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sional Schrodinger equation, AP+() —V)/=0. For sim-

plicity we assume that V is a finite function. Let u be any
function with bounded second derivatives satisfying u&e
for a positive constant, e. The continuous function r= P/u
vanishes on the boundary and may be assumed to have a
positive maximum in R (otherwise take —P). At a maxi-
mum point the first derivatives of r vanish, and the second
derivatives are negative or zero. Adding the second deriva-
tives gives hr = (uk' —Pb,u)/u~ &0. Thus Au ju &hp/P
= V—X so that X& V—hu/u. A fortiori, ) &min. (V—Au/u)
for all points of the region. This gives the theorem: The
eigenvalues of Schrodinger's equation satisfy the inequality
) &min. (V—hu/u) +here u is a positive function in the

region,
The rest of this note is mainly of mathematical interest

and proves that on the boundary, S, it is only necessary
to assume u&0, In case the region is finite, we suppose
that S is sufficiently regular so that there is a function, g,
which satisfies b,g+(h —V)g&0 on S and g&1 in R, where
h=min. (V—Au/u). If m=u+eg, then ) &min. (V—b,m/m)

by what has just been shown. Clearly, V—(b,u+c4g)/
(u+ ~g) & V+ (hu —Vu —eAg)/(u+ eg) =h+ e( Vg —hg —Ag)/

(u+~g). In a neighborhood of the boundary the last term
is positive, and in the remainder of the region it must
vanish with e, so that X&h, Q. E. D.

In an infinite region we take g=1 in the above proof,
that is, m=u+e. Assume, moreover, that outside a suffi-

cientlylargesphereh —V&0.Thus U—bm/m&h+e(V-h)/
(u+eg). Outside the sphere the last term is positive, and
inside the sphere it vanishes with e, so that X&h.

The problem discussed here could be generalized for an
equation in which ) is multiplied by a positive function.
On the other hand, the writer has been unable to treat by
similar methods the eigenvalues of the acoustic equation,
the equation of the clamped plate, or Maxwell's equations.
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E have investigated the possible phenomenologica1
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relations between the observed properties of
liquid helium II. We assume that in the absence of a
constriction the internal forces responsible for the fountain
effect are still present but produce an internal momentum
density M such that

I VT=VP= —dM/dt,

where T is the temperature and p is the fountain effect

V, = (ops/mp C,)&, {3)

where p, is the fountain effect coefficient, " pC, is the
specific heats per cm', and e is the heat associated with a
mass m transported with the momentum. Empirical
values of p, , V, (second sound velocity), 4' and pC, below
1.8'K yield values of e/m which fit a monotonically in-
creasing curve from zero at O'K to the heat content at
the lambda point (Ty).

From the equation

d(ep /m)/dT= pC,

we calculated the concentration p, /p of the liquid taking
part in the momentum. The curve connecting these values
is approximately equal to (T/Tp), going therefore through
zero at 0- K and unity at Tg, which it should do from general
considerations.

The observed finite heat conductivity in liquid helium

requires a wave equation having a relaxation (damping)
term added to (1), namely,

d'T 1 dT
V' VT= —+ —— V~

dt' v dt
(5)

Combined with the data on thermal conductivity' this
gives a time of relaxation v of the order 10 3 to 10 4 sec.,
going to zero at Tp. Equations (5) and (1) with the damp-
ing term lead to an alternative form of the heat current as
a convection process:

h= pQu„ (6)

where pQ is the heat content per cm' of liquid helium, and
u, is the velocity associated with the steady momentum
density as limited by the relaxation term. The data on
thermal How give u as a function of T and d T/dx, leading
to values practically identical with those 'of the super
critical velocities through slits s

The relaxation causes an absorption and dispersion of
second sound near the lambda point, formally analogous to
the transmission of electromagnetic waves in a conducting
medium. This may be responsible for the rapid approach to
zero of the observed phase velocity as T approaches Tp,
and leads to the expectation that under ideal conditions
(small amplitude and high frequency) the velocity of
second sound should rise up to the immediate neighborhood
of Tg just as the maximum in the curves of the heat con-
ductivity and the fountain eEect shift towards the lambda
point under appropriate conditions. '

We are studying the physical meaning of these relations.
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pressure difference. We then apply the first law of thermo-
dynamics to a heat transported with the momentum

V h=V-(eM/m) = —pC„dT/dt. {2)

We solve (1) and (2) simultaneously to give a wave equa-
tion for momentum and temperature similar to second
sound. The phase velocity is


