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All alloys of the type of B-brass decrease their concentration range in the disordered state
as the temperature is lowered. The original theory of Jones is shown to be inadequate, and the
observed variation with temperature of the phase boundaries is shown to follow directly from
the assumption that the g-phase has a slightly lower characteristic temperature than the

neighboring phases.

Beta-brass has an extremely high elastic anisotropy. This property is in part a result of an
anomalously low value of (Cii— Cy2)/2, which is shown to be interpretable in terms of lattice
type and inter-ionic interactions. This interpretation also explains the positive value of the

temperature coefficient of Exgo.

1. INTRODUCTION

ETA-PHASE alloys, of which beta-brass is
the prototype, are best known to physicists
because they exemplify the 3/2 electron-atom
rule of Hume-Rothery, and also because they
furnish examples of order-disorder phenomena.
The purpose of the present paper is to discuss, in
a qualitative manner, the origin of certain other
characteristics common to these alloys. One
characteristic common to all disordered beta-
phase alloys is the peculiar shape of their consti-
tution diagram. The concentration range of a dis-
ordered beta-phase rapidly narrows as the tem-
perature is lowered, which narrowing causes the
phase to disappear unless the critical tempera-
ture for ordering is reached in time. Another
property which is believed to be common to all
beta-phases, but which has as yet been observed
only in beta-brass, is the high elastic anisotropy,
the ratio of the two shear coefficients Cs and
(C11—C12)/2 being 18. Another property which
is believed common to all beta-phase alloys, but
which has as yet been observed only in beta-
brass, is the anomalous temperature coefficient of
the elastic constants Eig and Egie. Below
200°C the temperature coefficients of these con-
stants are positive.

2. CONSTITUTION DIAGRAM

The constitution diagram of a typical beta-
phase alloy is reproduced as Fig. 1. The narrow-
ing of the range of the disordered phase could be

* This research was supported by ORI (Contract No.
N6ori-20-1V).

regarded merely as evidence of certain thermo-
dynamic characteristics of this phase. Thus if this
disordered phase has a higher energy per mole at
0°K than the two bordering phases, but a lower
effective characteristic temperature, then it must
have the general shape given in Fig. 1. The proof
of this statement is elementary, but ‘a demon-
stration is not superfluous, since another theory
has been accepted in the current literature.*2 In

1 [ i I |
800} ~—
" P .

600f— <\ —
—_ £
° r 8 7
: . \ \ I
e | \ ]
S400 \ \\ !
o
3 N \ \ ! i

\
\

5 \ \ ’

200 \ v —

Vo
|
N (Y .
o I R B
30 40 50 60

Zinc Goncentration ( Atomic %)

I Fic. 1. Boundaries of disordered beta-phase in Cu-Zn
system. Solid lines: observed. Dashed lines: extrapolation
below critical temperature for ordering.

VF, Seitz, Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), pp. 499-502.

2 W. Hume-Rothery, The Structure of Metals and Alloys
(Institute of Metals, London, 1945) p. 83.
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THEORY OF BETA-BRASS ALLOYS

this theory, developed by Jones,* the shape of
the a|(a+B8) and of the (a+B)|8 boundaries
presumably follows from a consideration only of
the entropy of mixing and of the variation with
concentration of the difference in energies of the
two phases at 0°K. In view of the present con-
fusion it appears wise to re-examine in detail the
theory of these two boundaries.

An understanding of the manner in which vari-
ous physical factors influence phase boundaries
may best be attained through a study of the
customary plot of free energy vs. concentration.
The ordinate of this plot may be regarded as
either the Helmholtz free energy F, or the Gibbs
free energy G. These are essentially identical for
metallic systems at atmospheric pressure. The
abscissa of this plot may be either the atomic
concentration X or any linear combination
thereof. In order to coordinate this discussion
with that of Jones, we follow his lead in express-
ing free energy in units of electron volts per atom,
and concentration in terms of number of valence
electrons per atom #. In our present case of a
divalent metal dissolved in a monovalent metal,
n and X are related by =X-+1. A standard F
vs. n plot does not differentiate sufficiently be-
tween the a- and B-phases to be useful for a
graphical solution. Sufficient dispersion is ob-
tained, however, by introducing a simple shear
parallel to the vertical axis, i.e., by plotting
(F— fn) vs. n. The coefficient f is to be so chosen
that both (F,— fn) and (Fs— fn) have minima in
the desired range. Such a homogeneous shear
leaves unchanged the essential property of a free
energy vs. concentration plot, namely that the
boundaries of the two phases are given by the
points of contact of a common tangent.

A sheared free energy plot is presented in Fig. 2
for 0°K from the theoretical computations given
by Jones, in which computations it was implicitly
assumed that the @-phase remains disordered
throughout the entire temperature range. From
this figure it may be seen that the points of con-
tact of a common tangent, and hence the «| (e+3)
and the (a+g8) |8 boundaries, are at # values of
1,41 and 1.45, respectively, values previously
obtained by Jones.

In order to find the temperature variation of

3 H. Jones, Proc. Phys. Soc. London 49, pp. 243 and 250
(1937).
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the phase boundaries, Jones* separates the free
energy of each phase in the customary manner
FiX;, T)=fi(X3, T)=TSn?(X;), j=e,B. (1)

Here X; is the atomic concentration in phase 7,
S»® is the mixing entropy

Sm(j)(X,')= '—k{X, lan
+(1-X) In(1-X)}, (2)

FOK)-u,{l43) =g (i43)-(n -~ 143)
(ex per atom)
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F16. 2. Sheared free energy-concentration plot for
Cu-Zn system.

and
T
£ T)=UXX) + f CAT
’ T
T f T-1C4T, (3)
0

Uj; being the energy at 0°K. Later in his analysis
Jones introduces® the simplification

fa(Xa, T) —fﬂ(Xﬂ, T) = Ua(Xa) - Uﬁ(Xﬁ). (4)

In the purely analytical method adopted by
Jones, where one deals exclusively with the con-
centrations X, and X at the two boundaries, the
seriousness of this approximation is not obvious.
In the graphical approach of the present discus-
sion, we have only the one variable X (or #).

4 H. Jones, reference 3, p. 244.
5 H. Jones, reference 3, p. 256.
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Thus Egs. (1) and (2) become
Fi(-Xr T) =fj(X7 T)

+RT{X InX+(1-X) In(1—=-X)}, (5)
and Eq. (4) becomes
falX, T) = f3(X, T) = Ua(X) — Us(X). (6)

Upon combining these two equations one obtains
Fa(X1 T) _Fﬁ(Xr T) = Ua(X) - UB(X)-

The approximation (4) is therefore equivalent to
the assumption that temperature changes alter
Fo(X) and Fg(X) in precisely the same manner,
a change which might be visualized as a non-
homogeneous shear

F— fn—F— fn—TS,(n)

of Fig. 2. Such a shear will always leave the two
points of tangency on opposite sides of n=1.43,
at which value U, and Ups are equal. Since
—T'S(n) is convex towards the 7 axis, the two
points of tangency will both move closer to
n=1.43 with increasing temperature. The as-
sumption (4) therefore leads to computed phase
boundaries as shown in Fig. 3 by solid curves.
The dashed curves, given by Jones, could there
fore have been obtained from assumption (4) only
through a mathematical error in computation.

In order to obtain the type of variation of
phase boundaries actually observed, appropriate
account must be taken of the differences in the
thermodynamic properties of the two phases. At
temperatures above the characteristic tempera-
ture of each phase the free energy per atom may
be written

FiX, T)=UiX)
+ET{X InX+(1—X) In(1-X)}

—3kT n(kT/hv), (7)

where v; denotes the geometrical mean of the
frequencies of all the normal modes of vibration.
Equation (6) must therefore be replaced by

JoX, T)—fo(X, T)

= Uu(X)— Us(X)+3kT In(ve/vg). (8)

The difference in thermodynamic properties of
the two phases is thus determined by the ratio

Va/ g
The equations for the phase boundaries X,, X3
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Fi1G. 3. a|(@+B)Jand (e+8)|B-boundaries in Cu-Zn sys-
tem according to theory of Jones, as computed by author
), as computed by Jones (— — — —).

may be written as

Fo!(Xa) = Fg' (Xp) 9
Fp(Xp) — Fa(Xa) = (Xpg—Xa)
{Fd (Xa)+Fs'(Xp)} /2. (10)

In order to facilitate the solution of these equa-
tions we utilize the experimental observations
that the boundaries are confined to a compara-
tively narrow range of X. We therefore expand
F,and Fjas a power series in (X —X,), where X
is some concentration that lies within the range
of interest. In order to reduce the number of
physical constants, we shall assume that U, (X)
= Ug"(X), and that v, and »g are independent of
X, which assumptions lead to F,''(X) = Fg"(X).
Our expansion therefore becomes

Fo(X, T) =Aa+Ba(X — X0) +5C(X — Xo)?
Fg(X, T)=Ag+Bg(X —Xo)+3C(X —X,)2

Substitution of these expansions into the equi-
librium Egs. (9) and (10) leads to the solutions

(11)

Xpg—Xo=(Ba—Bs)/C (12)
(Xs+Xa)/2=Xo—(4a—A4p)/(Ba—Bs), (13)
where
Aa—Ag=Us(Xo)— Up(X0)+3kT In(va/vs) (14)
Bao—Bg=Ud'(Xo) — Us'(X0) (15)
C=U."(Xo)+kT/Xo(1 — X0). (16)
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The solutions given by Egs. (12) and (13) con-
tain four adjustable constants, namely U,(X,)
- Up(Xo), Ual(Xo) - Ual(Xo), U"(Xo), and Va/Vﬂ.
On the other hand, since the two boundaries may
be represented by two essentially straight lines,
the experimental boundaries may likewise be
represented by four constants. Agreement with
experiment can therefore be forced by appropri-
ate choice of constants. Now Jones has computed
the first three constants from considerations
based solely upon differences in type of the
Brillouin zones of the two phases. It is of interest
to see how closely his computed values agree
with those chosen to fit the known phase bound-
aries. Upon choosing X, at 0.43, we find agree-
ment is obtained by taking

(@) Ua(Xo)— Up(X,) = —0.016 ev per atom, in
contrast to Jones' value of 0,

(b) U (Xo)— Ug'(X,)=0.21 ev per atom, in
contrast to Jones' value of 0.14,

(c) Ud'(X0)=3.8 ev per atom, in complete
agreement with Jones’ value. The value of the
fourth unknown constant required by experi-
ment is

lla/V,a =1.10.

A plot of the phase boundaries according to
Eqgs. (12) and (13), and according to the above
constants, is given in Fig. 1. The constants were
chosen to give agreement with experiment above
500°C, which temperature is slightly above the
critical temperature for ordering. By extending
the (a+8)|8 boundary below 500°C we see that
it intersects the 8] (8+a) boundary near 100°C.
We conclude that the 8-phase of brass would be-
come unstable below 100°C were this phase not
to become ordered.

In his early work Hume-Rothery demonstrated
the approximate equivalence of the a|(a+8) and
(a+B) |8 boundaries of different alloys provided
the diagrams have as abscissa the electron-atom
ratio # rather than atomic concentration X. An

TABLE I. Shear elastic coefficients of a- and B-brass
(in units of 102 ergs/cm3).

Metal Cus (Cu—Cr2)/2
a-brass (f.c.c.)* 0.72 0.18
B-brass (b.c.c.)** 1.73 0.093
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identical equivalence would be given by Egs.
(12)-(16) if Un(n)— Us(n) were the same for all
systems, as well as U,'(n) and »./vs. It is ex-
pected that small differences in the 7"—# dia-
grams will arise as a result of small variations in
these quantities. In the derivation of Eqs. (12)-
(16) an assumption was introduced which, while
apparently justified in the case of 8-brass, may
lead to appreciable error in other systems. This
assumption was that U,”(X) and Us"/(X) were
identical, and hence that U, (X)— Ug'(X) is in-
dependent of X over the region of interest. Now
Jones has shown that this difference decreases
with decreasing X, becoming zero at an electron-
atom ratio of 1.25. As may be seen from Egs.
(12)-(13), the effect of this variation will be to
decrease the width of the (a+g) region as this
region moves to the left with increasing tem-
perature, and simultaneously to increase the tem-
perature variation of the center of this region. An
indication of such effects may be found in the
Cu-Ga and Ag-Zn systems.

3. ELASTIC ANISOTROPY

As was first pointed out by Webb,® 8-brass has
the highest elastic anisotropy of any cubic metal
so far examined, the ratio of Ef1113/E100 at room
temperature being 8.9. The elastic anisotropy is
still greater when expressed in terms of the two
shear coefficients Cy and (C1;— Ciz)/2. The first
of these coefficients refers to a shear across the
(100) plane in an arbitrary direction, the second
to a shear across the (110) plane in the [110]
direction. From the measurements of Good’ one
finds that the ratio of these two shear coefficients
varies from 18 at room temperature to 19 above
the critical temperature for ordering.

A search for the origin of the high elastic
anisotropy of §-brass may best start by a com-
parison of the shear elastic coefficients of a- and
of B-brass, given in Table I. It is seen that in
passing from the face-centered cubic to the body-
centered cubic structure the Cy coefficient is
more than doubled while the (Ci1— C12)/2 coeffi-
cient is nearly halved.

The anomalously low value of the (Ci1— Ci2)/2
shear coefficient of B-brass may readily be seen
to be a direct consequence of the combination of

*{.c.c. =face centered cubic.
*¥b.c.c. =body centered cubic.

6 W. Webb, Phys. Rev. 55, 297 (1939).
"W. A. Good, Phys. Rev. 60, 605 (1941).
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a body-centered cubic lattice with ions containing
only closed shells. Thus a body-centered cubic
packing of balls manifests no resistance to a
simple (110) [110] shear. This lack of shear re-
sistance is a consequence of the fact that such a
shear leaves the distance between closest neigh-
bors unchanged to a first approximation. In
metals the resistance to shear arises primarily
from two sources:® (a) the exchange inter-
action between ions, (b) the electrostatic inter-
action between conduction electrons and ions.
The first type of interaction may be regarded as
acting only between closest neighbors, and in a
body-centered cubic structure gives a positive
contribution to (C11— Ci2)/2 when the interaction
is one of attraction, a negative contribution when
it is repulsive, as is the case when the positive
ions contain only closed shells. The second type
of contribution, electrostatic interaction, gives a
positive contribution which is independent of the
ion structure. From the computations of Fuchs?
on copper, one sees that in a body-centered cubic
copper lattice the negative contribution of the
exchange interaction will more than compensate
for the positive contribution of the electrostatic
interaction, and that, therefore, in such a lattice
(Ci1—C12)/2 would be negative, i.e., the lattice
would be mechanically unstable. The low value
of this constant in B-brass may therefore be re-
garded as a manifestation of the tendency of the
ion exchange interaction to render the body-
centered cubic lattice mechanically unstable with
respect to a (110) [110] shear. It is therefore
anticipated that all g-type alloys with closed
inner shells will have a similarly low value of this
shear constant.

The susceptibility of body-centered cubic
structures to mechanical instability with respect
to a (110) [1107] type shear furnishes an interpre-
tation as to the limitations of body-centered cubic
lattices to certain places in the periodic table.
Aside from the alkali metals where the ions are
too small to overlap to an appreciable extent, we
would anticipate that no body-centered cubic
lattices would be found in metals with completely
or nearly completely closed shells. The other non-

8 K. Fuchs, Proc. Roy. Soc. [AJ151, 585 (1935); 153,
622 (1936); 157, 444 (1936).

®N. F. Mott and H. Jones, The Theory of the Properties

of Metals and Alloys (Oxford Press, 1936), pp. 147-150.
|, Seitz, reference 1, pp. 373-378.
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alkali body-centered cubic metals, V, Cr, Fe, Cb,
Mo, Ta, W, Eu, Th, Ba, have as free atoms from
three to six electronsin the inner d shell, out of a
possible maximum of ten, or (Eu) six f-electrons
out of a possible maximum of fourteen, with the
two exceptions Tl and Ba.

The high elastic anisotropy of 8-brass is in part
caused by the anomalously large value of the Cy
shear constant. No satisfactory interpretation of
this anomaly has been found.

4. ANOMALOUS TEMPERATURE COEFFICIENTS
OF ELASTIC MODULI

In Fig. 4 are reproduced the observations of
Rinehart!'! on the temperature variation of the
reciprocal elastic moduli E~Y(y1y3, E Y1107, E~ Y1007
of B-brass. Contrary to the normal behavior of
reciprocal moduli, the last two decrease rather

1], S. Rinehart, Phys. Rev. 58, 365 (1940); 59, 308
(1941).
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than increase with a rise in temperature, i.e., a
rise in temperature increases the elastic resistance
of B-brass crystals with respect to tensile stresses
along the [110] and [100] axes.

In order that a clue may be obtained as to the
anomalous temperature variation shown in Fig. 4,
we shall write the reciprocal tensile moduli in
terms of the bulk modulus (C11+2C1,)/3 and the
two shear coefficients Cy and (Ci11— C12) /2.

"E = (9K) 71+ (3Cw) Y,
E 110 = (9K) 1 4 (4Cu) 714 {12(Cr1— C12) /2} 71,
E= o0 = (9K) 71+ {6(C1i— C19)/2} 1.

From an inspection of these equations we see that
the relative importance of the shear modulus
(Ci1—C12)/2 increases as we pass from Epy
through Epig to Efie. Since this is the same
order in which the temperature coefficient anom-
aly increases, we are led to suspect that the bulk
modulus and the shear coefficient Cy have normal
temperature coefficients, while only the shear
coefficient (Ci1— Ci2)/2 has an abnormal tem-
perature variation.

As was seen in the previous section, in 8-brass
the shear coefficient (Ci1—Ci2)/2 is the sum of
two terms, a positive term arising from the elec-
trostatic interaction of the conduction electrons
and the positive ions, and a negative term arising
from the repulsive exchange interaction of the
positive ions. The positive term varies compara-
tively slowly with lattice constant @, namely as
1/a* On the other hand, the negative term varies
rapidly with the lattice parameter. The effect of
thermal expansion per se is therefore to decrease
the negative term more rapidly than the positive
term, leading to a net increase in the shear con-
stant (C11— Cy2)/2. Before this interpretation of
the anomalous temperature coefficient can be
accepted, it is necessary to estimate the order of
magnitude of the positive temperature coefficient
of (C11—C12)/2. On using the notation of Mott
and Jones,® we find the negative contribution to
(C11—C12)/2 to be proportional to W’(r), where
W is the exchange energy of two ions at a distance
7. The temperature coefficient of this negative
term is therefore (*W"/W')a, where « is the
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linear thermal expansion coefficient. On taking
the values given by Mott and Jones for »2WW"
and 7T’ in the case of copper, we obtain the value
of —17 for yW"”/W'. Using the average value of
15X10-¢ for copper!? in the range —200°C to
R.T. we obtain 2.5X10~* as the temperature co-
efficient of the negative term in (Cii— Ci2)/2.
This value is of the same order of magnitude as
the temperature coefficient of Eq1gq in S-brass at
low temperatures, which may be obtained from
Fig. 4 as 1.7X107% The change in sign of the
temperature coefficient of (Ci11— Cis)/2 at about
200°C is caused by the decrease in the coefficient
which is associated with disordering, a decrease
which is apparent from the work of Good.”

The above interpretation of the anomalous
temperature coefficients of the elastic moduli
leads to an interesting prediction as to the in-
fluence of pressure upon the elastic shear coeffi-
cient (Ci1— C12)/2 of B-brass. If thermal expan-
sion increases (C11—Ci2)/2, then we anticipate
that contraction caused by pressure will decrease
this constant. An elementary computation shows
this decrease will be of the magnitude of several
percent per 10%/atmospheres pressure.

The same anomaly in the temperature coeffi-
cient of (Ci1—Ci2)/2 is to be expected in all
B-phase alloys in which the positive ions have
closed shells, as well as in the body-centered cubic
element Ba and in the body-centered cubic phase
of TI. On the other hand, in the simple cubic
lattices of the NaCl type the repulsive exchange
interaction between adjacent ions tends to make
the shear coefficient Cy negative. The same argu-
ment used above for g-brass would lead to the
conclusion that in simple cubic lattices the tem-
perature coefficient of Cy is positive, or at least
only slightly negative. This is indeed the case.
From the measurements of Rose,!3 Durand, and
Siegel'® we find that in NaCl and in KCI the
temperature coefficient of Cy is only one-fifth
that of (Cii—Ci2)/2.

12 F, C. Nix and D, MacNair, Phys. Rev. 60, 597 (1941).
BE, C. Rose, Phys. Rev. 49, 50 (1935).

# M. A. Durand, Phys. Rev. 50, 449 (1936).

18 S, Siegel, Phys. Rev. 61, 84 (1942).



