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Some stationary solutions of the transport equation describing the diffusion and slowing
down of neutrons in an infinite homogeneous medium (Sections 1 and 2) are presented for the
following cases: constant mean free path, power spectrum in energy and exponential behavior
in space (Section 3};constant m. f.p. , point source of fast neutrons (Section 4); variable m. f.p.
proportional to a power of velocity, point source of fast neutrons (Section 5). For this last case
the possibility of actual numerical computation of the neutron distribution is displayed on one
example, approximately describing conditions in water or paraffin.

I. INTRODUCTION

~HE present paper is concerned with the de-

velopment of methods for the solution of
the transport equation, describing the diffusion

and slowing down of neutrons. Attention will be
focused especially on the case of a point-source
of fast neutrons embedded in an infinite hydro-

genous medium.
Usually problems of this kind are attacked by

means of a more elementary diffusion equation
("age theory"), which represents a reasonable ap-
proximation for most practical purposes. Never-

theless, the greater effort required in solving the
more exact equation is not always wholly un-

rewarding.
The present work was undertaken in 1943 with

a view to fill what seemed an unnatural gap in

the literature. Since then the writers have be-
come aware that problems of this' kind have re-

ceived a great deal of attention in connection
with the development of sel.f-sustaining chain-

reactions. Accordingly, this paper has been re-

written, so as to lay the main stress on the
methodological aspects of' the subject, rather
than on the detailed computation of special ex-

amples. The numerical results which have been
obtained in one case are presented mainly as an
illustration of the method, The authors hope in

this way that their work will not appear as a
wholly useless duplicate of other more concen-
trated and purposeful efforts, and that some de-

tails at least in the method will be found suffi-

ciently new to justify publication.
The main assumptions made throughout are:

* Now at Department of Physics, University of Notre
Dame, Notre Dame, Indiana.

(a) the medium is homogeneous and infinite, so
that a Fourier transform in space can be usefully
applied, and: (b) the energy of the neutrons is
neither too low (say )1 ev), so that effects due
to binding and thermal motion are negligible,
nor too high (say &10 Mev), so that the angular
distribution after an elastic collision of a neutron
with a nucleus is isotropic in the center-of-
gravity system.

From the start, the principal aim of this in-
vestigation was to develop a method capable of
dealing with velocity-dependent mean free paths.
The method finally evolved is described in Sec. 5
for a rather special example; some comments on
the adaptability of the method to other cases
will be found there. The study of the case of a
constant mean free path, presented in Secs. 3 and
4, was almost unavoidable as a preliminary to the
more complicated case. The authors first be-
lieved that if a workable complete solution could
not be found for the simpler case, one could not
even attempt to study the more difficult case of
a variable mean free path. This proved not to be
the case; for some types at least of velocity
dependence it is perfectly feasible to work out
the solution numerically very accurately, al-
though the results for the simpler case are dis-

appointingly inconclusive. One of the writers,
however, hopes to show in a forthcoming paper
that also the results of Secs. 3 and 4 can be refined
in such a way as to yield some information about
the asymptotic behavior of the neutron density
at large distances from the source.

2. THE TRANSPORT EQUATION

We shall use, among others, the following
notations:
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l(u)aa grad/+/ a(p) =S(r—, u), (2)

where 5 is the function representing the source
distribution, and u is an operator representing
the effect of collisions. Specifically, g(g)drdudru
represents the number of collisions per second
taking place within dr and such that a neutron of
arbitrary velocity and direction is thrown into
the element dNdko by the collision. Assuming that
a neutron of velocity specified by n' and co' suffers
a collision (of any kind) let dudcoP(u, ~; u', cu')

be the probability for the collision to be such that
the neutron is thrown into the element dude.
Then one finds:

v and x". velocity and position vectors for a neutron;
eo'. velocity of the fast neutrons emitted by the source;
I=2 ln(vo/v): logarithmic energy variable;
m =v/v: unit vector specifying direction of motion;
des. element of solid angle for u;
l(u): total mean free path of a neutron (including all pos-

sible processes, as e.g. , capture) considered as a function
of the logarithmic energy variable;

l,:scattering mean free path; if several species of nuclei are
present in the medium an additional index may be ap-
pended to l„specifying the nature of the nucleus.

The Boltzmann equation for stationary distri-
butions is too well known as to require any com-
ment. It is written customarily in terms of the
distribution function f(r, v), or the particle-
density in phase-space. It is often more conveni-
ent, however, to work with the "collision-
density" defined by:

0(» u, ~) =is'(s/l(u))f(r v), (1)

the factor (-,')s' being introduced because we
use drdudra as the phase-space element, and s/l
being the collision probability per second.

The Boltzmann equation is then:

If many nuclear species are present, the prob-
ability is a composite of expressions of the above
described type. One especially simple case arises
when all mean free paths are velocity independ-
ent, or more generally if their ratios are velocity
independent; then the function I' is of the type:

P(u, (a; u', aa') =P(~ 6&', u —u') (5)

as is clearly the case for Eq. (4).

3. THE CASE OF CONSTANT MEAN
FREE PATH

g being the variable of the Laplace transform.
Any such term, if taken by itself, represents a
power spectrum in velocity. One finds, moreover,
as in the cascade theory of showers, that such
power spectra are self-sustaining, that is, they
are capable of existence even if the source term
S on the right-hand side of Eq. (2) is equated to
zero, provided the variable I is also allowed to
take negative values. ' More accurately, ' this
means that the source terms are relegated 'to in-
finite energies. The properties of the non-homo-
geneous Eq. (2) are closely related, as usual, to
these solutions of the homogeneous equation,
which we are now going to investigate.

When all relevant cross sections —or the corre-
sponding m.f. paths —are constarI. t, one is natu-
rally led to apply a Laplace-Mellin transforma-
tion with respect to the velocity, i.e., a Laplace
transformation with respect to the variable N.

The customary inversion formula then yields the
distribution function as a superposition of terms
of the type:

(6)

a(P) = ' du' P(u, ~; u', ~')d(o' f(r, u', ~'). (3)
Jp

It may be remarked that if only one nuclear
species is present, the above-mentioned prob-
ability is the product of l(u')/l, (u') (representing
the probability that the collision be of the scatter-
ing type) by a factor depending only on the
cosine co.aa' and on the ratio of the velocities (or
on the difference u —u'). For instance in hydro-
gen, where 1/t, =1, one has

P(u, ~; u', e') = (1/2 r) e"™&8(csis' e&&" "&) —(4)-.

3.1 Homogeneous Equation. (S=O).

The total mean free path being a constant,
it can be chosen as a unit of length. It has to be
remembered that, in the absence of a source, vp

means an arbitrary constant velocity. With a
power spectrum of type (6), we can write:

P(r, u', m') =e«"' "&P(r, u, e');-
inserting this into (3) and remembering Eq. (5)

~ In that case the integral in Eq. (3}with respect to u'
must also extend from —~o to u,
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and footnote 1, we easily 6nd

where

o(p) = ~' g(~ ~', s)f(r, il, ~')d~',

g(ra aa', ll) = s «p(m ca', N)dN.

(8)

(9)

owing to a well-known property of Legendre
polynomials. Substituting (10) and (14) into
Eq. (2) and rearranging terms, this becomes

p x~„(li)=0, where the coefficients x„, given by
the left-hand side of Eq. (15) below, do not de-
pend on p,. This gives the equations x =0, or:

We may also separate the spatial coordinates,
scttlng:

e«—key(~) (10)

where p is the s-component of ~. The choice of
the s axis as the direction of exponential decrease
entails no loss of generality.

Clearly we may assume @ to'be symmetric
about the s axis as is done in Eq. (10).There are
also other solutions in which we are not interested
just now. Developing the @(p) function into a
series of Legendre polynomials, we write:

(2il+1)L1 —g.(s)I@.
—kt n@„ l+ (e+ 1)(b„+l1= 0 (15)

for n=o, 1, 2, ~ ~ .. A further condition is ob-
tained on remarking that for (11) to be meaning-
ful one must have:

(16)

Since the solution of (15) contains an arbitrary
factor, we may set for instance &0=1. Then the
first of the equations (15) or:

e=(1i«) E (»+1)@-&-(l)

Developing also g in a series of Legendre poly-
noIQlals. "

g(e ~', ll) =(1/4m) Q (2m+1)
~=0

and making use of the sum-rule for spherical
harmonics:

we easily find that all terms with m/0 cancel
ill Eq. (8), so that:

Moreover, with ip given by (10), the first term
on the left-hand side of (2) becomes:

determines &1, while the remaining equations de-
termine sllccesslvely Ql, $3 . Tllus, Eq. (15)
is sufhcient in itself to determine the solution
completely, and Eq. (16) is an additional condi-
tion imPlying a relational between rl and k.

In order to see this more clearly, we notice that
since lim g„=0 the asymptotic form of Eq. (15),

for Q~, 1s:

2P —k(P l+y„+l) =0, (18)

of which tw'o solutions Rre rcad1ly obtained ln
the form p„ewhere e is either of the two roots
of the charRctcI lst1c cquRtlon:

2e —k(1+e') =0.

If k is complex, or if it is real and satisfies the
condition —l gk & i, the two roots are one
larger and one smaller than unity, so that one
of the solutions of (18) tends to ~, the other to
0 when e—& . According to a theorem by Poin-
carhP the same applies to the system (15), Eq.
(17) being omitted. The solution selected by
Eq. (17) will in general be a linear combination
of the two, Rnd w111 thus tend to infinity. Thus,
for every value of g, there wiH be special values

' N. Norlund, .Digeremelt'echmwg (Verlagsbuchhand-,
lung Julius Springer, Berlin, 1924), Chap. 10.
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of k, to be called eigenvalues henceforward, for
which condition (16) may be satiated. '

3.2 Series Development for Small
Values of k.

k=0, q=0, Q~=Q~= . . =0, or:
P =const. (20)

This solution is constant in space (k=0) and
isotropic and corresponds to the well-known
Fermi solution for the energy spectrum of slowed-
down neutrons. One may get also other solutions
by putting g& = 1, or g& = 1, ~ but one immedi-
ately suspects that th'ey are less significant from
a physical point of view. This is also borne out
by the study of the inhomogeneous problem.

We shall therefore limit ourselves to studying
the solution which reduces to Eq. (20) for k =0.
For k small, one is naturally tempted to develop
@0, P~, - ~ ~ and g in powers of k. Closer inspection
of Eq. (15) then shows immediately that these
series must have the form:

(4 0+k 4' 1+k 'tt' 2+ ' ' ')

g —yak'+g k4+

We shall not carry out this development in de-
tail. It should be mentioned, that there is a
certain arbitrariness in the development for &0,

p~, ~ ~ (not in that for q!) owing to the fact that
the solution can be multiplied by an arbitrary
factor, which may be a function of k. One may

3 In the forthcoming paper mentioned in Sec. 1, it will
be shown that the values of k on the real strips k (—1 and
k&+1, for which the roots of Eq. (19) are complex num-
bers of modulus "unity, " and the solutions of Eq. {18)
neither tend to zero nor to infinity, exhibiting an oscil-
lating behavior, may also be considered as eigenvalues.
There is thus both a discrete spectrum and a continuum
of eigenvalues.

We now wish to investigate the connection be-
tween g and k when k is small (k«1), neglecting
capture for simplicity. In the limiting case k =0,
system (15) reduces to:

L1 g~]/~=0 fol K=0, 1, 2,

showing that either all P's are =0, which is
trivial, or one at least of the g's must be =1.

Equations (9) and (11a) show that go=1 when
g=0; this merely expresses the normalization
condition for probability. One then has:

remove this arbitrariness by setting &0 = 1, for
instance.

The coeKcients in Eq. (21) are positive and
indicate that g is a rapidly increasing function
of k. For intermediate values of k it is, however,
quite impracticable to try to compute all the
coefficients that may be necessary in the develop-
ment (21). It is much easier to ascertain the
connection between g and k by a numerical in-
vestigation. One computes go, g~, ~ . for a given
value of g, and then solves the system (15) for
a tentative value of k, starting for instance with

@0——1, and determining @&, @2, ~ ~ ~ by means of
the recurrence relation. Unless k is already very
near to the eigenvalue, it will very soon become
apparent that the solution does not satisfy the
boundary condition at infinity. One then starts
with a better guess for k, and so on. The work is
quite similar to finding an eigenvalue of a
Schrodinger equation by means of a step-by-step
integration, only it is somewhat simpler.

Until now we have generally assumed that k
was real; Eq. (21) shows however that g is real
also for purely imaginary values of k, correspond-
ing to a "plane wave" distribution in space. This
conclusion holds as long as the series converges.
We have carried out a numerical investigation
for the case of pure hydrogen, Eq. (4), and the
result is given in Fig. 1.When the absolute value
of k exceeds a certain limit there is no longer a
real value of g corresponding to it; the curve
representing g as a function of k joins a lower
branch corresponding to an g &0 for k =0, that is
one of the branches we have previously neglected
(and precisely the one for g~ = 1 when k =0).

4. NON-HOMOGENEOUS EQUATIO¹
CONSTANT MEAN FREE PATHS

We assume now the existence of sources dis-
tributed in space and emitting neutrons of ve-
locity so. We set therefore in Eq. (2):

5(r, u) =s(r) 8(u).

Ke choose as before the total mean free path as
a unit of length. Moreover we perform a Laplace-
transformation with respect to u or a Laplace-
Mellin transformation with respect to velocity,
setting:

(22)
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l.0 equation for f is then:

P(y) ky—@(p)—) g(~ ~', s)d(e'@(ii') =1/4s, (24)

which can be again transformed by means of
Eqs. (11) and (11a) into the system:

0 0.5 k$—ny„ i+ (n+1)y.+i)= b.o, (24a)

FIG. 1.l'Dependence of p on eigenvalue k, for real and
imaginary values of k (positive and negative 0'). The de-
scending part of the curve on the left corresponds to the
lower branch mentioned in the text.

which can be inverted by means of:

)p+iao

i(=(1/2si) i C(r, g, ~)e'"drl, (22a)
p—ioo

where P is a constant that can be arbitrarily in-
creased, but not decreased beyond a certain
limit. The equation satished by C is obtained by
multiplying Eq. (2) by e &, by making use of
Eq. (5), and integrating respect to u. The term
containing a(f) must be modified as usual by
means of the convolution theorem, that is by
inverting the order of integrations respect to I
and I,'. Finally one 6nds easily:

m gradC+4

—
i g(aa ~', q)da)'C (r, q, ~') =s(r). (2')

We shall now examine two typical source dis-
tributions.

4.1 Vive Source

We consider a source of the sinusoidal plane
wave type:

s(r) =e—"/4'

where k is a pure imaginary, whenever the con-
trary is not stated explicitly. The choice of the
z axis as the wave normal does not of course imply
any essential limitation. We look for a solution of
the type:

s-hazy (~)

suggested by the symmetry of the problem. The

k'/31 k'/(4n' —1)
4'0 = ~ ~ ~ (25)

& —R'0 —& —R~—

This can be formally derived, if one uses the
first of Eqs. (24a) to express &0 in terms of pi/&0,
then the second to express pi/&0 in terms of
y2/yi, and so on. ' The fraction (25) defines &0 in
the whole plane of the complex k-variable, except
on the real strips:

1&k&+~; —~ &k& —1 (26)

for reasons which are disclosed by the discussion
of the homogeneous system ('15) (see the text
following Eq. (19)). If the plane is cut along the
strips (26), the function Q~ is analytic and one-
valued and the only singularities it possesses are
poles, at which of course the fraction (25) does
not converge.

If our problem were merely to compute &0 for
a few real values of g and ik, the continued frac-
tion would be very suitable, since it converges
fairly well for most values of ik. But if we are
interested in an integral of the type (22a) we
obviously need some expression which is easier
to handle than (25). Without entering into too
many details, we wish to mention various possible
lines of attack.

One possible method consists in developing p„
in powers of k, as in the homogeneous case (see
Eq. (21)). The difference is that in the present

4 For a rigorous justification see: Perron, Die Iehre eon
den Eettenbriichen (B.G. Teubner, Leipzig), second edition,
especially Section 57.

differing from (15) only for the Kronecker symbol
b„o(= 1 if n =D, = D otherwise) on the right-hand
side. Various methods can be devised to solve
this system of equations. The solution may be
given, for instance, in terms of a continued
fraction:
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(1 g0) 40 k4'1 (24b)

The remaining system is homogeneous, and de-
termines only the ratios between the p's. One
may then develop, in powers of k, the ratio P /P&
where N is some fixed value. Two values of N
are especially interesting, namely N=O, and
N = ~. In the first case one finds for instance:

4i/$0= (1/3)kL1 —gi7
—'

+(4/45)k'L1 —gi7 'f1 —
g&7 '+ ~ (28)

and inserting this into Eq. (24b) one finds &0 as
the reciprocal of a power series in k. The case
N = ~ is not so simple because actually p =0;
it may be proved, however, that, provided the
g's tend to zero sufficiently quickly when N tends
to infinity, one has:

CX '*c~, for large X's; (29)

what one can do then, is to develop the ratio
p„/C in powers of k. Finally, taking into account
(24b), one finds &0 as the quotient of two power
series. Although this development is somewhat
complicated, we think that it is interesting, be-
cause the convergence of the power series is only
limited by the axed singularities at k = &1, as a
more detailed consideration shows.

We wish to mention here also another possible
method, which consists in developing the solu-
tion in powers of e (instead of k). When k is small,
one has from Eq. (19):

case q is given, and must not be developed in
powers of k. One finds for instance:

A=(1 —go)
'

+(k'/3) (1 —go) '(1 —gi) '+ .. (27)

The convergence radius of this development will
be determined by the position of the singular
points, two of which (~1) are fixed, whilst the
remaining ones (the poles) are functions of s, see
below. Thus the radius will in general be a func-
tion of q, when q—+0, the convergence radius does
the same, so that the series (27) becomes useless
in a very important case. Another method, which
may help to avoid this disadvantage, consists in
using essentially the same type of development,
but without taking into account at first the in-
homogeneous equation:

(k —k) Q u(y. ,y.+y.y. ,) =y, .
n=1

(32)

Now we must have:

lim (k —k)p„=N@,
k=0

(33)

where E is a normalization factor. Equation (32)
then yields:

so that the two variables k and e are not essen-
tially diferent; but for large values of k the
situation changes considerably. In fact, in the
plane of the complex variable e, the interior of
the circle:

(31)

corresponds to the whole plane of the k-variable,
cut along the strips (26); in particular the whole
imaginary axis for k is represented on the seg-
ment from e= i —to c=+i Th. erefore, as far as
the conoergeuce of the power series under examina
tiou is limited by the fixed singularities at: k =~1
(or: e= +1), the power series in e is muck more

powerful than that in k. In fact, the fixed singu-
larities prevent us from reaching any imaginary
values of k beyond k=~i, whilst there is no
limitation whatever in the e-development. These
advantages will be fully exhibited in the next
section.

Let us now turn our attention to the isolated
poles of the solution. These arise in the following
way. We have seen already that for each value
of g there are in general k-values, for which the
complete homogeneous system (15) (iucluding
the equation for n=0) admits a solution satis-
fying Eq. (16). From the preceding discussion it
is clear that the inhomogeneous system (24a)
does not then have any solution satisfying con-
dition (16). In other words the eigenvalues k give
the poles of the solution of the inhomogeneous
case. It is possible to investigate the behavior of
the function &0, Eq. (25), when k approaches one
of these poles, say k. In fact, cail p the solution
of the complete homogeneous system correspond-
ing to k, and write Eq. (15) for this g„. Multiply-
ing this equation by P„and Eq. (24a) by p„and
subtracting one from the other, and summing
with respect to n, one finds:

~ =k/2+k'/8+ 2E Q N4nkn-i=40 (34)



Equations (33) and (34) describe the behavior of
the solution in the neighborhood of k.

4.2 Point Source

A point source s(r) = 5(r) and the correspond-
ing solution of Eq. (2') can be built up from the
wave source (23) and the corresponding solution,
from the Fourier expansion

where the integrations with respect to the three
components of k run from —i ~ to +i~. Since
we are now considering wave-sources with an
arbitrary direction of propagation, it is clear that
Eqs. (23a,) and (24) still hold, provided we under-
stand by p, the cosine of the angle between the
velocity vector (or ~) and the propagation vector
it. We then have the solution of Eq. (2') in the
form:

given energy we must still invert the Laplace-
Mellin transform by means of Eq. (22a) so that
finally the quantity we are interested in is
given by:

~
pd~= —(1/21rr)(8/Br)X(r, u) with:

P+ 1»»»

X(r I) (1—/2Irj) 2)l Sn~drI), S 0~$0(—II» k)dk

(39)

It is not possible to evaluate these integrals in
closed form. It is possible, however, to find ap-
proximate expressions for them in the limiting
case when u is very large. Strictly speaking the
expression obtainable is an asymptotic evalua-
tion for u~ ~ (and r kept fIxed or increasing only
hke the sqlla1'e roo't of Q) ~

Since we understand that this case has been
studied very thoroughly, we sha11 be content
with a few remarks, If u, is large it is convenient
in Eq. (39) to perform the integration with re-
spect to g first. The integral:

Ke are mainly interested in the density of slow
neutrons of a given velocity, irrespective of the
direction of the velocity, which is:

) 4d~ = (1/2Ir~)'J e—"'yo(rI, k)dlt, (3T)

where 4o is of course the function given by Eq.
(25), but its dependence on both II and k is now
explicitly indicated for the sake of clarity. Per. -
forming the integrations with respect to the di-
rection of k, one naturally finds that the density
(37) only depends on the distance r= jrj from
the point source, and not on the direction of r:

~+ i»»»

~ = —(1/2Irr) (1/2si) J
(e~"—e—'")&0(11, k) kdk,

which can be further simplified to:

' 4 du) = —(1/2Irr) (8/8r) (1/2s.I')

+$00

X )I s '"yo(s, k)dk -(38)

In order to obtain the density of neutrons of a

e&"4,(1I, k) drI (40)

may be evaluated approximately by pulling the
integration path to the left in the g-plane until
one meets the first singularity. One may show
that this is given by Eq. (21).The integral is thus
given by the residue at this singularity, plus the
contributions from the remaining singularities.
One may show aso that the real part of the
second singularity is smaller than that of the first

by about -', (in the hydrogen case) for small k's,

so that the contribution deriving from it is of the
order of e ""with respect to the first residue.
The computation of this first residue is quite easy
if 0 is smaH, and it may be shown later that only
small values of k contribute appreciably to the
final result in Eq. (39). Namely, if k is small Eq.
(21) converges rapidly, so that the solution of the
homogeneous system (indicated later with @) is
known, and it is possible to express the normal-
ization factor N in Eq. (34) by means of a rapidly
convergent series in k. The residue is easily ex-
pressed in terms of N and of the derivative
dr1/dk, rI being tile first pole for a gIvell k (coI11p.

Eqs. (33) and (21)). If the residue is indicated by
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R(k), being a power series in k, Eq. (39) takes locity, so that Eq. (5) is valid. More specifically:
the form:

P(pp p&', u —u') =(t/2prti)e"' "8(pp pp'

+joo

X(r, u) = (1/2prp) e "—+~ &p"&R(k)dk .(41)

Now since k is imaginary, q is negative, and. the
factor e""'"' decreases very rapidly (large u!) as
k increases. One may therefore retain only the
first term of the second Eq. (21), or if a better
approximation is wanted use an expansion:

e"p&'& = exp(u»ik') (1+u»pk4+ )

—e'&"'—"&)+ (I/O prtp) t'(u —u'),

so that, setting ~ ~'= p, one easily finds:

g(&i, ») = (t/prti) pp+&+ (t/4prlp) if &ti) 0, (43)

if p(0.
Multiplying both sides of Eq. (11a) by P (u) and
integrating with respect to p, from —1 to +1,
one then Ands:

so that finally (41) reduces to a Gauss integral,
plus terms of higher order, also derivable from
the Gauss integral.

5. NON-HOMOGENEOUS EQUATIO¹
VARIABLE MEAN FREE PATH

Quite often, for instance, if the slowing-down
medium contains hydrogen, the approximation
of constant mean free path is very far from being
satisfactory. We want to show now that with
suitable assumptions on the velocity dependence
of the mean free path, one can still develop an
accurate method of solution. The experimental
results on this dependence can often be repre-
sented quite well by a law:

g- = (2t/ti) &
'"+'P„(u)du+ (l/t, )8„„(43a)

0

e.g. ,

g p
——(l/li) (»+1)—'+I/tp

gi=(tlti)(v+p) ' (43b)

gp = (tlti) Lp (»+2)-' —
p (»+1)-'];etc.

Making use of the equation:

(n+1)P +i &iP'„+,=—nP„, &—iP'„, —

one can also easily prove the recurrence relation:

g„+,——L(2»+2 —n)/(2»+3+n) ]g

for n )1, (43c)
l =a+be' (42)

with suitable constants a, 5, c. A law of this kind
may be studied with the methods now to be
described. But the problem certainly becomes
very involved. If, however, the constant a is
neglected, one has a problem that, although more
complicated than the ease of constant mean free
path under some respects, nevertheless presents
some features which make it easily amenable to
numerical treatment.

Instead of developing the method in general
we prefer to examine this case thoroughly, that is,
also numerically, for one special example, namely
a mixture of hydrogen and of infinitely heavy
nuclei, which may be regarded as a sufficiently
good model for water or paraffin. We neglect
capture, and assume for simplicity that the ratio
of the scattering mean free paths li for hydrogen,
and I& for the heavy nuclei is independent of ve-

which allows one to compute quickly all g's.
Ke have found that the law'.

l = (v/v p)l(v p) (42a)

represents the data for water or paraffin with
very good accuracy down to energies of the order
of 100 kev. In other words in Eq. (42) we shall
set a=0, and c=1. But the development would
be almost exactly the same if c were /1. Of
course the assumption that the mean free path
tends to zero at zero velocity means that we will

grossly underestimate the diffusion of the neu-
trons in the last stages of slowing down. On the
other hand the region between say 6 Mev and
100 kv is already large enough, and the corre-
sponding variation of the mean free path is -so

strong that it is interesting to investigate what
happens in this phase of the slowing down.

We take now l(vp) as a unit of length. Insert-
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ing (42a) into Eq. (2) that is writing:

l(u) =s "''-,

assuming again that S(r, u) =S(r)8(u), and using
the transformation (40) one finds instead of
Eq. (2'):

rs gradC(s+2)+C(g)

—
Jl g(~ u', s)d~'C (r, g, ~') =s(r). (44)

Again we consider a wave source, Eq. (23); going
again through the same steps, Eqs. (23a), (24),
and (24a), we find instead of Eq. (24a) the
following

(»+~)LI —g (s)34 (~) —&Iud.-i(s+k)

Mathematically this is a much more difficult sys-
tem of equations than (24a); g, instead of ap-
pearing simply as a parameter, is a variable
within the equation itself. In fact, (45) is a differ-
ence equation in two independent variables, n
and q, very little is known on the mathematical'
properties of these equations. One may guess,
however, what they are, on the simplifying as-
sumption that one may neglect all @„'swith an n
larger than some large value ¹

This is an approximate way of taking into ac-
count condition (16). One has then to do with a
finite system of difference equations, and one can
apply known theorems. ' lt appears then that in
order to define the solution completely, it is neces-
sary to take into account the behavior of @(g)
when g tends to infinity in the complex plane in a
direction forming an acute angle with the positive
real axis. This behavior can be easily inferred
from Eq. (22), because when q—+~ as stated the
contribution to the integral arises entirely from
the neutrons of highest energy, i.e., the primary
neutrons. One then finds the condition:

lim 4 (n) =Q.(~/&)

~+1
P (s)ds/(I —ks) (46)

I'his condition sele| ts among the infinity of pos-
sible solutions the so-called "fundamental solu-

tion" which is, however, generally defined by
means of formulae so involved that they are of
little use for computation.

There is, however, the fortunate circumstance
that if we try to develop @ in powers of k, we find

that the development is perfectly definite, and
the coefficients of the development satisfy the
condition (46) for the fundamental solution.
There is little doubt, therefore, although no
rigorous proof is available, that for small values
of k one gets in this way the correct solution. Ac-
tually, instead of the k-development, we shall
use, as indicated in Section 4, the more powerful
development in powers of e, which allows us to
extend the solution analytically to a much wider
field, and in fact, can be used for numerical com-
putation up to suSciently large imaginary values
of k, as will be presently shown.

Let us, however, first discuss an obvious, but
important, property of the system (45). We
know that for large values of (R(s) the solution
is a regular analytic function of g, this being a
general property of Laplace transforms. Suppose
for a moment the solution is known in a strip:
go&(R(g) &go+-', , where go is some large positive
number; then by means of Eq. (45) we can move
in steps hq = —-,'towards the left in the complex
q-plane, extending the solution to smaller and
smaller values of (R(rl). No singularity can occur
in this process, until some of the factors (1 —g)
become zero, and in that event we shall find

a pole.
In the special case, Eq. (43), the first pole one

meets is the root g =0 of the equation 1 —go =0,
and this must be true also in many other cases.
The next pole is the root g= —2+3/li of the
equation 1 —g~ =0, and so on. For higher n-values
one finds also complex roots. The essential point
in all this is that the poles are entirely deter-
mined by the coefficients g, and do not uf uN de-

Pend 0n k. One can easily convince oneself that
this behavior which is so different from what we
found in the case of constant mean free path, is
entirely caused by the fact that here the mean
free path is assumed to tend to zero for zero
velocity. The general law (42) would not lead to
such a simple behavior, and therein lies the great
simplification implied in the law (42a). One can
say indeed that for purposes of numerical com-

putation the present case is simpler than the case
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Tsar.z I. Computation of f{k).

ik =0
f(k) =1

0.12
0.98

0.18
0.96

0.289 0.471
0.894 0.756

0.615 0.703
0.64 0.57

0.912
0.43

1.12
0.32

1.33' 1.565 1.96 2.10
0.24 0.18 0.1 0.06

TABr,E II.

r=o
S{r)=2.30

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.5 3.26 3.89 4.76 5.18
2.07 1.55 1.05 0.68 0.44 0.29 0.18 0.12 0.05 0.025 0.0084 0.0024 0.0013

of constant mean free path, notwithstanding the
higher complexity of Eq. (45).

If one is interested in the distribution of neu-
trons having velocities much smaller than the
initial one, it will be enough to know &0 in the
neighborhood of the pole g=0; this will enable
one to compute the residue of the integral (22a)
at this pole, while the contribution from poles
lying more to the left will be negligible. Now
Eq. (45) for n =0, shows that, when g=0:

4 (~) ={1—ao(n)3 '{1+&4 (l)} (47)

so that it is sufficient to have the development of
p~ for one definite value g = 2. This is the simpli-
fication which makes a numerical treatment
easily possible. In fact, once the variable g is
eliminated, it becomes a possible program to
compute @0 numerically for closely spaced values
of k, so that one can compute, again numerically,
the Fourier integral of Eq. (38), for a sufficient
number of values of the distance r. The method
becomes inaccurate only at very large values of
r, where, however, a different procedure can be
adopted (see below).

Here is, very briefly, how the computation can
be slightly simplified. First we put:

U. = {r(-,')r(1+-,~)/r(-;+-', 5) }y.

Z„(s) =4 {r(1+-',n)/r(-,'+ -,'n) }'
&&(»+1) '{:I—g-(n) j '

whereby Eq. (45) becomes:

4 U (g) —2kB„(s){U„ i(g+-', )

+ U-+i(v+2) } = ~&o(n) &-o (49)

(comp. Eq. (31)) starts with e":

Ua = 0"{Uno+ Un16'+ Un c2'+

we find the recurrence relation:

U:(~)+U., -- (~) -&.(~)

X {U. ..(g+-,)+U.+...(g+-, ) }

= (~/4)&0(n) &.o(&-o+&-i), (51)

which yields the various coefficients in the follow-

ing order: Uoo, Uio, Uoi and U20 Uii and U30,

As indicated in Eq. (47), we need only the coeffi-
cients of the development for one value of q, or
g = -'„but in the course of the computations owing
to the peculiar structure of Eq. (49) values g = 1,
q=-,', g=2, occur. In order to compute the
residue of &0 at g=0 up to the tenth power of e',
we found it necessary for instance to make use of
the values of Z„(g) for the following values of
the variables:

n=0, i, 2, , i0 and g=m+-,'n,
with m=0, i -., i0 —n.

In order to determine the value of the ratio li/l2
to be used in the computation it was necessary to
make some compromise between the experi-
mental values at high and at low energies. The
value I&/l2=0. 27 was finally adopted. With this
value the first ten coefficients in the development
of &0 were computed, finding:

4'0(s) = Ua(n) = (Ii/I) (1/s) {1+5586~'

+i5.609e +3i i43e'+52.240e

+ 79,420e&0+ i i3.259e&&+ i54,40e&4

+203.52e"+26i.37e 8

On account of Eq. (19) we then set k =2c/(1+a') +330.35e20+ } (52)
and multiply the whole equation by (1+a').
Developing U„ in a series of powers of e which for q=0. The bracketed series is a function of e
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and hence of k, which we shall indicate by f(k)
The values in Table I were computed by means
of Eq. (52). The table indicates that it is quite
feasible to compute the function f(k) by means of
Eq. (52) up to a point where it is already fairly
small. A diagram of the function resembles
roughly a gaussian curve, but the tail falls off
more slowly than a gaussian, and rather more
like an exponential. This also permits one to
extrapolate the values of f(k) to values of ik) 2.1.

Inserting (52) into the integrals (22a), (39), one
finds that for large u, or for low velocities, P be-
comes velocity independent. This can be easily
understood if one rejects that with a law / v, the
diffusion of neutrons comes practically to a stop
for sufficiently low velocities so that the space
distribution tends to a limit for v—+0. The local
energy spectrum must then finally coincide with
the over-all spectrum which is given by the well-
known Fermi law: dN=l(v)dv/v' which means

f=const.
The space distribution is given by the formula:

$,00

I Pd(o r '
I kf(k)—sin(ikr)dk

al 0

(53)

By means of Table I, this function has been
evaluated numerically for the first ten r-values
in Table II. When r becomes very large the
evaluation by this method becomes too uncer-
tain; accordingly, the last four values listed were
obtained by means of the saddle-point method to
be described later. It has to be remembered that
r in Table II is really the distance from the source
measured in terms of the mean free path of the

20
r (gm)

FIG. 2. Dependence of neutron density on the distance
for a D+D source. Dotted line theoretical, full line ex-
perimental.

primary neutrons. Thus on assumption (42a), the
limiting distribution in space is given by a uni-
versal function; if the initial energy is varied, one
has merely to change the unit in which distances
are measured. This is of course only approxi-
mately true, mainly owing to the fact that the
mean free path does not really become zero at
zero velocities. Actually formula (53) should hold
for neutrons whose final energy is sufficiently
small (so that the contribution from the neglected
poles is really negligible) and at the same time
sufficiently large for formula (42a) to be still
valid. It would, however, be perfectly possible to
compute the contribution from the next pole to
the left of g=0.

5.1 Comyarisan %'ith Exyeriment

If the function on the right-hand side of Eq.
(53), which we may indicate by I(r), were correct
down to 1 ev it could be directly compared with
measurements on Rh or Ag resonance neutrons.
The most accurate measurements, however, are
made on thermal neutrons, and in order to get
the distribution for these neutrons it becomes
necessary to apply diA'usion theory. One then
finds the distribution:

Iv, (r) = (1 A'6) 'I(r—)—
=(1/r) J" yf(iy)»n(yr)

X(1+A'y') 'dy, (54)

where A'=Dr/P(vo), D being the diffusion con-
stant and v the mean lifetime of thermal neutrons.

The integral (54) can be computed just as
easily as (53). It is moreover possible in this
computation to include also a correction for the
defects of formula (42a) below 100 kev. Indeed if
we start with neutrons of say 6 Mev, it is clear
that by the time their energy is reduced by a
factor 60, their distribution in space has Battened
and their angular distribution has become iso-

tropic to such an extent that age theory is hence-
forward quite a good approximation. The distri-
bution of resonance neutrons should then. be
given by:

I„,(r) =e"~I(r) = (1/r)J yf(iy) sin(yr)

)&exp( —Ay2)dy, (55)



where A is the "age" of 1-ev neutrons starting
from 100 kev, or preferably the di8'erence be-
tween the ages as computed from Eq. (42a) and
the real experimental dependence of the mean
free path on velocity. According to Bethe' the
age in water is given by:

and 1Q this way an age difference was computed:
2 = 7 cm' when formula (42a) was adjusted to fit
the experimental value at an energy of 3.5 Mev.
Applying corrections (54) and (55) contempo-
rarily one then should take:

Ig ——(1 2'6) Ie—"~I(r)-

expressing of course A in units P(vo).
A comparison with experiment was made in

two cases. F1Ist we took the dlst1 lbutlon of
thermal neutrons from the reaction D+D, as
measured by Amaldi, Hafstad, and Tuve' with
incident deuterons of 0.74 Mev. This source is
not quite isotropic, but we assumed for the energy
of the primary neutrons the value which may be
computed for the neutrons emitted in the direc-
tloll of observRtlon (Rt 40 frolTl t11e dll'ectloll of
the deuteron beam), namely 3.5 Mev. In this case
we assumed L(so) =6.8/1. 27 =5.35 cm. In Fig. 2
the theoretical curve (dotted) was normalized to
coincide with the experimental (full) curve at 5
cm. It should be realized that no adjustment in
the unit of length was effected in order to obtain
the fairly good agreement of the results. The
values for large r were computed w'ith the same
saddle-point method, that was used for the com-
pu'tRtloll of I(t').

Another comparison was made with measure-
ments on thermal neutrons from the D+8 reac-
tion, ' with Q.SS-Mev deuterons. In this case we
did not expect a good agreement, because we as-
sumed the spectrum of the primary neutrons to
con81st of four lines of energy 14, 9.77, 6.85, and
4.69 Mev respectively, while there are indica-
tions that also considerably slower neutrons are
emitted. We did not take these into account be-

cause we had no reliable data. The relative in-
tensities of the lines. were assumed to be in the
Iat108: 1:2:1:3.The distributions coIlespondlng
to the four lines were computed separately with
the following data:

l(sg) = 17.7 12.1 8.7 6.45 cm
1/(2"+2) = 15.2 11.2 7.1 4.3

(the value of A had to be revised each time so as
to take into account the deviation of the experi-
IllelltRl IRW fro111 formula (42R). Tile colnplltatloll
was greatly simplihed by assuming that one
couM. Ieplace

(1 —2'6)-Is"~ with (1 —LA'+A jLL)-I,

and moreover that one could interpolate linearly
with respect to (A'+A). This should not be very
inaccurate since A' and A are small. The result
in Fig. 3 shows a deviation in the direction to be
expected if the spectrum contains slower neutrons
ln addltlon to the fouI' 11nes taken into account.

5.2 Evaluation of the Integrals (53), (54)
fOf LRfge F

Let us write for instance:

I(r) = (1/2ir) IIf(k)e'"did,

and deform the integration path in the complex

~ H. A. Bethe, Rev. Mod. Phys. 9, 69 (1937),esp, p. 129.'E. Amaldi, L. R. Hafstad, and M. A. Tuve, Phys.
Re@, Sl, 896 (1937).

~ Alnaldi, unpublished.

FIG. 3, Neutron density for a 9+8 source. Full line
experimental. Dotted theoretical, not including slow part
of primarff spectrum.



k-plane to the left, so that it passes through a real
point ko such that —1&ko(0. If k0 moves
towards the point k = —1, f(ko) tends rapidly to
infinity while the exponential factor decreases
rapidly (if r is large). As a consequence there is a
saddle-point, and we let ko coincide with this
saddle-point. Moreover we put:

f(k) =e«"& (59)

and develop g(k) in powers of k —ko in the usual
way. The known coefficients in Eq. (52) are in
sufEicient number to allow the computation of
g(k) from k=0 to about k= —0..85 or e'=0.3.
Now it is quite certain, on the basis of formula
(61) below, that the conditions for a rigorous ap-
plication of the saddle-point method are not
satisfied even for a very large r. The situation is
somewhat similar to that encountered, if one
were trying to compute the integral:

which according to Stirling's formula coincides
with (60) only if p is large. In our case we may
assume p=i.77, and therefore the condition is
not satisfied. However, the error in Stirling's
formula is only about ten percent: we have ap-
plied, therefore, the saddle-point formula as an
empirical method to extrapolate the results to

(1/2iri) e'"k &dk = r&-'/I'(e) (60)
Jp,„

by a saddle-point method. One would find the
value:

larger distances. In this way the four last values
were computed in Table II, and the same was
done in the computations underlying the dia-
grams. 2 and 3.

We may also venture a hypothesis about the
asymptotic behavior of such integrals for large r.
We could of course derive this behavior rigorously
if we knew what type of singularity f(k) possesses
at the point k = —1, but we have no method for
knowing this. We may observe, however, that
the coefFicients in the development (52) are re-
markably close to those of a function:

f=C(1—e') "
with C=2.i5 and 2p=3.55. The first coefficients
of course do not coincide, but the agreement be-
comes quite good after the fourth coefficient.
This might indicate that the singularity is well

represented by a formula of the above type, which
when translated in terms of the variable k would

give:
f(k) -0.054(1+k)-~.

Inserting this into formula (53) and remembering
Eq. (60) one Finds easily (one should really use a
Tauberian theorem):

I(r) 0.18r '"e ',

which should hold, however, only for values con-
siderably larger than any in the table. It is un-

necessary to stress that this is merely a guess.
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