD ON THE
ANGULAR DISTRIBUTION

The obsel"ved half-widths of the neu tron
distribution are found to increase slowly with
atomic number. This effect can be understood
as being caused by the nuclear Coulomb field,
which deAects the deuteron slightly before the
stripping process takes place. There are two
sources of deflection. The first is an intrinsic one:
the bending of the deuteron's orbit in the field of
the nucleus at whose surface the deuteron is
stripped. The second is due to the finite thickness
of the target; multiple scattering produces a
fanning out of the deuteron beam as it traverses
the target. The angle of deflection attributable
to the 6rst cause is4

0,=Zp/2Zg,

Ch

a 0.5

Z 04

0.5

0.08 O, l 2 0,I6 O. 20 0.24
Q f rs4.}~

where Zb ——Ze'/R is the barrier height. For
190-Mev deuterons bombarding U, 0,=0.037.
The angle of deflection caused by multiple
scattering in passing through the target can be
calculated from the usual formula'; the results
for a number of elements are tabulated in the
preceding paper by Helmholz, McMillan, and
Sewell. Although both angles are small, they
are by no means negligible compared to the
width of the neutron distribution.

Since the angular distributions given by (20)
and (13) are very little different, we shall

simplify our treatment of the Coulomb effects
by treating the transparent nucleus case. The
results can then be translated to the opaque
case by multiplying by the factor by which (20)
and (13) diifer.

FIG. 4. Measured and calculated angular distributions
for Be and U targets. Experimental points from measure-
ments by Helmholz, McMillan, and Sewell. Curves for
opaque nucleus (solid line) and transparent nucleus
(dotted line) are included for comparison.

4Since Ze'/tv=i. 5 for 190-Mev deuterons and a U
target, it seems adequate to use a classical description to
obtain an estimate of the spreading due to the Coulomb
6eld.

5 E. J. Williams„Proc. Roy. Soc. 169, 531 (1939).
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ANGULAR DISTRIBUTION OF NEUTRONS

FROM CU TARGET

FIG. 5. Measured and calcu-
lated angular distributions for a
Cu target. Solid curve, opaque
nucleus; dotted curve, trans-
parent nucleus. The fact that at
large angles the experimental
points lie above the curves is
presumably due to the produc-
tion of neutrons, with a wider
angular distribution, by pro-
cesses other than stripping.
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We first treat the effect of the deHection by
the field of the nucleus which does the stripping.
Using the same coordinate system employed in

the calculation of the angular distribution from
an opaque nucleus, the effect of the bending of
the deuteron's orbit is to give the neutron an
added momentum p00, in the x direction. The
distribution function (9) is altered by having p,
replaced by P —p08, . Equation (13) is changed to

I'(I.)dn, =,
2~L1+I' sin'0+(I cos9 —I,)']&

(22)
21r dp

"0 2s.L1+12+f.' 2 I g. cosP—g*

I .=PotI./(~«. )'=kE~/(&«~)'

The integral appearing in (22) is a Legendre
function' of argument

i+|-2+|-2

N=
L(1+I2+I 2)2 —4I'~I' 2]-'*

uU'g(u)
&(I)dftr = — - -—dQ|..

2s(1+I'+I ')'*

The function Pq(u) is given by the rapidly

See, for example, E. T. Whittaker and G. N. Watson,
A Course of 3IIoderrI, Analysis (Cambridge University Press,
Teddington, England, 1920), p. 314.

convergent series

3 (u —1y 15 ~u —1y '
~, ( ) =1+-I

44 2 ) 64'i 2 )
35 pu —1y '

2564 2

For the purpose of making the further correc-
tion for multiple scattering, it is more convenient,
and sufficiently accurate, to expand the integrand
of (22) in powers of I,. This gives

P(I)dn, =r 1/2~(1+ I2):5

&& I1+|.'f~(I )+I'f~(I ) Id~r (24)
where

f (t) =3(!I'- 1)/2(1+1')-',

f2(l) =15L1 5I2+(—15/8)I4]/8(1+0)4

Since (22) is symmetrical in I and f„a better
approximation for g&t, can be obtained simply

by interchanging i and I, in (24).
The effect of multiple scattering is to give the

deuteron beam, after traversing a thickness t of
the target, a Gaussian spread of directions with
a mean-square angle of scattering proportional
to t. The angles 0, quoted by Helmholz, Mc-
Millan, and Sewell are the root mean-square
angles after traversing the full target thickness,
'l. At thickness t, the mean square angle of the
Gaussian distribution is thus e, t/T, or expressed
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in terms of the spread in ], f,'t/T, with
f,= l», (Zq/e~)». The effect of spreading the distri-
bution (24) by this additional Gaussian distribu-
tion is given by applying to (24) the integral
operator G = exp I (i,'t/4T) 6 I, where

is the Laplacian operator. Since the width of the
Gaussian distribution is small compared to the
width of the distribution (24), the exponential
can be expanded, and the operator written

2$ g 4)2

G= 1+—6+——A2

4T 32T'

Averaging over the thickness of the target, we
get |

G= 1+—g, '6+---j,,46' .
8 96

Applying this operator to (24), and to the
corresponding formula with g and g, inter-
changed, we find

Equation (25) gives the neutron angular
distribution for the transparent model; the
formula for the opaque model is obtained by
multiplying (25) by the correction for the
opacity of the nucleus, the factor in cur.'ly
brackets in (20).

The increase in half-width caused by the
intrinsic scattering is, in first approximation,
proportional to f',2, i.e. , to Z~' Z'/R' Z'/A».
The increase caused by multiple scattering is
proportional to f,2, or, for given target thickness,
to Z'p/A. Because of the factor p this is not a
smooth function of atomic number. With the
—,', -in. thick targets used in the experiments, the
intrinsic Coulomb effect contributes between
90 percent (in Be) and 60 percent (in U) of the
total increase in half-width.

The Coulomb field will widen the proton
distribution even more than the neutron distri-
bution, since the proton in leaving the nucleus
is bent through twice the angle the deuteron is
in approaching it. The intrinsic Coulomb effect
here is much larger than the multiple scattering,
and the angular distribution can be obtained
from (23), with i, replaced by 3$,.

An additional, smaller effect of the Coulomb
field has been pointed out to me by Professor
McMillan. The kinetic energy of the deuteron
when it reaches the nucleus has been reduced by
the amount E~. Thus B~ in the foregoing formulae
is to be taken not as the bombarding energy
(corrected for energy loss in the target), but as
this minus B&. An interesting consequence is
that the center of the neutron energy distribution
will be shifted to lower energy by an amount
—.', E» (7 Mev in U), while the proton, since it
regains the energy Ef, in escaping, will have its
energy distribution shifted upwards by this
amount.

Figures 4 and 5 show the calculated neutron
angular distributions for targets of Be, U and
Cu, and the distributions measured by Helmholz,
McMillan, and Sewell. Figure 3 of their paper
shows the measured half-widths for a number of
elements, and the calculated half-widths The
agreement is seen to be quite satisfactory.

A word remains to be said about the neutrons
produced by the Coulomb-field disintegration
of the deuteron. As previously mentioned, esti-
mates by Dancoff indicate that about one-
quarter as many neutrons would be produced in
this way as by stripping. Qi'hether, and to what
extent, the experimental data might be taken to
show the smallness of such an effect depends on
the expected angular distribution of the neu-
trons. This will be the subject of a forthcoming
paper by Professor Dancoff, whom I wish to
thank for a number of discussions of the electric-
field breakup, as well as of the stripping effect.

I am indebted also to Mr. T. B. Taylor, who
carried out most of the computations.

This paper is based on work preformed under
Contract No W—7405—Eng —48, with the Atomic
Energy Commission, in connection with the
Radiation Laboratory, University of California,
Berkeley, California.


