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A number of authors have developed the theory of
a-radioactivity in the case of zero angular momentum of
the escaping particle. For l/0, formulae have also been
given but it is shown that these are inaccurate. In order to
discuss the case of non-zero values of l, the one-body theory
with a rectangular potential well is treated rigorously. A
suitable integral representation of the confluent hyper-
geometric function is developed by the method of steepest
descent into an asymptotic series which represents the solu-
tion of the wave equation outside the nucleus for l=0.
Solutions for //0 are obtained from this by recursion

operators. Boundary conditions at the nuclear radius give
two equations linking the radius of the nucleus and the
depth of its potential hole with the decay constant and the
energy of the emitted a-particles. The usefulness and relia-
bility for this problem of the one-body model are examined
(Section 6). A re-evaluation of nuclear radii has been per-
formed and the results are tabulated. The possibility that
the decay constant, for fixed energy, is not a monotonic
function of l but has an initial rise is discussed. A quanti-
tative study is made of the X—E relationships in a few
a-ray spectra with "fine structure. "

l. INTRODUCTION

HE quantum-mechanical theory of spon-
taneous a-particle radioactivity has been

treated by a number of authors, ' '" since the
first independent papers of Condon and Gurney'
and Gamow" in 1928. In these papers attention
has been centered on the case l =0. Gamow' has
given a formula for l/0. In addition to the ap-
proximations used in developing the formula for
l,=0, there are two objections which may be
raised to Gamow's formula. Firstly, there is no
examination of the possibility that the factors
which involve the wave function inside the nu-
cleus may depend on l. This point is discussed
more fully below. Secondly, ignoring the first ob-
jection, Gamow s approximations give incorrect
numerical results. For example, his formula (58)"

~ The major part of this work was conducted with the
assistance of a National Research Council of Canada
Studentship.
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gesellschaft, Leipzig, 1937), p. 95.' G. A. Gamow, Constitution of Atomic Nuclei and Radio-
activity (Cambridge, 1937).

O. Rice, Phys. Rev. 35, 1538 (1930}.
~ H. A. Bethe, Rev. Mod. Phys. 9, 161 (1937).' F. Rasetti, Elements of Nuclear Physics (Prentice-Hall,

Inc. , New York, 1936).
9 Condon and Gurney, Nature 122, 439 (1928) and Phys,

Rev. 33, 127 (1929)."G. A. Gamow, Zeits. f. Physik 5I, 204 (1928)."H. A. Bethe, Phys. Rev. 50, 977 (1936}; Kahan,
Comptes rendus 206, 1289 (1938).

"See reference 5, p. 103 and p. 91.

gives a correction to the exponent amounting to
0.860 in the case of Ra decay; accurate numerical
integration of the WKB integral gives 0.170. (o is
the ratio of "centrifugal" to Coulomb potential
a,t the nuclear radius. ) This error in Gamow's
theory arises from two sources: (1) Over a sig-
nificant portion of the range of integration orp/r
is comparable with 1 —Zrj2Ze', although it is
treated as small. (2) The ratio of nuclear radius
to the classical radius of closest approach is about
0.25 which actually is not sufficiently small to
permit some of the approximations necessary to
obtain Gamow's formula. Also the WEB method
is not too reliable itself in that an expression
which should be negligible with respect to unity

d 2Ze' 0'/(1+1)
+ p

(2m) & dr r 2mr'

is not particularly small, i.e., it is greater than
0.25 for about one quarter of the range of
integration.

A valid formula for l /0 could be obtained by
more refined considerations along the lines em-
ployed by Gamow, but the integrals do not lend
themselves to simple treatment and it was there-
fore decided to make the calculations as rigorous
as possible from the beginning. Thus the purpose
of this paper is to find formulae for 1/0; to do
so it has been found necessary to re-derive the
treatment for 3=0, although here no significant
new results are obtained.

The theory should lead to a relationship be-
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tween the decay constant for the process and the
energy of emission of the O,-particle, reproducing
the experimental results expressed in the Geiger-
Nuttall law. "We shall see that the relationship
is contained in an equation involving two unde-
termined constants, the nuclear ro,dius and po-
tential; there is a second equation connecting
these quantities and the energy of emission. As
has been pointed out, " in most of the previous
work the depth of the potential has been removed
by approximate assumptions from the final re-
sults, thus obtaining an equation involving the
radius of the nucleus as the only undetermined
quantity. Sexi' and M. Frenke12 have improved
on these theories, but their work permits of
simplification and, in common with all previous
theories, is not adapted to the non-zero values of l.

2. FORMULATION OF THE PROBLEM

We represent the action of the nucleus on the
u-particle by a force field with a rectangular hole
potential V. The accuracy of this model is dis-
cussed in Sec. 6. V= U, a constant, for r(ro,
V=2Ze'/r, for r &ro, where Z is the charge num-

ber of the product nucleus, e is the elementary
charge, r is the distance from the center of the
product nucleus, ro is the "radius of the product
nucleus. "

All dynamical quantities are modified to refer
to the system in which the product nucleus is at
rest. Corrections for recoil are made when nu-
merical calculations are performed. a-particles in
the sphere r(ro have a finite probability X of
piercing the potential barrier and emerging with
energy B„.We assume a solution u of the time-
dependent Schrodinger equation in the form

u=P(x, y, s) exp( —iE t/k) exp( —fht)
=P(x, y, s) exp( —iEt/h),

and

d'Xz/dr'+ (2m/fP)
X [E—V—5'I(I+1)/2mr'jX& ——0, (2.2)

where m is the reduced mass of the n-particle,
and I'g are spherical harmonics.

Inside the nucleus, V= U and therefore

X &" = {2m(E—Lr)/fz'I &rV'z $({2m(E—U)/fz'I'r).

(2.3)

Here J, denotes the Bessel function and the
superscript (i) refers to the interior of the nu-
cleus. This solution would represent a standing
wave, except for the imaginary part of B which
permits the "leak" through the potential barrier.

For r&ro, we must write V=2Ze'/r in (2.2).
In the resulting equation we substitute

x = (2mE) &r/h =xzz+ixz,
K = (2mE) &(2e'Z/Iz) =«zz+i«z,
y=Xg&'), the "outside" solution,

and we obtain

(2.4)

y"+(1 /(1+1)/x' —«/x)y =0. —(2.5)

Because of the experimentally known values of
the constants of radioactive elements, we see
that it is legitimate to write

xzz+ixz = (2mE ') &(r/h) (1 Jill&/E—.)
='10—10 "z,

and
«zz+i«z =4e'Z/I'zv+'ie'Zl&/vF~

='50+10 "i,

Rnite, (h) at r =ra, P an&I dg/dr are continuous,
(c) for r&ra, P represents an outgoing wave.
Since V is spherically symmetrical,

r&fz= P X&(r)Pz(cos8),

introducing the "complex eigenvalue"

(2.1)

where we have taken ro='10 " cm. The small
magnitude of the imaginary parts of x and ~ plays
an essential role in what follows.

Then uu* is proportional to e "', indicating ex-
ponential decay. This computational device of
complex eigenvalues was first introduced by
Gamow" and since used and justified by Kudar, '
Sexi' and von Weiszacker. '

We require the following of P: (a) at r =0, &P is

"H. Geiger and J.M. Nuttall, Phil. Mag. 22, 613 {1911).
"M. A. Preston, Phys. Rev. 69, 535 (1946).

3. THE CASE 1=0.

For l=0, Eq. (2.5) is simply

y"+ (1-«/x)y =0. (3.1)

It is known" that W"+ (—~+p/s) W= 0, has in-:

'~%hittaker and %'atson, Modern Analysis {Cambridge,
1927},pp. 339, 343.
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dependent solutions We write

y&'& =2ix ~e "I&'—&dr

0

s~' (1 s/t) "—s 'dt, - f(r) = ',i l-og(r —-,') ,'i log—(r—+-',)
+2i(x/K) r+gx (.3.7)

f( ) — L.a—««-n{s!(5 .+s—) }—+2(x/K)s]
+iL4 log{((—-,')'+»'} —~ log{ (g+~)'+»'}

+2 (x/K) p].y "&(x)= s-&" s"J" (1—2ix/t) &*"e-'dt, (3.2)

if R(p) ~&2. Therefore, since —Kr(-,', we may Putting r=(+i», this reduces to
write two solutions of (3.1) in the form

y&'&(x)=e "~e '* (1+2ix/t)&'"e 'dh (3.3)

Now neglecting 10—"with respect to unity,
x/K=xg/Kg+i', say, where y)0. Therefore

Under the substitution t =2ix(r+-', ), r = g+irl,

(r &
q

kic-
y&»=e-&*"2~x

) { }
o-" "dr (34)

Jo «r+-', 3

(df/dr). =.,=f'(r.) =o, (3 3)

and the curves of steepest descent have the
equation

(3.6)I {f(r)} =1{f(r.) }

"P.Debye, Math. Ann. 67, 535 (1.909).

Cis the line g= ——,'+(xr/xg)»in ther plane f-rom

g =0 to q = —~.Similarly y(') is the same integral
over the path P= 2'+(xr/xg)».

The factor s" in (3.2) shows that y&" (x) repre-
sents the outgoing wave for large x (or r) There.-

fore we now wish to evaluate y"& as given by
(3.4), remembering that {K { =' 50 and

~
x

~

=' 10.
The "method of steepest descents'"' is par-

ticularly suited to this problem. It serves to
evaluate integrals in the complex plane of the
form Joe "~&"&dr, where R{f(r)} approaches in-
f1nity (or a "large" value) at both ends of C. This
property of f(r) implies that appreciable con-
tributions to the value of the integral come from
only a certain 6nite strip of C. To permit this
strip to be as small as possible for purposes of
approximation, we replace C by a path on which

R{f(r) } increases most rapidly from its minimum
value. The path used is called the curve of steepest
descent, and the point at which R {f(r) } is a mini-
mum called the puss point or Satte/punk' It is.
found that, if v, represents a pass point, these
points are the roots of

R{f(r)} = —{:2««an{9/(2 —K+S') }
+2(xg/Kg)»+2yt7, (3.8)

r, = a-', (1—«/x) ~ = a-',i tann,

where 0. is de6ned by

cos'n =x/K,
n = ng +Snl q

8 /2 )ng )0.

(3.10)

(3.11)

Then x/K =cos'(ng+snr) =cos'ng+int sin2ng, to
the order 10 " Therefore

cos ng=xg/Kg, and nr ='y/sln2ng. (3.12)

Ke now study the pass point 7 = —-',i tano. . Sub-
stituting in (3."I), we find easily

f(r ) = —(n cosn sin—n)
= —(ng —cosng slung) —2inr cos &Kg. (3.13)

Thus from (3.12) the imaginary part of f(r ) is
—y cotng From (3..9), the curves of steepest
descent through r are

-' l g{:{(&-!)'+s'}/{(~+l)'+~'}]
+2(xg/Kg)g=y(2S —cotng). (3.14)

The right side of (3.14) is important only for
g&10", say, because of the size of y. In this
region the logarithmic term is negligible and the
curve is the line

» —-', cotng ——(xg/Kg)g,

I{f( ) } = l lo t:{(t—l)'+ '}/{(3+l)'+ '}]
+2(xg/Kg) (—2y». (3.9)

Also setting f'(r, ) =0 and solving for the pass
points, we And
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which has a slope of about 10".For smaller s, (3.14) is approximately

-', log{ {(P ',—)'—+rP}/{((+')'-+s'}]+2(xs/~s) )=0

This curve is more conveniently studied in the form

(P+ ~~)
' exp( —4P cos~ns) —($—~)

' exp(4$ cosign@)

exp(4$ cos'ns) —exp( —4P cos'ns)

(3.16)

(3.17)

It is easily verified that

1, the curve is centrally symmetric about the
origin,

2. the curve meets /=0 in q = +-', tanes,
3. the curve intersects $ = &-', in real points,
4. s2=0 only for two specific values &= &$0,

and consequently q is real only for —$o 4 (4 ko,

5. g(, )-', by fact 3 above. Actually its value is
about 0.8 and it is a root of (f+&)/($ —

&)
=exp(8$ cos'ns).

6. $ =0 is a part of (3.16).

which, since xg &0, is less than

( ),z(~ (g+ ) k~((fg—=05'

disregarding terms of order 10 ".This is negli-
gible in comparison with the integral along I3,
which is of the order 10" (see Eq. (3.14)).There-
fore I & may be replaced by L3 for the'integration.

Figure 1 shows the curve (3.14) and the corre-
sponding one through r+(=-', f tann). The imagi-
nary part of 0. is exaggerated in the figure.

The path of integration for y('&(x) is the
straight line L~ in Fig, 1, The integrand is with-
out singularities in the region concerned and the
integral over L~+L4 equals the integral over
L2+I3. L3 is the path of steepest descent. We
must show that the integrals over L4 and L2 are
negligible. We have

--tag yc

Lg

exp{ ~f(r) }dr
VZ, 4

&(xal~a) Vn

M g~ '/g+ —
Q

Lim
(~rl ~Z) rf

exp(2xg 2xi&) d—(

(g2(xR z()% s2(xR gag)9)— —
~ ~2xg

=0.
On L2, g=0 and the integral is

exp{ ~LE~ Iogh+k)/(k 5) 2~5]}—&5—

I

I

I

I

I

l

I I

if Ls cuts s =0 at $= —i:~. The absolute values of
both real and imaginary parts of the integral are
less than

~ exp{ ——,'" Iog(g+-,')/(-',—P)+2m, p]dp,
FIG. 1. Lines of steepest descent.
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We now proceed to obtain an approximate ex-
pression for y"& (z). The method of the remainder
of this section is not mathematically rigorous.
Moreover it provides no estimate of the percent-
age error of its results. To overcome these draw-
backs requires a somewhat lengthy argument
which is given in Appendix A. In' this section we
shall obtain the leading terms of the result in a
simple manner.

Since I 3 is a path of steepest descent,

easily seen that the integral over I (&+I r is

$0

o Ll log(8 —l)/(8+l)+2 n4 (3 2o)

When x and «are real, this integral is zero (see
Appendix A). Therefore the integral is taken over
I 9 only, which is a path of steepest descent from
the pass point r+ ——-', i tan+. We have

f"(r+) =8 cos'u tanu,

)t exp{ «f(r—)}dr= exp { «f(r)—}dr. t'
exp{ «f(r)—}drJ L,Q

Remembering that f'(r ) =0, we put

f(r) =f(r ')+k-f"(r-) (r r-)—'
=f(r ) ',f"(r )t—&',—onI.)&,

pt

exp{ «f(r+)—} exp{ —4«costa tanaP}dg
J p

= -', sec'u(tr cota/«) &e

where r=r +it& It i.s found that f"(r ) =.
Therefore—8 cos'0, tano, . Then the integral is

i
J exp{ «f(r ) }—exp{ —4«cos'u tanut&'}dt&

t eXp{ «f(r ) i (s
—2 cosso(s tsno)t)&

2 cos'u(« tanu) ' & 2 cosso(s tsno) tp

Xexp( —t&') dt&

i exp{ «f(r )}—
2 cos'u(« tanu) & ~ „

Xexp( —
t& )dt&, for sufFiciently large «,

P(t) —P(o)

dp(s)/dr =dP" /dr
at r =ro,

which is equivalent to the condition

The accuracy of this formula is examined in

Appendix A.

4. EQUATlONS FOR ro AND U FOR l =0

If superscripts (i) and (0) refer to properly
normalized solutions inside and outside the nu-
cleus, the condition of continuity requires that

Therefore

',i sec'—(-m.ucota/«)'* exp{ «f(r ) }. —
1 dx, ~') 1 dx, ~~

dr Xt ') dr
at r = r p. (4.1)

y(» (x) =' x sec'a(tr cotu/«) & exp { «f(r )}-
= (tr«cotu) &s",

where
&o =«(a —cosa sinn).

(3.18)

(3.19)

Notice that in this approximation we have
ignored the fact that x, ~, 0. have small imaginary
parts. Then (3.18) gives the real part of y('&. The
imaginary part of y~') is much smaller in absolute
value and hence does not appear in the expansion
about r . However (3.2) and (3.3) show that (if
z and «are real) y(" is the complex conjugate of
y"'. Therefore I{y"'} is ——,'i(y "&—y('&). This
quantity is xJ' exp{ «f(r) }dr integ—rated over
I.i I.& or equivalently o—ver I-(&+I9+I,r. It is

X,~) dr 5 sin20.'

1 —-', ie—'"
)( 2 sln2o.

1+-,'ie '" ~ sin2o.

When the explicit expressions for X are sub-
stituted in (4.1), it becomes a complex equation
for 8, from which we can deduce two real equa-
tions, one for the energy 8 of the O,-particle and
one for the decay constant X.

For /=0, Xo~'&=yo& and Xo&') is given by Eq.
(2.3). Noting that da/dx= —(«sin2u)-', and
dx/dr =m()/I&, straightforward calculation gives,
using (3.21),

dXO&) mv
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(1/as) cosec2n@ is 1 to 2 percent of 2 sin'ns,
which is the value of the first term. (The accurate
value of y&" given by Eq. (A.12) adds other
terms, the greatest of which is proportional to
e—'" which is of the order 10—2o to 10 " with.
r=10 " cm, and with experimentally known
values of E,.) Therefore we have 2 percent nu-
me11cal accuracy ln wrlt1ng

dXp(') (1—-'is ' )2
(2mE/i'p') tan a

X,&') & (1+prie '")

Also, from (2.3),

dXp('&

Xp(') dr

= {2m(E—U)/i'p'}& cot{r {2m(E—U)/k'}'$.

These two expressions are to be equated at r =rp
and the substitution 2 =2 ——2~ViX is to be made.
In the initial factors E& and (E—U)& we may
neglect the imaginary part of B, because it intro-
duces corrections at most 10 "times the real and
imaginary parts on each side. Similar arguments

apply to the imaginary parts of tanu, and of ~,

and 0. in the exponents.
Introducing

TA.m, E I, Values of ro and B for 1=0.

Nuclei

UI-UXI

UII-Io
Io-Ra

+Ra-Rn~
Rn-RaA
RaA-RaB
RaF-RaG
Th-MthI

~RdTh- ThXf
ThX-Thn
Thn-ThA
ThA-ThB

+Pa-Ac~
*An-AcA
AcA-AcB

Total
decay

Radius energy
(10 13 cm) (Mev)

9.37
9.34
9.26
9.21
9.26
9.29
9.28
9.14
8.27

10.01
9.33
9.29
9.28
9.12
8.68
8.70
8.99

4.31~

4.32&
4.89»
4.91k
4.80&
4.879
5.589
6.112
5.410'
3.99@

5.517
5.786
6.400
6.904
5.09k
6.953
7.508

X (sec. ')

4.82 X10-18c

8.14X10-14'

2.6 X10 &&ii

1.35X10 n
2.097 X10 6

3.78X10 4

5.886 X10 8p

1.2X10 ~

1.7X10 Si

9,7X10 9

2.20X10 &

1.27X10 2

4.95
5 5 X10 13pip

1.22X10 &

3.47 X10~

8
(Mev) R =rpA

23.9
i23.9
25.6
25.7
23.1
22+3
21.0
20.3
23.8
22.0
21.8
22.1
21.4
20.2
19.5
27.2
21,5
19.3

1.52
1.52
1.51
1.51
1.52
1.53
1.54
1.53
1.40
1.62
1.64
1.54
1.54
1.55
1,53
1.34
1.45
1.51

In this we have, summarizing the symbolism for
convenience,

The letters in the body of the table refer to the remarks belovr.
~ N. Feather, see reference 17.
& From the values of range given by Sizoo, Physica 4, 791 (1937);

and graphs of range against energy given by M. S. Livingston and
H. A. Bethe, Rev. Mod. Phys. 9, 266 (1937).Value then corrected to
include recoil energy, since the tabulated figure is total energy.' A. O. Nier, Phys. Rev. 55, 150 (1939).

"Obtained as in (b), using range given by Mme. Curie. reference 17.' Hernegger, Akad. Wiss. Wien 143, 367 (1934).
~ For fuller information see section 5.
& W. Y. Chang, Phys. Rev. 69, 60 (1946)."Obtained as in (b), using range given by G. H. Henderson and G.

C. Laurence, Phys. Rev. 52, 46 (1937).' The value 1.7 X10 s is given by Feather and by Stranathan, refer-
ence 17.

"Tsien San-Tsiang, M. Bachelet and G. Bouissieres, Phys. Rev. 69,
39, 1946.

~Total decay constant 6.7X10 1~ from, Stranathan, reference 17;
l =0 line is 80 to 85 percent of this according to Tsien San-Tsiang et al,
reference (k).

and

p = (1—U/E. ) i,
k = ripv/h„

O.p=o.g for r =rp,

pip ——«s(np —sino. p cosnp),

~ = (1 —UIE-)"
ap = rcac(onsrps/4pZp)PP,

k =ms/k,
its =4p'Z/kv,
pip =Ks(Ap —sin(xp cosRp).

(4 5)

the condition becomes

p cot{pkrp(1 i7iX/2E pp) }—
1 —2ie '"o

= —tano. p

j + ~ jg—2cdp

Also the cotangent term is

1+(ikhkrp/4E ti) tan(pkrp)

tan(pkrp) iB,kr p/4E —p

~ (4.2)

Equations (4.3) and (4.4) a,re to be regarded as
two relations between the four variables B„, X,

rp, U. This is the form in which the theory ex-
presses the Geiger-Nuttall Iaw. %hat is more im-
portant however is that when 8 and ) are
known experimentally, the radius rp and the po-
tential U of the nucleus may be calculated.

Table I gives the values of rp and the depth 8
of the potential, calculated from (4.3) and (4.4).

p = —tannp tan(ykrp),

2V p2 tano, pX=- g
—2opp

rp p, '+tan'np

(4.3)

(4.4)

Separating real and imaginary parts of (4.2) we
thus obtain

8 = (2Zp'/rp) —U. (4.6)

Only rays for which It =0 are listed. Except where
indicated by a note in the Table, the values of P

and B which we have used are those found
generally in reference works. " In the case of an

'7 N. Feather, Nuclear Physics (Cambridge University
Press, 1936); I. Curie, RaChoacti vite (Hermann, Paris,
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n-ray spectrum of more than one line, the X used
should refer to the probability of decay with the
one energy 8 only. Such cases are indicated by
an asterisk in Table I where partial decay con-
stants are used. Birge's" values of e, nz, h, etc. ,
are used.

The last column in Table I allows a comparison
of the results with the empirical law that the
nuclear radius is proportional to the cube root of
the atomic number.

S. THE CASE l&0

When 1/0, we have, instead of (3.1),

(5.1)

This equation can be studied by means of the
factorization method as described by Infeld. '9

The recursion formula is:

(1+1 Io d 'l
X,~,&'~ = G(~ + ——~X)&', (5.2)

x 2(1+1) dx)

where G~ is independent of x. Since our theory
requires only the ratio of X~&' to its derivative
(see (4.1)), the form of G~ is immaterial.

It is then apparent that the results for a general
l can be expressed in terms of the first (1+1)
derivatives of Xp&'. The calculations are con-
tained in Appendix B.Here we shall simply state
the results. Equations (4.3) and (4.4) for p and
X are replaced by:

Si(M) tanD+ C((M)
p, = —tancxp

X,(M) II,(M) tanD—

p' tanno(H~C~+K~S~) Q~e 'oo

X = (2v/rp)
p'(H&'+E~')+tan'no(Ci'+S~')+2@ tanao(CiXi —Sinai)

(5.3)

(5.4)

The notation of these equations is:

D=1/M=pkrp, (5.5)

Q~ is a rational function of tannp and ro (or M),
C~, S~, H~, E~ are polynomials in M.

These functions do not have a useful general form
for arbitrary /, but are calculated separately for
each /. The first five results are:

Qo=1, Sp=1, Co=0, Ioro ——0,

Qi = (& 2 tanao)/(e+2 tanap);

l=3.
x+28@M 12 tann—p+ (44/z) tan'np

3= t

x+28@M+12 tannp+ (44/e) tan'np

S,= —6M+15&3; C, =1—15%2;

H3 ——1 —213''+45M4 X3= —6M+453P.

1=4:

K(K+60@M) —20 tannp(40pM+a) +140

K(K+60@M)+20 tanno(40pM+z) +140

S4 ——1 —453P+1053I', C4 ——10M—1053P;

H4 = 103SI—195M'+420M~;

Sg =3SI; IIy=M2 —1' E =3f Z4 = 1 SSM'+420M'.—
l=2 In making calculations for r p and U in the case

of O.-ray spectra with fine structure, it is neces-
sary to determine the angular momentum quan-
tum number /. If the spin number of the dis-
integrating nucleus is s', and that of the relevant
level of the product nucleus is s, l is an iriteger
between

~

s+s'
~

and, s —s'
~

. Thus if s and s' are
known, the possible values of l are easily found.
In particular if s' is zero, 3=s.

Qo = (o:+10iiM—6 tannp)/(a+10pM+6 tannp);

'~ L. Infeld, Phys. Rev. 59, 743 (1941).

Ho 3M(2Mo 1); Xo————6Mo —1. —
1935), Vol. II; J, Hoag, Electron and Nuclear Physics
(D. Van Nostrand Company, Inc. , New York, 1938);
J, Stranathan, Tke "Particles" of 3IIodere Physics (The
Blakiston Company, Philadelphia, 1942); W. B.Lewis and
B. V. Bowden, Proc. Roy. Soc. A145, 235 (1934); Inter-
national Commission, J. de phys. et rad. 2, 273 (1931)."R.T. Birge, Rev. Mod. Phys. 13, 233 (1941).
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TABLE II. Calculations for line zero, ThC-ThC". ro and
/ in the first two columns are used to obtain the X's in the
third column. Experimental value is X=1.83&(10 ~ sec '.

ro
(10» cm)

X YQ

l (10 ~sec ~) (10»cm)
X

l {10 ~sec &)

7.57

7.20

6.93
10.84
11.29
9.49
'1.52
2.37

7.20

7.40
7.48
7.49

2 2.44
3 2.02
4 048
4 1.18
4 1.81
4 1.89

/o=2, 3 or 4; l1=0, 1 or 2; /~=2, 3 or 4;
/3=2, 3 or 4; /4

——1.

Before considering the calculation in detail,
two general remarks will be useful. It is found
that, when (5.3) and (5.4) are used to calculate
) for a given rp and B, the values of X at first
increase with / and then decrease continuaHy.
This is caused by the presence of two opposite
eA'ects, the increase of JM, with / and the decrease
of Q. The latter finally becomes of greater im-
portance. Also the value of A, decreases if rp is
decreased. Table II illustrates these facts.

In calculating r p for complex spectra, our pro-
cedure is to assume a value for r p and for /, and
to calculate ii and X from (5.3) and (5.4), em-
ploying experimentally known Z . The process is
repeated until the chosen rfj and / reproduce the
experimental value of X.

In the case of ThC —+ThC", we examine
6rst line four, for which /4=1. We hand rp=7. 54
X10 " cm. We then turn to line one and find
that, if /=0, rp=. 7 57X10, if /=1, rp=7 38
X10 ", and if /=2, rp is still smaller. These
figures suggest that to obtain agreement with line
four we should take for line one r p = 7.57 X 10 "
and /=0. For line zero, the results in Table II are
obtained. Since for line zero / must be 2, 3, or 4,

~0 F.Oppenheimer, Proc. Camb, Phil. Soc. 32, 328 {1936).

As an example we take the O.-decay ThC —+

ThC". This is a particularly convenient case, as
Oppenheimer" has assigned spin numbers to the
various levels of the ThC" nucleus; these values
were determined by a study of y-ray data. Where
the subscripts refer to the levels of the ThC"
nucleus, Oppenheimer gives

s'=1, so=3, s1=1, s&=3, ss 3) s4 0.

Thus

it is seen that the greatest possible radius for
line zero is 7.48X10 " cm. This agrees reason-
ably well with the values obtained for lines four
and one. Line two gives r p = 7.40X10 "for /=3,
and rp=7. 60X10 " for /=4. Line three gives
rp ——7.5 X10 "with /=4.

Therefore, the most plausible results are those
in Table III. Any other combination of /'s would
yield less consistent (and smaller) radii.

Calculations have been made for certain other
complex spectra as in Table IV. For elements in
the Ra and Th series, occurring before the C-
products in the disintegration series, it is as-
sumed that all ground state transitions have
/=0; for the lines corresponding to excited states
/ = 1 or 2 in virtue of the connection between spin
and the emission of p-rays by the product nucleus
in falling to its ground state. If sp is the spin of
the ground state of the product nucleus, the
character of the p-ray from level j is determined
by ~s;—so~. This quantity must be 0, 1, or 2;
dipole radiation occurs when it is 1, otherwise
quadrupole; s;=so is forbidden. In particular, if
s'=so=0, l(=s;) must be either 1 or 2.

It may be mentioned that it is presumably
possible that any one line contains particles of
various possible / s, present with relative intensi-
ties related to the respective X's. This would seem
to require smaller rp's, but the available data does
not in any case permit a test of the hypothesis.

The formulae (5.3) and (5.4) diHer consider-
ably from those previously given for /&0 by
Sexi' and Gamow. "Gamow's formula makes X a
monotonically decreasing function of / for fixed
rp, as opposed to the initial rise possible with our
formula. Numerical results with Gamow's for-
mula have been published by Gamow and Rosen-
blum. " Their values of radii are presented by
means of a graph of a quantity r,« introduced by
these authors. Numerical values of r,«have been

TABLE III. r0 for ThC-ThC".

Line

0

2
3

X
(10 ~sec t)

1.83
4.65
0.12
0.01
0.07

Total energy
{Mev)

6.201
6.161
5.873
5.728
5.709

&0
(10»cm)

7.48
7.57
7.60
7.50+.05
7.54'.02

2' G. Gamow and S. Rosenblum, Comptes rendus 197',
1620 {1933).
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determined from this graph and converted to ro

by means of a relation given in their paper, vis.

6. EFFECTIVENESS OF ONE-BODY MODEL

It is necessary to examine the objection that
possibly too much weight is given to spurious
effects resulting solely from the assumption of a
rectangular well potential. As Gamow points out,
it should not be used to calculate the energy
levels of the O.-particle in the nucleus. Thus
Gamow obtains only one E —) relationship not
involving U. Now the two equations in this paper
do allow a numerical evaluation of U (see Table
VI); but this result should be regarded not as a
determination of an energy level but rather as a
step in the implicit elimination of U to give one
equation connecting B and ),

TABLE IV. r0 for some complex spectra. In Pa-Ac, the
separate ) 's for lines 1 and 2 are not known: r0 is chosen to
give their sum. The difference between l= I and l=2 lies
within the limits indicated for r0.

Nuclei Line

Pa-Ac 0

l)
RdTh-ThX 0

(sec 1)

5.5X 10-"
1.2X10 '3

9.7X10 '
1.9X10 9

1 35X10 "
0.03X 10-11

Total
energy
(Mev)

5.09
4.80
4.77
5.517

5.431

4.879
4.695

0

1 or 2
0

r0
(10»cm)

9.09
9.33
9.08
9.05
9.29
8.92+.02

r.u = r p
—l(l+ 1).

mc Z

For this purpose, the l's of Tables III and IV
have been used. These ro's are compared with
our results in Table V. The large differences in
the radii of corresponding ground states are
caused by the employment by Gamow of a more
approximate formula for l=0. Nevertheless, it
will be seen that there is considerable disparity
even in the relative values of "fine structure
radii"; the spread of the ro's from Gamow's data
for ThC —+ThC" is 25 percent of the smallest
radius; for our values the corresponding spread
is 1.6 percent. In some cases the radius given by
Gamow's formula increases when that given by
(5.3) and (5.4) decreases. It is clea,r, therefore,
that the earlier approximate formulae, besides
giving appreciably lower radii for 1=0, are un-
suited for adaptation to the case tt/0.

TABLE V. Comparison of r0's for complex spectra from
Gamow's formula and present results.

Nuclei

ThC-ThC"

RdTh-ThX

Ra-Rn

Line l

0 4
1 0
2 4
3 4
4 1
0 0
1 1
1 2
0 0

1 2

ro calculated
from re

7.9X10 "crn
6.4
8.1
8.0
6.8
7.8g
7.9g
8.0o
7.9y
7.9g
8.0s

ro from Table
III or IV

7.48X10 "crn
7.57
7.60
7.50
7.54
9.33
9.08
9.05
9.29
8.92
8.92

TABLE VI. Values of U. ThC-ThC".

Line
U E,

'Mev)
8

5.38
6.16

4.10
5.71

0
0.74
6.20

2
0.58
5.87

3
0.35
5.73

The decay constant may in a sense be con-
sidered as dependent on two factors: the fre-
quency with which the u-particle "strikes the
wall" of the potential barrier and the probability
of penetration for any one collision. This latter
factor is not sensibly dependent on the model of
internal forces; it corresponds to the exponential
factor Q~e ' & in (4.4) and (5.4). The remaining
factors in these formulae may be considered to
express the "frequency of striking"; they take
the form g~v/rp, where g~ are factors which are
dependent on the model of nuclear forces em-
ployed. (v/rg) Q~e ' ' determines the power of ten
in the value of X; gi changes the value by a factor
of the order of j.0 or less for different models.

Now Gamow's results are apparently inde-
pendent of the model of internal potential. But
this is somewhat misleading, since his formulae
depend on his Eq; (41) (reference 5, p. 100),
which is equivalent to using the potential well
and ignoring the dependence of g~ on /.

The assumption here is presumably that the
manner in which the change in / affects the in-
ternal solution is not highly dependent on the
model of internal potential. However, in that
case an accurate evaluation should be permissi-
ble, and, in fact, a new qualitative effect appears,
for with the rectangular well P increases slightly
for small /(~3), whereas with Gamow's formula
it decreases .monotonically.
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That g~ increases with l may be seen as follows.
Given a fixed radius and internal energy, the in-

troduction of an increased "centrifugal force"
raises the value of the potential near the center
of the nucleus, implying greater velocity near the
surface; the maximum of the internal wave func-
tion is also shifted to a greater radius. These
effects correspond to a greater frequency of "col-
lision with the barrier" and, with the rectangular
well, an over-all increase in ) for the first few l's.
More accurate models might well produce the
same effect; there is at present ins'ufficient knowl-

edge of the spins of the nuclear levels involved to
determine from the experimental results whether
or not such an initial rise occurs in the ) vs. l
curve.

A remark similar to that made in regard to the
numerical values of U applies also to ro, although
less strongly. Bethe" estimates that a many-body
theory would increase the values of nuclear radii

by amounts up to about 30 percent of our values
in Table I. Thus, although our values are, on the
one-body model, usually accurate to the three
figures given, it is clear that such a degree of
significance cannot be attributed to them if they
are considered as actual nuclear dimensions. The
quantity ro should be regarded as a parameter
introduced in the one-body mathematical model,
and adjusted to 6t experimental data.

It is perhaps surprising that such a compli-

cated problem as the formation and escape of an
O,-particle from a heavy nucleus can be handled

as satisfactorily as it is with a one-body model.
The crudest approximation depends only on the
penetrability of the barrier, and complete con-
fidence may be felt in this portion of the theory.
As we have seen, the behavior of the internal
solution is also important, and calculations with
the one-body model throw c'onsiderable light on
its effects, producing new results (for g~) in agree-
ment with those indicated by general considera-
tions. To obtain further significant progress would

require a theory describing the internal forces in

detail and, of course, no such technique is at
present available.

I wish to express my appreciation of the gener-
ous guidance and counsel given by Professor L.
Infeld throughout the course of this investiga-
tion. I am also indebted to Professor R. Peierls of
Birmingham University for helpful criticism, and

to Professors A. F. C. Stevenson and W. J.
Webber of Toronto for suggestions in connection
with particular parts of the work.

e "'F(v)A Z u I'(es jn)a~~",
9 m~1

subject to the following conditions:

1. F(r) is analytic for (r( &~a+8, o&0, S &D.

2. F(r) = Z a„r~~" ' for (r[ ~(o.
m=1

(A.2)

3. IF(r)) &¹s',)r( &~a, )V&0, h&0 and independentofr
4. b &f~sinb, .

The symbol ~ is used to denote asymptotic equivalence
for large a. The series is semi-convergent in the sense of
Poincard, i.e., the sum of m terms differs from the function
the series represents by less than E' ff™,where E is
independent of ff:.

To use this lemma for the evaluation of y&') by the
method of steepest descents, we let

(A.3)

where v is on L3. Then t is real and positive. For any real

/&$0, where

&0
——f(g~) —f(v ) =u-cososino. +2ygi,

there are two values of v which satisfy (A.3), one above, and
one below v . Call these points ~i and ~2, and let vi be
below r, v2 above v . Then

go dg 0 dg

=2~ye—"f~'-) e
—"t "'$0 df

It is permissible to neglect the integral from &0 to ~ be-
cause of the smallness of the integrand for g&t'0. This is
the essence of the Sattelpunkt method. Numerical indica-
tions of error appear later.

We wish to see now that d(v i —v2) jdg satisfies the condi-
tions for Ii(~) in the lemma (A. i), and to find the cm's

explicitly.
Since g=@'jr=0 for r=v, the expansion of f in terms

of (v —v ) begins with the term in (v —v }~. Hence the
inverted series are

~
g y$(m+1)

~i.—~ ——Z

g g$(m+1)
g ( g)m+S m

0 m+1

~~ Watson, Bessel ENt'ctumors (The Macmillan Company,
New York, 1944), p. 235ff.

APPENDIX A

Accurate Evaluation ot y&'1(x)

We require the following lemma given by Watson. " If
)s) is large and [args) &srs —6, where h&0 but otherwise
arbitrary, and e&0,
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and we find

Therefore,

dr1/4=& —,'a C~( -1)
0

dr /dg g ( 1)~-11a y$(m, -i)
0

a„(2=z) f-(d /dt)1 " "'d1

However,
1.=.s, [.[=so

and it can be shown that, if m&10,

e-50t g~—1@g 10 13

Therefore, we may employ Eq. (A.8) as it stands, or rather
in the form

where the path of integration circles the origin of the
g-plane twice. However if we think of f&( +') expressed as
a function of r, we can write

g=T228;T~,

where 8; are certain coefficients, Bp/0. Ke now define
coefficients a;(m) by the following:

-$(m+1)
g-$(m+1) —r-(m+1) y B.y'j y

—{nb+1) g a.(gg) Tj
0 0

(A.6)

a = (2~i)-1 g-« "+»dr,
(0+)

=coefficient of T ' in g '( +'),

=a~(m). (A.7)

Thus (A.6) and (A.7) indicate how the quantities a~ may
be found. These are the coefficients desired for application
of (A.1}.For, by (A.S},

d(r, —r2)/@= r. a,.p-&=X b y:--»,
m=p 1

where b2~+1=a2~, and b2~=0, and thus the last series is in
the form quoted in (A.2).

Also
)d(r, r,)/d1) &ae~&,—ICPO, 1&O

for g&a. This follows by noting that

((dl'/dr;) ~) = (1/(4r;~ 1)+x/g~ —~, (i=1, 2)

is bounded for g&0. Since this expression is bounded, b can
be taken as small as desired by increasing a.

Also argz=arctan(~I/~g) ='10 ".In the notation of Wat-
son's lemma, then, 6 can be as great as —2'~ —10 '5, say.
That is, sind ='1. Since b can be very small, the condition
b &~sink is satisfied.

Therefore, all the conditions of the lemma are satisfied
by ~ and d(r1 —r2)/dg, and we may write

e "& ' 'dg~Zb l{m/2)~ & .e
~ d 1

I~
~
~

12 ~~
~ ~ K

~
~

o dg 1
(A.S)

The limits of the integral for y(') in (A.4) are 0 to po, rather
than 0 to ~. This has the effect of replacing I'(m/2)~ &

in (A.8) by
e~ ~

I
fp

11ft-~-ldll
0

g &( +»d,
(0+)

where the path circles the origin of the r-plane once in the
positive sense.

Let T=r —r . Then

y(»~2isc cos n exp I~{a—cosa sinn) I
~ (apF(-', )~ &+a2I (—')~ &+ ~ ~ );

y(') ='(mx cotn)&e" (1+Ax '+B~ ')
where

A = 4 cotn{q+-', tan'n+5/36 cot'n);

8= —(0'4) COt'n —' tan'n+-, ' tan2n —31/12

(A. 10)

5.7.11—77/18 cot'n — ' '
cot4n

8.27

This expression (A.10), in which ~ and n have small
imaginary parts, is the part of y(') which is predominantly
real. The part of y(') which is predominantly imaginary is
much smaller in absolute value, and hence does not appear
in the expansion about r . However, the predominantly
imaginary part of y(') is xJ'e "~ 'dr, integrated over
I.3+I.0+I.y (cf. Section 3). The integral over I.3+I~ is
approximately

$0—5
2f «—»Lk» »a I (8 k)/(8+5) ) +—»6]d4 (A 11)

where 8 is the correction to &0 caused by the imaginary part
of n. It can be shown that the magnitude of the integral
(A.11) is less than 10 '7. For (A.11) is

igo-5 $0—&—2 cosa'1 coshs2d(+2i sinful sinhs2dp,

It is now necessary to calculate a2~ explicitly. The 6rst step
is to find the 8 s. We have

B.T'+8 T'+ "=t-=f( )-f( -)
= —',i log(r —2) ——,i log(r+ 2)

+2ixr/a —-,'~+n —cosa sinn.

The algebra of writing r = T—2' tann and expanding need
hardly be reproduced. In this way 8; is found as a function
of a.

Next, from {A.6) we see that a formal expansion of

(Z 8;T&') &( +') gives a;(m} in terms of 8; and nz. Finally.
0

a2m —a2111{2m) giVeS the COefFiCientS Of (A.9) in termS Of a,
The end results of this tedious computation are:

ap= &~ COS
—2n tan

a2= —4i tan 4 COS n( —'+41 tan n+5/36 COt n)
a4 = —3'2Z tan-5/2n COS-2n

X (—g tan n —
0 tan'a+31/12+77/18 cot'n

+(5.7.11)j(8.27) cot4n).

Returning now to (A.4) and remembering that x =a cos2n,
and f(r ) =cosa sinn —n, we have
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where "=l log I(~--:)/(~+!)I+2"~,
»= IKz log I(~-!)/(~+5) I+»z~.

Take a number 8 of the order 10 '~. Then, for & &~ g ~& —,
' +8

oo &yK7 log($ y) ~&gKz log8& —8X 10
0 & gKz log($+$) & -', Kz log(1+0) &2 X 10 ",
0&2xzg& —10 's

since over the whole range of natural o.-emitters,

10 "&—xz&SX10 ",
4X10-»&Kz &2 X 10-».

Therefore, for ~ &P~& ~+0,

I sinhs.
I

&-,'((- -')

jcoshs2l &g(&——,') '" +-', (g ——,'} "'

and the integrals over the range q to 2+8 are less than

(q, 1)l—)gZ (p 1)1+)gZ $+0
+ 2 0

g
2 —Kz 2+Kz

Also for ~~+8~& g~& (p —8, the sinh term in the integral may
be replaced by s2, and the cosh term by 1. Then the real
part is

go—&—2, cossid(.
2

Now choose 8 more exactly so that si=nvr for &=-,'+8.
n is approximately 200. Note also that si=0 for P=&o and,
therefore, for g = &p

—8, si ——~ ———8 I x++Kg~p/(g p
—4) I,

which is of the order of 10 '~. Then the real part is

cossids1
cossds ' 2e &0

xz 1gKa/(P —4) nor

Also the imaginary part is less than

2, sgd$.

This can be explicitly integrated and, on putting gp=. 8,
the integral is seen to be less than 2 X10 ".Therefore, the
integral over X,s+J7 is less than 10 '. We shall see later
that the integral over Lp is of the order of 10 '4 or more.
Hence the path Ls+L7 may be neglected. (Note that if xz
and Kz approach zero, (A.11) approaches zero, as stated in
section 3.)

L,p is a path of steepest descent. The expansion of the
integral along Lo about the pass-point r+(= —,'i tana) is the
same as that about r along L,s, except that 1.n is replaced.
by —a, and 2. the limits of g on both branches of the path
are finite, vis. RIf(&o+5) I

—RIf{~+)I, and RIf(—Pp+b}I
—RIf(r+))i, but as before these may both be replaced by
inifinity. Therefore the imaginary part of yo) is

I kayo& I &(~K COtcx)&e "(1——,'a2/aoK+ 4,a~/aoK'+ ).
Finally, we have

y& ) ='(~K cotn)& IP(1+2K +J3K ~)

+~ie "(1—AK '+&3K ') I (A.12)

APPENDIX B

Derivation of Formulae for l/0
We saw in Section 5, that Xi&'~ can be expressed in terms

of the first (3+1) derivatives of Xp(o~ by means of the re-

cursion formula

Xi+1( ~ =6 +3+1 K d——Xi('&
x 2(l+1) dx

Let us then study these derivatives. We have seen that

Xp(o) 2iXe
—ant' (T 12),iK(x+ 1),ice —2 zzwdr. (8.2)

C

Hence di6'erentiation with respect to x introduces integrals
of the form

s 4~—f ( r)—/is( +i)$r~s s~zrd—

The Lth derivative involves integrals from Ip to Iz linearly.
This differentiation assumes that C, the path of integration,
is independent of x. Actually C is the line &

= —~+(xz/xz)p,
but, as we have seen, the small term dependent on x does
not affect the value of any result obtained by the method of
steepest descents, which method we shall now apply to I .

I„='
/ expI sf„(r) Id—r,

where

fn{r) = -',i log {~—-', ) —-',i log(~+-', )
+2i(x/K)r —(n/K) 1ogr+,'-m. .

Possible pass points are the roots of f„'(v) =0, that is ot

1/(2v. —1)—1/(2m+1) +ni/KT+2x/K =0.

This is a cubic equation for ~. Provided n/K is not large
(and normally it ranges from 0.02 to 0.1), two of the roots
will be near the former pass points r+ and r . The exact
values can be found numerically if x and K are given. The
third root wi11 be found to be near v =0 for small n. To the
first order it is -,'ni/{K —x) ='ni/80.

Disregarding the imaginary parts of x and K which we
have seen do not modify the form of the paths of steepest
descent appreciably, the imaginary part of fn(r) is

G((, y) = g log ~, /+2{x/K)( —(n/K) aic tan(q/().

The paths of steepest descent for I„would be G(g, q)
=constant.

The term (n/K) arc tan(17/g) is a "perturbation" which
slightly deforms the curves found for l=0. The equation
still includes (=0, the constant term being increased by
nor/2K. Also the real part of f„(v) is

—p are tan In/(p+ns —,') I +2(x/s)n+—(I/s) iog I
r

I g.

own log I r I goes to infinity at both ends of the integration
path. Hence the method of steepest descents seems ap-
plicable, and it can be checked that the conditions for the
lemma (A.1) still hold. Therefore, we know that the method
of steepest descents can be applied to I„, and that an
asymptotic series in 1/K will be obtained.

There is a theorem" that, if a function and its derivative
both possess expansions in asymptotic series, the term-by-
term derivative of an asymptotic series for the function is
an asymptotic series for the derivative. Therefore, since I„
possesses an asymptotic series, we may obtain the solutions

"E.g. , Bromwich, Theory of Infinite Series (1'he Mac-
millan Company, London, 1926), p. 345.
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Xi(') by continued application of Eq. (8.1) in which for
Xp&') we substitute its asymptotic expansion.

Explicit general formulae for any / are not obtained, but
the method is dear. In this paper, the case 1=2 will be
considered in some detail, and the procedure in the general
case will be indicated.

By {8.1), X2&') is proportional to

(2 jx+L/4 —d/dx) (1/x+g/2 —d/dx)Xp«)
= {3/x'+5~/4x+a' /8)Xp«)

d d2
{3/x+3K/4) —Xp«) +—Xp«).

dx dx'

Therefore —X2(') is proportional to
dx

—(6/x'+5~ /4x')X p&')+ (6/x'+5~/4x+a'/8) —Xp&')
dx

where p~, O.i, Qi are rational functions of tana and x, and

Qi=(1-p~+«)/(1+pi+«). (B.4)

The solution inside the nucleus, given by Eq. (2.3), de-
pends on the properties of

' (—1) (1+2m)!
(ws/2) ~Jg+)(s) sin(s hr/2) ' Z

(2 )!(g 2 ) ~
(2s')

(—1)-g+2~+1)!+ { I j ) ~ {2 +1)I() 2 j) t(2~)

=Si(1/s) sins+Can(1 js) cosa, {B.5)

thus defining Si and Cg as polynomials in 1js. Then

d/daces& Ji+y(s) j E.i cots —IIi
s&Ji+)(s) Ci cote+ S) '

d2 d3—(3/x+3 /4) —Xp&')+—Xo&').
dx dx3

By performing a calculation involving the first three terms
of the series for Xp&') and then neglecting terms of the order
1j~ against unity, committing about a three percent error,
we find

where

Writing

IIi = Ci+(1/s)2(de/ds-i),
Ei=Si- (1js)'(de jds ').

s = I 2m(Z —U)/k'J &rp

{8.6)
(B.7)

Xp«) Xp&o) tanA' (1—ie—2e)/(1+ lie—2'}d
dx a

—Xp«) Xp(» = tan~~,dx'

d3

dx3
—Xo& ) Xo(') = —tan3 (1 ——ie 2")j(1+—je

Therefore,

d 1 —-'se—X2(') Xg(') = —tan~dx 1+l ' —2(d

8 tan'rx 1+lie—2Q

1+ + I 6 tana j(~+10/x) I
1 —pie

1+ + I6 tano. /(~+10 jx) I

In the last term 8 tan'u may be neglected in comparison
with a, i.e., 32 in comparison with 2500, in both numerator
and denominator.

In general, it is found that

and expanding the cotangent to the first order in Xirp/e as
in the case of l =0, it follows that

D =ykrp ——1/M. (B.9)

Equating now the right-hand members of Eqs. (B;3) and
(B.8) at r = rp, and separating real and imaginary parts, we
find the Eqs. (5.3) and (5.4), which are our final results.

In the case l =2, we have found

p2 =6 tannp/{x+10/krp) ='12/50,
0.2 = 8 tan ap/~(~+10/kr p) =32/2500 ='0.

Then

Xi(i) Xi&i)
dx r rp

Hi(M) tanD —Ei(M) —(imp /2@v) (H)+E'i tanD)
Si(M) tanD+Ci(M) —(i) rp/2') {Si—Cg tanD) "'

(8.8)
where

Xi(o)
d

dx
1—2'l(o) —tanu 2

1+—ie

1 —-', iQie ~
= —tan+.

1+lgQle
—2

1+ lie—2'

2

1-~~ie ~
+ +P1

Q2 (1 p&) l(1+p2)
= {a+10/kryo-6 tannp}/(~+10/krp+6 tanap),

Other Qg's are found in a similar manner. Si, Ci, Hi, and Xi

(B 3) are found from (8.5), (B.6}, and (8.7), The results for I's
as high as 4 are given in section 5.


