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In view of the approximations made in the
assumptions and the (slight) observational errors
both methods agree in showing no certain varia-
tion of the modulus for periods between 4 sec,
and 28 sec.

IV. CHECK ON CALCULATIONS OF
MOMENTS OF INERTIA

If we assume that this result is established by
method (2) we may of course reverse method (f)
to give a valuable check on the correctness of the
ca,lculations of the moments of inertia of the
inertia system S3 and the bar which forms a part
of it. Thus, for each suspension, if in the experi-
ments there is no appreciable change of modulus
with frequency or tension, we should have

Xs/IC~ ——(lg/4) (Ts/Tg)',

where Zg and Eg are the moments of inertia in

cases 8 and A, vis. , 19.65)&10' g cm' and 2.341
X 10' g cm'. (The I negligible j moment of inertia,
ca. 0.33,g cm', of the holder is included. ) The ratio
Es/X~'=8. 395; while the ratios fg/ls(TB/TA)'
for the three suspensions are 8.413, 8.395, and
8.377, with the mean 8.395, exactly equal to
Zs/Z, .

This work has been done in the Norman Bridge
Laboratory of the California Institute with facili-
ties provided by the University of California, the
Institute, the Carnegie Institution of Washing-
ton, and the National Research Council.

We have desired to make further observations
on German silver, with wires of different diam-
eters and in the frequency range between our
higher and lower values, as well as precise obser-
vations on other substances; but the pressure of
other work has hitherto prevented this.
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Weinstein's modification of the Ritz principle is used to derive (1)a lower bound for the n-th
energy-level of a quantum mechanical system if a lower bound for the (n+1)-st level is known;
and (2) an upper bound for the n-th level if an upper bound for the (n-1)-st level is known.

1. INTRODUCTION

Y applying the Ritz variational principle to
the equation

(H—X)'P = Wig (&)

Weinstein' was able to obtain both lower and
upper bounds for the energy levels of the
Schroedinger equation

(2)

The chief theoretical weakness of this method is
that it gives no hint as to which one of the energy
levels the bounds obtained refer to.

'D. H. Weinstein, Proc. Nat. Acad. of Sci, 20, 529
(1934).

Stevenson and Crawford" have made use of
Weinstein's method in an improved form to es-
tablish a theoretical lower bound for the ground-
level of the helium atom. In their calculations
both the lower and upper bounds obtained lie
well below the experimental value of the second
energy level and therefore, of necessity, refer to
the ground state-.

In section 2 of the present note the method of
Stevenson and Crawford is generalized to give a
lower bound for 8„ if a lower bound of B„+1is
known. Since no general theoretical method is
available for determining the latter, its value may

'A. F. Stevenson, Phys. Rev. 53, 199 (1938).
3A. F. Stevenson and M. F. Crawford, Phys. Rev. 54,

374 (1938),
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have to be taken from experimental data. The
process can be repeated and lower bounds for
E„», E„2, ~ B» obtained in succession.

In section 3 an analogous procedure leads to
an upper bound for E„(and by iteration for
8„+2, Z„+2, ~-) if an upper bound of Z„ i is
known.

2. LOWER BOUND

If we use the notation

AA„=— f*Afdx,

~here the integral is extended over the whole
configuration space, we can express %einstein's
basic result by the statement that some energy
level, 8, will be found in any orie of the intervals

X—[(IP)A, —2), (H)A, +X2j~ ~(Z ~&X

fore its minimum value is reached when X = —~
and equals IIA„. Its maximum value is + ~.

,It
follows that a real solution, X, of (4) exists if and
only if HA«&Z„+i'. (This has been tacitly as-
sumed in deriving (6).) The trial-function f,
which we use in the computation of JIA„and
(IP)A„ in (6), is therefore not entirely arbitrary,
but subject to the condition

IIAv ~~+a+» ~

This inequality will be satisfied whenever B„+» is
a fair approximation to 8 +i, and f is a reason-
able trial-function for the 22-th (or indeed any
lower) state.

Secondly, we might have taken X to satisfy

X+[(H')A,
—2XHA„+X2)&=A (Z +i' (8)

instead of (4) and, by an analogous argument,
would have found that

(H2) Av (HAv)
2

& ~&~a— 3—HA„

+ [(H')A~ —2XHA~+X'j', (3)
(9)

where X can be given an arbitrary real value and
H„„(IP)A, are formed with an arbitrary, normal-
ized f.

Suppose that 8„+»' is a lower bound of E
Then, if we choose X so that

(10)

X+[(H')A„2XHA+X j —8 +i'

it is clear from (3) that

n+» ~

But we observe that (6) is a better estimate for
Z„ than (9) and that (7) is less restrictive on f
than (10).Therefore (6) represents the best result
obtainable by this method.

E & X—[(IP)A, —2XHA, +X2j& 3. UPPER BOUND

(H') A
—(HA.)'

E„&&HA„——-

~~+» ~Av as long as P is normalized and satisfies the con-
ditionol

(H') A„—(HA„)'

+n+» ~Av
IIA„~&B„»".

It is clear that if only E„»"&0, we can always
satisfy (12) by taking a P of suSciently oscilla-
tory nature.

The inequality (11) allows of two types of
appllcatlon:

(1) if by aiiy method olie llas obtained all
upper bound of B„» he can, by the use of a
single trial-function, determine an upper bound
of 8„.This process may be continued.

Ke can now use E„' as a lower bound for Z„and
repeat the procedure to obtain an B„»', etc.

Two remarks must be made here. It is easily
verified that for fixed /ZA„(H2)A, the left-hand
side of (4) is an increasing. funciioii of X. '1'here-

4 Strictly speaking, if Ji„+1'——Jl„+1, then a level, namely,
E„+1, would fall into the interval (4), even if (5) were not
satis6ed. However, by a simple limiting process, one can
easily verify that {5)must hold even in this case.

In a precisely similar manner we can show
since otherwise no level would fall into the range that if E„»"is an upper bound of E„», then
(3).A Evaluating X from (4) and substituting into
(3) we find (H') A,

—(HA,)'
B„&~HA„+, (11)

~Av @a-»
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(2) One can determine an upper bound for Eq
by the usual Ritz method and', then construct suc-
cessively upper bounds of E2, Ea, ~ ~, Z~, ~ ~ . At
each stage a single trial-function, Pq, is used, and
three integrals, E=f&~*Pl,dx, HA„= f)I,*HPadx,
(H')A, ——J'QI, H'fIdx must be', evaluated. It is
important that successive f's', , need not be or-
thogonal. For energy levels of high order this
procedure would seem to be',:a simplification over
the conventional method, due to Hylleraas and
Undheim, ' and an alternative method suggested
by the author. ' For„', these methods require that
the successive f's must be normal and orthogonal
and that at each stage the integrals J'Q, *Hi&i,dx
(i =1, 2, ~ k) be evaluated. This means that at
the k-th stage a total of 2k integrals must be
found. Furthermore, in the procedure of Hyl-
leraas and Undheim, a determinantal equation of
order k must finally be solved. One must keep in
mind, however, that the integrals for (H')A„which
occur in our method, are in general quite difficult
to evaluate.

~ E. A. Hylleraas and R. Undheim, Zeits. f. Physik, p.
759 (1930).' W. Kohn, Phys. Rev. V1, 635 (1947).

For convenience we combine the inequalities
(6) and (11) a,nd the conditions (7) and (12) for
the case when both B„+»' and Z„»" are known:

for any normalized trial-function f satisfying

B„g ~& )tiP*HiPdx ~& Z„+g'. (14)

Let us note that all the results derived above
retain their validity in the case of degeneracy
(non-degeneracy was nowhere assumed) as long

I

as',,'the'. levels are ordered according to non-decreas-
ing; magnitude.

The author wishes to express his sincere thanks
to Professor J. Schwinger for helpful discussions,
and to Harvard University for the award of the
Arthur Lehman Fellowship.

(H')Av —(~A.)'
IIA„—-- - — —

~& B„~&IIA„
~~+» IIAv

(H') A~
—(HA~)'

+ (13)
~Av +e-»


