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Solar Absorption Lines between 2950
and 2200 Angstroms

K. DURAND, J. J. OBERLY, AND R. TOUSEY

iVanat Research Laboratory, Washington, D. C.
April 23, 1947

OLAR spectrograms were taken by the Naval Research
Laboratory on. the V-2 rocket Qights of October 10,

1946' and March 7, 1947. The spectra obtained at 55 km
and /5 km on the respective dates have been studied to
identify the Fraunhofer absorption lines in the region be-
tween 3000 and 2200A. Some 300 observable absorption
features were compared to a master finding list of 1100 of
the principal classified lines of the arc and spark spectra of
elements 1 to 30. The heavier elements will be added as
time permits. The finding list was prepared in collaboration
with Dr. Charlotte Moore-Sitterly, who generously made
available the unpublished multiplet lists which are being
compiled as an extension of the Revised Multiplet Table'
to cover the rocket ultraviolet region. Entries included
laboratory intensities, assigned multiplet numbers, and, in

many cases, her solar intensity predictions.
At the available resolution of about 1A; nearly every

observed line is a blend; as many as 10 possible contributors
to a single line have been found. Likely contributors have
been assigned to nearly every observed feature, and work
is under way to estimate their relative importance.

As in the previously known region, Fe I and Fe II are
dominant and clearly contribute to a majority of the lines.
In Fig. 1, the matching of many of the solar lines (indicated
by dots) to the Fe arc spectrum is apparent. In the regions

just below 2750, 2630, 2550, and 2490A there is a piling up
of intense iron lines. This causes the whole level of the
solar radiation to fall off sharply as shown in Fig. 1. In
addition, many strong single Fe lines are found throughout
the spectrum.

The great Mg II lines at 2803 and 2796A are of particu-
lar interest. They appear as two bright emission lines in the
center of a great absorption band running from 2775 to
282 5A.

Dr, Menzel of the Harvard Observatory offered the
above explanation of the observed spectra and suggested
the following explanation: A strong eruption of hydrogen
occurred about 1 hour before the rocket Bight, and the
Mg emission may have originated in the prominence.
However, similar emission lines, unresolved, may be in-
ferred from the October 10 spectra, at which time no im-

portant prominences are known to have occurred.
Twelve lines of Si I of great intensity were found.

The one at 2882 and the group between 2507 and 2529A
showed strong wings. The existence of wings on the group
between 2208 and 2219A could not be proved. A strong
line of C I was found at 2478A.

In addition to the above elements one or more lines have
been assigned as follows: definite, V I, V II, Cr II, Mn II,
Co I, and Al II; probable, Na I, Ni I, Ni II, Cr I, Co II,
Be I, and Al I; possible, E' I, and Cu I. More definite as-
signments will be made taking into account multiplet in-

tensity and the relative abundances of the elements.
There appear to be regions of general absorption between

2886 and 2893A and between 2442 and 2472A. The finding
list contains few lines in these regions; the absorption may,
therefore, be molecular.

A complete report of the analysis will be published later.

I W. A. Baum, F. S. Johnson, J. J'. Oberly, C. C. Rockwood, C. V .
Strain, and R. Tousey, Phys. Rev, VO, 781 (1946).
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Lower Bounds for Eigenvalues
R'. J. DUFFIN

Department of Mathematics, Carnegie Institute of Technology,
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April 28, 1947

ARTA' has given a method for finding lower bounds
for the "ground state" eigenvalue of a vibrating

membrane. He does not claim that his method is as nice
as the Rayleigh-Ritz method for finding upper bounds,
but in a numerical example he shows that fair accuracy is
obtainable.

The purpose of this note is threefold: (1) We extend
Barta's method to include the Schrodinger equation, (2)
the boundary conditions of Barta are relaxed, for instead
of m=0 on the boundary we have u&0, and this may be
easier to apply in practice, (3) we give a very simple, but
mathematically rigorous, proof. Barta makes use of the
fact that the ground state eigenfunction is positive; the
proof of this fact is very long and sophisticated.

Consider a continuous real function, P, which vanishes
on the secondary of a region, R, and satisfies the I-dimen-
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sional Schrodinger equation, AP+() —V)/=0. For sim-

plicity we assume that V is a finite function. Let u be any
function with bounded second derivatives satisfying u&e
for a positive constant, e. The continuous function r= P/u
vanishes on the boundary and may be assumed to have a
positive maximum in R (otherwise take —P). At a maxi-
mum point the first derivatives of r vanish, and the second
derivatives are negative or zero. Adding the second deriva-
tives gives hr = (uk' —Pb,u)/u~ &0. Thus Au ju &hp/P
= V—X so that X& V—hu/u. A fortiori, ) &min. (V—Au/u)
for all points of the region. This gives the theorem: The
eigenvalues of Schrodinger's equation satisfy the inequality
) &min. (V—hu/u) +here u is a positive function in the

region,
The rest of this note is mainly of mathematical interest

and proves that on the boundary, S, it is only necessary
to assume u&0, In case the region is finite, we suppose
that S is sufficiently regular so that there is a function, g,
which satisfies b,g+(h —V)g&0 on S and g&1 in R, where
h=min. (V—Au/u). If m=u+eg, then ) &min. (V—b,m/m)

by what has just been shown. Clearly, V—(b,u+c4g)/
(u+ ~g) & V+ (hu —Vu —eAg)/(u+ eg) =h+ e( Vg —hg —Ag)/

(u+~g). In a neighborhood of the boundary the last term
is positive, and in the remainder of the region it must
vanish with e, so that X&h, Q. E. D.

In an infinite region we take g=1 in the above proof,
that is, m=u+e. Assume, moreover, that outside a suffi-

cientlylargesphereh —V&0.Thus U—bm/m&h+e(V-h)/
(u+eg). Outside the sphere the last term is positive, and
inside the sphere it vanishes with e, so that X&h.

The problem discussed here could be generalized for an
equation in which ) is multiplied by a positive function.
On the other hand, the writer has been unable to treat by
similar methods the eigenvalues of the acoustic equation,
the equation of the clamped plate, or Maxwell's equations.

j J. Barta, Comptes rendus, 204, 472 (1937).

On a Connection between the Fountain EGect,
Second Sound, and Thexmal Conductivity

in Liquid Helium II
LOTHAR MEYER

Institute for the Study of Metals, University of Chicago,
Chicago, Illinois

AND

WILLIAM BAND

Institute for Nuclear Studies, Un& ersity of Chicago,
Chicago, Illinois
April 25, 1947

E have investigated the possible phenomenologica1

~ ~

~

~

relations between the observed properties of
liquid helium II. We assume that in the absence of a
constriction the internal forces responsible for the fountain
effect are still present but produce an internal momentum
density M such that

I VT=VP= —dM/dt,

where T is the temperature and p is the fountain effect

V, = (ops/mp C,)&, {3)

where p, is the fountain effect coefficient, " pC, is the
specific heats per cm', and e is the heat associated with a
mass m transported with the momentum. Empirical
values of p, , V, (second sound velocity), 4' and pC, below
1.8'K yield values of e/m which fit a monotonically in-
creasing curve from zero at O'K to the heat content at
the lambda point (Ty).

From the equation

d(ep /m)/dT= pC,

we calculated the concentration p, /p of the liquid taking
part in the momentum. The curve connecting these values
is approximately equal to (T/Tp), going therefore through
zero at 0- K and unity at Tg, which it should do from general
considerations.

The observed finite heat conductivity in liquid helium

requires a wave equation having a relaxation (damping)
term added to (1), namely,

d'T 1 dT
V' VT= —+ —— V~

dt' v dt
(5)

Combined with the data on thermal conductivity' this
gives a time of relaxation v of the order 10 3 to 10 4 sec.,
going to zero at Tp. Equations (5) and (1) with the damp-
ing term lead to an alternative form of the heat current as
a convection process:

h= pQu„ (6)

where pQ is the heat content per cm' of liquid helium, and
u, is the velocity associated with the steady momentum
density as limited by the relaxation term. The data on
thermal How give u as a function of T and d T/dx, leading
to values practically identical with those 'of the super
critical velocities through slits s

The relaxation causes an absorption and dispersion of
second sound near the lambda point, formally analogous to
the transmission of electromagnetic waves in a conducting
medium. This may be responsible for the rapid approach to
zero of the observed phase velocity as T approaches Tp,
and leads to the expectation that under ideal conditions
(small amplitude and high frequency) the velocity of
second sound should rise up to the immediate neighborhood
of Tg just as the maximum in the curves of the heat con-
ductivity and the fountain eEect shift towards the lambda
point under appropriate conditions. '

We are studying the physical meaning of these relations.
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pressure difference. We then apply the first law of thermo-
dynamics to a heat transported with the momentum

V h=V-(eM/m) = —pC„dT/dt. {2)

We solve (1) and (2) simultaneously to give a wave equa-
tion for momentum and temperature similar to second
sound. The phase velocity is


