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Finite Elastic Strain of Cubic Crystals*
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Murnaghan's theory of finite strain is developed for a medium of cubic symmetry subjected
to finite hydrostatic compression, plus an arbitrary homogeneous infinitesimal strain. The free
energy is developed for cubic symmetry to include terms of the third order in the strain compo-
nents. The effect of pressure upon the second-order elastic constants is found and compared
with experiment, with particular reference to the compressibility; the pressure-volume relation
in several approximations is compared with the measurements to 100,000 kg/cm .The simplest
approximation is shown to give a satisfactory account of most of the experimental data. The
results are also compared with some of the calculations based on Born's lattice theory.

1. INTRODUCTION

'URNAGHAN' has published an exact
~ treatment of 6nite deformation of elastic

solids, with application to several questions
involving isotropic media. The theory is not
restricted to the case of isotropy, and it will be
developed below for the case of cubic symmetry.

Finite elusIic strain is in practice limited to
6nite hydrostatic strain plus superimposed in-
6nitesimal strain of an arbitrary type. Excluding
such special materials as rubber, non-hydrostatic
strains large enough to require treatment as
"6nite" are generally beyond the elastic limit.
On the other hand, hydrostatic strain of what-
ever magnitude is "elastic" and may be accom-
panied by elastic in6nitesimal strain of any kind.
The hydrostatic strain aA'ects the response of the
medium to the in6nitesimal additional strain,
giving rise to an e8ect of pressure upon the
elastic constants. Such a strain is of fundamental
interest in many problems concerning the interior
of the earth, to a few of which the theory has
been applied. ' A large body of experimental data,
almost entirely the work of Bridgman, may be
used to 6nd the change of compressibility with
pressure; there are also a few determinations of
the effect of pressure upon the rigidity of quasi-
isotropic materials.

Born' has treated this kind of deformation

~ Paper No. 100 published under the auspices of the
Committee on Experimental Geology and Geophysics and
the Division of Geological Sciences at Harvard University.' F, D. Murnaghan, Am. J. Math. 49, 235 (1937).

~ F. Birch, Bull. Seis. Soc. Am. 29, 463 (1939); K. E.
Bullen, ibid. 30, 235 (1940).' Max Born, J. Chem. Phys. 7, 591 (1939);also a series
of papers in Proc. Camb. Phil. Soc.

from the point of view of lattice theory, and has
carried out. with several collaborators detailed
computations for various monatomic cubic lat-
tices. The results'are of great interest, showing
plausible pressure and temperature coef6cients
for the elastic constants. Born appears to have
accepted as general the theorem of the classical
theory of elasticity, which holds that the stress
components are the partial derivatives of the
free energy density with respect to the corre-
sponding strain components. Murnaghan has
shown that this is valid only for infinitesimal
strain, and in consequence, some of the calcula-
tions according to Born's method are subject to
a correction which increases with the amount of
compression.

Another paper on this general topic has been
published by Furth, ' who combines certain re-
sults of Born and Misras concerning the third-
order terms of the elastic potential with an
incorrect application of Murnaghan's stress-
strain relation. Except in the special case of
hydrostatic pressure, Furth's calculations are
consequently wrong, and with the same excep-
tion, they deal with unrealizable examples of
6nite elastic strain.

In the following sections, the theory is devel-

oped for a medium'of cubic symmetry subjected
to a strain consisting of (i) a hydrostatic com-
pression of any amount, plus (2) a homogeneous
in6nitesimal strain of general type. The exact
stress-strain relations for this case are found and

4 R. Furth, Proc. Roy. Soc. A180, 285 (1942}.
~ Max Born and R. D. Misra, Proc. Camb. Phil. -Soc.

M, 466 (1940).
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decomposed into a hydrostatic pressure plus a
general stress related to the infinitesimal strain.
A general form for the free energy is given, to
the third order in the strain components, and
used to find the variation of the elastic constants
with pressure. Particular attention is given to
the effect of pressure on compressibility and on
volume, and to the relevant experimental data.
Since there apparently exists some misunder-
standing concerning the application of Murna-
ghan's theory, most of the developments are
carried along according to both of the alternative
methods which Murnaghan has formulated; this
naturally lengthens the treatment, but it is
perhaps worth while to show clearly that no
ambiguity arises. The particular case of hydro-
static pressure could have been dealt with more
directly, and indeed, since cubic crystals are
isotropic with respect to such a stress, this case
has already been covered in. the studies of
isotropic media. "The general theory is given
for the sake of comparison with Born's lattice
theory, and with experimental data which should
be obtainable.

2. THE STRAIN

Throughout the following, rectangular Car-
tesian coordinates are employed, the axes taken
to coincide with the axes of fourfold symmetry;
the same coordinate system is used for the
description of the initial and final configurations.
The usual notation of Cartesian tensors is used,
repetition of an index signifying summation over
the values 1, 2, 3 for this index. The coordinates
of a point before strain are denoted by (al, aa, aa),
after strain by (xl, xa, xa). These points determine
a displacement vector with components (xl —al),
(xa —aa), (xs —as).

%e now consider a special strain composed of
two parts: (1) a hydrostatic compression by
which every line in the crystal is shortened by
the factor (1 n), where —a

1 intrinsically positive,
may have any value from 0 to 1; (2) a subsequent
homogeneous strain expressed in terms of six
coefficients P„„which will be treated as inflni-

tesimals, whereas all powers of a are retained.
By the hydrostatic strain, a point initially at.

(al, aa, aa) is brought to the point (xl', xa', x,'),

6 F. Birch, J. App. Phys. 9, 279 (1938).

given by x„'=(1—a)a„, with P=1, 2, 3. The
additional displacements resulting from the
strain P„, will be

Nl P11X1 +P12X2 +PISXa~r

P21X1 +P22XS +P28XS )

218'= Pal»'+P32X2'+PSSXS',

with p„,=p,,„. The final coordinates are x„=x„
+Q„, oi"

xl (1 12) t (1+p11)al+pl2aa+plaaa]

xa (1 pa)hpalal+(1+p22)aa+paaaal (2)

xa (1 12) I palal+ p32a2+ (1+p$3)aa J

From these we find the partial derivatives:

Bx,/Ba, = (1—u) (1)„.+P„.);
Ba,/Bx, =. (5„,—P„)/(1 —u);

t') s= 1) 2) 3.

Here 5„, is equal to i for r=s, to 0 for r&s;
squares of P„, have been neglected.

Putting po for the initial unstrained density,
p for the density in the strained state, with Vo

and U for the corresponding specific volumes,
we have the mathematical identities,

BQi BGi 812 i

BX] BX2 8X3

OQ2 BQ2 BQ2

p/pa= Up/ V=
BXy BX2 BX3

863 Ba 3 BQ3

BXy BX2,8X3

gX j BXy BXi

Bcq BGq Bca

BXg BX2 BX2
(4)

Bgi BG2 863

BX3 BX3 BX3

Bci 862 Ocs

Using the relations (3) and neglecting squares
and higher powers of the p„, we obtain

Vp/ V—(1 pll p22 p83)/(1 —a)' (5)
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For all P's equal to zero, we have the exact
formula, U= Uo(1 —a)'.

Murnaghan has shown how finite strain may
be treated rigorously from either of two view-
points; by analogy with the similar situation in
hydrodynamics these are termed the "La-
grangian" and the "Eulerian. " In the "La-
grangian" scheme, the strain is described with
the initial or unstrained coordinates (a~) as the
independent variables; in the "Eulerian" scheme,
the coordinates (x~) of the strained state are
taken as independent. The two alternative sets
of strain components are then, using Murna-
ghan's notation,

the Lagrangian strain components,

(8x~ 8x~

L 8Cg 88~

or the Eulerian strain components,

8sy 8Gy)
i

8x, 8x.)

Except for a factor of —,
' for r~s, the g„, are

identical with the strain components given by
Love for finite strain. They are also equal to
2&„, where t„, are the strain components used
by Born and Misra and by Furth. For infini-
tesimal strains, the g„, and ~„, become identical
and (except for the factor 2 for res) equal to
the strain components of the classical theory.

For the particular strain defined by (2), these
become

s„=b„s+P„,(1+ 2)s,

e„,= 8„,e+P„,(1—2 c),

where q and e are defined by

(1—~)i = (1+2&)&= (1—2.)-&.

The relations between the quantities o, , q and e

and the density for hydrostatic compression,
are tabulated for convenience in Table 1.

3. STRESS-STRAIN RELATIONS

Murnaghan's fundamental contribution is the
discovery that for 6nite, elastic, isothermal
strain, the exact relation between the stress

Tahar. E I. Comparative values of e, n, and q for
hydrostatic compression.

1.0
1.1
1.2
1.3
1.4
1.5
2.0
3.0
4.0
5.0

V/Vs

1.0
.909
.833
.769
.714
.667
.500
.333
.250
.200

0

0
0.0328
.0646
.0955
.1257
.1551
.2937
.5400
.7599
.9620

0
0.0313
.0590
.0837
.1061
.1264
.2063
.3067
.3700
.4152

1.0000

0
0.0308
.0572
.0802
.1005
.1185
.1850
.2596
.3016
.3290
.5000

components 1,.and the strain is of the form

8$ Bx„8$, Bqb Bc~ BgqT„=p = —2p —;(10)
~gyq ~+@ ~~q ~Jyq ~&r ~&s

t'„s, p, /=1, 2) 3.

( 84 84 )r„=pi
—2e„

4 86g g 8tp )0
Even in this case the stress matrix does not in
general possess the same principal axes as the
strain matrix g„„whereas the principal axes of
the matrices T„, and e„coincide. Furth's pro-

Here j„=(8a,/8xi, ) (8a,/8xi, ), and tension is
taken positive. In developing these expressions,
all nine partial derivatives are to be formed; in
this procedure we ignore the symmetry relations,
g~q=gq„. Furthermore, it is supposed that the
rotation has been removed from the strain, so
that the matrix 8(x)/8(u) is symmetric.

The function p is the Helmholtz free energy
(=8—TS) per unit mass; for a given material,
it is assumed to depend only on the strain
components q„, and the temperature. The second
equality in (10) is the Eulerian form of the first;
the two are identically equal. @ is equivalent to
the function A of Born, who, while using finite
strain components equivalent to g„„has used
the "infinitesimal" form of (10) for finding the
stress.

In an isotropic medium, p depends upon the
strain components by way of the strain invariants
(for arbitrary rotation of coordinate axes) of the
first, second and third orders and their various
products. In this simplest case, the Eulerian
form becomes
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cedure amounts to taking the expression (11)
for the isotropic medium, substituting g„, for &„„
and finally applying this result, incorrect even
for the isotropic case, to the problem of cubic
symmetry. Only for the degenerate case of
hydrostatic compression does this give a correct
result.

4. THE FREE ENERGY FOR CUBIC SYMMETRY

In a crystalline medium, the form of the free
energy @ must conform with the symmetry of
the crystal; in other words, p must be invariant
for rotations of the coordinate axes corresponding
to the covering operations. The forms of
appropriate for the various classes of crystals
have been developed for terms of the second

order in the strain components, and constitute
the basis of the classical theory of crystal elas-
ticity. For the present work, it is desirable to
extend the development to include terms of the
third order in the strain components. The details
of this process are given in the Appendix, where
it is found that the third-order terms involve 6
new eIastic constants for the most symmetrical
classes of cubic crystals, 8 for the cubic classes
of lower symmetry, and 56 for triclinic symmetry.
Most actual cubic crystals belong to the class of
highest symmetry and the further developments
pertain to this case; the required modification
for the other case is slight and easily made.

The free energy, including third-order terms
but omitting terms independent of strain, is thus:

p0$ (cll/2)('$11 +'g$$ + s8$ ) +c1$('g119$$+'922'g33+ s3$911)+c44('s1$ +'f21 +'9$$ +'g3$ +'$13 +'f31 )

+Clll('$11 +'g$$ +'f33 )+C11${ 'gll (9$$+ 9$3) + 9$$ ('911+$38)+'$88 (1711+1)28)}

+C1$3'gll'0$$'938+ C466('912'V$3'981+'9$1'913'932) + (C144/2) {'Vll('g$3 +'s3$ )+s$$('91$ +'931 )

+'9$8('gl$ + s$1 ) }+ (C166/2) {(sll+'922) ('61$ +'921 ) + ('928+ Q8$) ('/$8 +s88 )

+('983+'sll)('913 +'631 ) } (12)

For ease in forming the relations (11) the
equalities s„=s., have been ignored in (12).
Rather than p, the product pp(jb h.as been ex-
panded so that the second-order coefficients will

equal those of Voigt, which are derived from
the energy per unit volume. The C's with triple
indices are the new "third-order" coe%cieg.ts.
For a given material, the c's and C's are functions
only of the temperature. This differs from
Born's development of the free energy in which
the c's are functions of both pressure and
temperature.

This expansion is based on the assumption
that there is always a state of zero strain under
no external forces for any temperature at which
the crystal can exist. Energy dependent upon
the temperature alone may be included in an
additive term which, being independent of the
strain, plays no part in the f'ollowing treatment
of isothermal processes. Thermal expansion does
not constitute a strain in the sense of the present
theory, and no special significance is attached to
absolute zero.

The third-order terms of the free energy have
been given by Born and Misra' for a cubic

Bravais lattice with central forces between
particles at absolute zero. In this special case,
Cauchy's relation holds: ci2=c44, and by com-
parison with (12) the following relations among
third-order coeScients are found:

C466=8C1$3; C144=2C1$8 y C166=4C112. (13)

Cauchy's relation is rarely satis6ed by real
crystals, and it seems probable that the relations
(13) are also rarely valid.

When, however, (13) is assumed to hold, the
third-order coefFicients may be expressed in

terms of the 5 lattice sums computed by Born
and. Misra, as follows:

c11= 8K(2), Clll =8K(3),

c1$——85(1,1), C1$8 ——48(g(1,1,1),

C11$=24K(2, 1).

(14)

The expansion of @ in terms of the matrix j„,
might prove awkward in the general case, but
for the particular strain (2) it is possible to
express the j„, in terms of the Eulerian strains,
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e„,. Since where

BG~ Ba~
j„,=, and

t9Xg BXp

we find

pod =-'n2C +n'C3+g'C4+

Pog =-,'~2C +e3D3+ q4D4+

in terms of 8, (16)

Assuming that in this case, p is expressible in
terms of 8~„we may replace 8@/8j „, by
—

—2, (8&/832„). Also 4 must have the same sym-
metry in terms of the e„, as in terms of the q„„
and the second-order coefficients must be the
same, since the expressions must coincide for
infinitesimal strain, where e„, and q„, become
indistinguishable. Thus we obtain an expansion
for p84 in terms for 8„, exactly like (12), except
that we write e„, instead of g„„and introduce
new third-order coefficients, D111 and so on in
place of the corresponding C's.

These expressions for p must be identical, and
hence there must be relations between the C's

and the D's. One such relation is readily found
by considering a hydrostatic strain, letting
P„,=O, and putting both expressions in terms of
a. We have first, in terms of g,

C2 c11+2C128 C3 ~C111+C123+6C112;

D3 3D111+D123+6D 112 y

and C4, D4 ~ are possible coefficients of higher
order terms. On substituting 0. for e and
according to (9), and identifying the coefficients
of like powers of a in the two expressions, we
obtain:

D3 C3+6C2,' D3 = C3+6C3+ 18C2, etc. (17)

Evidently the identity of the two formulations
can be assured to any power of n by the addition
of terms of higher order. Where C3 has been
calculated from lattice theory or otherwise, D3
may be found by (17). Other relations may be
found by taking other types of strain. Thus if
we take P1240, we find

D143+2D133= C14&+2C133+16C43+4cll+8C12. (18)

In deriving this identity, care must be taken to
include second-power terms of P12', the approxi-
mations (8) should not be used.

These formulations of the free energy are got
dependent upon the form of the potential
between particles, except insofar as the numerical
values of the coefficients, c's, C's, and D's, are
concerned.

5. EFFECT OF PRESSURE ON ELASTIC CONSTANTS

The symmetry of a cubic crystal is preserved under hydrostatic compression, so that the relations
between the additional stresses and the infinitesimal additional strains must have the same form as
for a cubic crystal under infinitesimal strain at zero pressure, but the effective elastic "constants"
will depend upon the pressure. These relations now follow; the algebra, which is tedious, is omitted.
By substituting in (10) and noting that the density is given by (5) and (9), we find, for example,

Til = (1+2'0) (1+Pll P22 P83) (1l4'/1l'Oil)

neglecting higher powers of the P's.
We now set Tll = —P+ Tll' and write Tll' in terms of the P's and a new set of elastic constants,

c»', c12', and c44', which depend upon I'. Expanding (19) and identifying the coefficients, we find

Tli Cil Pll+C12 (P22+P83) i

P= g(1+2') &(c„+2C12+—sC3+ );
cll (1+2 /) Icll+S(3cll+2c12+ 6C111+4C112)+'9 (15Clll+ C128+ 14C112)+ ' ' } y

C12 (1+2'9) IC12+'V(C123+4C112 Cll)+'9 (C123+2C112 3C111)+' ' ' }.

(20)

(21)

(22)
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Similarly, expanding T12 = T12' = 2c44'p12,

2c44' ——(1+24)) &{2c44+2)(4c44+2cll+4c12+C144+2C166)

+4P(6C111+2C123+ 12C112+2C144+4C166)+ ' ' ' }~ (23)

To the first power in g these become

also

c11' ——c11+21 (2c11+2C12+ 6C111+4C111);

C12 C12+2)(C123+4C112 Cll C12) i

C44 = C44+ 2)(C44+Cll+2c12+ C144/2+ C166) i

c» +2c» =c»+2c»+2qC3 = C2+2gC3. (25)

The three parameters c»', c»', and c44' determine completely the response of the compressed
crystal to the additional small strains. The constants for the bending, extension, or twisting of
variously oriented bars or plates under pressure are found by substituting these parameters in
Voigt's formulas in place of the c», c», and c44. The equations of small motion in the compressed
medium are found from T„ in the usual way, the displacements being the 24„defined in (1). For
uniform pressure, the stress equations of equilibrium involve only the derivatives of 1„,.

Parallel development in the Eulerian form leads to:

&» = —&+T'»' = (1 —26)"'(1—3P» —P22 —433) (~4/~6»);

I' = 6(1 —26)"—'{c»+2C12+6D3+

cl1' ——(1 —26)"'{cl1—6(5cll+6c12 —6D111—4D112) —6'(21D»1+3D123+26D112)+ };
C12 (1 26) {C12 6(cll+4C12 D123 4D112) 6 (3D111+3D123+14D112)+ ' ' ' } i

2c44 = (1 —26)6i2 {2c44 —6(4C44+ 2c»+4c12 D144 2D 166)— —

(26)

(27)

To the first power in c,
6 (6D111+2D123+12D112—2D144 —4D166) + ' ' ' }~ (28)

also

Cll =Cll 6(10cll+6C12—6D111—4D112),

C12 C12 6(C11+9C12 D123 4D112) 1

c44 = c44 —6(7c44+cll+ 2c» D1,4/2 —D166—);
cll'+2c12'=cll+2c12 —6(12C2—2D3) = C2 —6(12C,—2D3).

(29)

(30)

In this form it is clear that the c"s will all increase with the pressure if the D's are sufficiently small.
Since for small compressions, 0, , q and ~ are all equal to the first order, we obtain further identified

among the C's and D's:
D123+4D1» = C»3+4C»4)+8c12 j

3D111+20»2 =3Cl 11+2 C»2+ 6cl 1'+4c12 ) (31)

as well as the relations (17) and (18) already given. Since it appears that the C's are usually negative,
while the second-order coefficients must be positive, the D's will be numerically smaller than the C's.

The relations between pressure and volume, and between pressure and compressibility, are of
special interest as they oAer the possibility of rationalizing a large mass of experimental data. For
hydrostatic strain, we may set all p„.=0, or we may put p= pll= p» ——ti33, with the other p's zero.
The former method is more direct; the latter may serve as a check. With the P's all zero, we have
from (21), with V6/V=(1+22)) ),

&= 2{:(l'/~6) ' —(~/1'6)'jLC2 —C3/2+(C3/2)(l'/1'6)'+ ] (32)
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Denoting the ordinary compressibility, —(1/Vp)(BV/BP)r by xp and its reciprocal, the "bulk
modulus" or "incompressibility" by Eo, we 6nd. for the limiting case of zero pressure,

(BEp/BP)Q p 1 (2C3/3Cp). (33)

In terms of p, with Vp/V=(1 —2p)&,

P = pE(Vp/U)"' —(Vo/V)"'jCCp+Dp/2 —(Dp/2)(Vo/ V)'"+

(BEp/BP) p p 5 (——2D—p/3Cp).

(34)

(35)

But since Dp ——Cp+6Cp, (33) and (35) are identical.
The same result is of course obtained if we put P„,=PS„„where IB is a small constant. In this case,

we have AP= T1—1'=P(c11'+2c1p'), and AU/Vp ——3P(1 n) =3P(—1 —2p) &; Ep ———(Vp&P)/8 V, so
that Ep =

p LCp —p(15Cp —2Dp) + . ]= Cp/3+P(5 —2Dp/3Cp) + . Thus in the limit, for P =0,
we have again (35). The combination 3/(c11'+2c»'), gives the "instantaneous" compressibility, that
is, the compressibility referred to the volume at the pressure P, rather than to the volume at zero
pressure.

We may remark that all of these expressions become identical with those of the isotropic mediume

on setting cI.~ ——X+2p, cI2 ——), and c44 ——p.
It is also noteworthy that (33) and (35) are unchanged by the introduction of higher order terms

in the free energy; terms contributed by powers of the strain higher than the third, disappear in

passing to the limit of zero pressure. Equation (33) has also been found by Furth.

6. RELATIONSHIP TO OTHER THEORIES

Since @ is the Helmholtz free energy, it
must satisfy the thermodynamic relation, —P
= (8@/8 V)r = p'(Bg/—Bp)r, when the stress sys-
tem degenerates to a hydrostatic pressure P. In
this case, the stress-strain equations (10) take
the form

8@ Bqb
P=T11——p —(1+21i11)= p-—(1 —2p11). (36)

~'g 11

p/pp ——
t (I+2g11)(1+2spp)(1+2gpp)]-

= L(1 —2 p1,) (1—2ppp) (1—2p„) j&.
Hence

BPIBs» P(1+21i11)

8p/8p11 = —p(1 —2 p11)

Since for this case,

84/81'» = (84/BP) (BP/8'0)»

8$/Bp11 (8$/Bp) (8p/8 p»),

we verify at once that —P = —p'(8&/Bp) r.
Ke might also have proceeded to And the

compressibility and its change with pressure by
successive differentiation of this general equa-

tion. Thus we have

Ep ———Vp(BP/8 V)r = Vp(8'1t/8 V'),

(BEp/BP') p= p = —Vp (BP&/8 V') p/(8'@/8 V') p',

or if we take a linear dimension such that
V=r', we 6nd

(BEp/BP) p 2 rp(BPy/BrP——)p/3—(8'y/Br') p. (37)

The partial derivatives with respect to the vol-
ume may be obta, ined from (12) or its equivalent
in terms of p or 1i by using (5) and (9); we
return to the relations already found.

If, however, the form of p is known or as-
sumed in terms of the interparticle distances and
force constants, additional relations may be de-
rived. With the power-law favored by Born,
where the potential between two isolated parti-
cles is of the form ar +br ", (37) —leads at
once to the well-known expression (BEp/BP)p
=(9+111+n)/3; this is strictly valid only for
T=O. Thus we f1nd that Dp/Cp ——3 —(111+I)/2
and Cp/Cp = —3—(m+n)/2. Conversely, if
(BEp/BP)p is known, the sum (m+n) is deter-
mined. This method has been applied by Furth~

' R. Fiirth, Proc. Roy. Soc. A183, 87 (1944-45).
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Tasts 11. Relative values of third-order coefficients for (ro/r) =(1—2s)&=(1+2it) '*. Then if
power-law potential.

(m+n)

3

5
6
7
8
9

10
11
12
14
16
18

Ca/C2

-4.5—5.0—5.5—6.0-6.5—7.0—7.5—8.0—8.5—9.0—10.0—11.0—12.0

D3/C2

+1.5
+1.0
+0.5

0—0.5—1.0—1.5—2.0—2.5—3,0—4.0—5.0—6.0

{axo/aP) 0

4.0
4.33
4.67
5.00
5.33
5.67
6.00
6.33
6.67
7.00
7.67
8.33
9.00

1 (ro't 1(rol"
po4 =A —

I
—

I
—

i
—

Imsgr) nor)
it follows that

po4 =constant+A f (n —m) os/2!

—[(tt —2) (e—4) —(m —2) (m —4) js'/3!

+[(n-2) (ot -4) (ot -6)
—(m —2) (m —4) (m —6) go4/4! — I; (39)

in an e8ort to show that consistent values of m
and n can be found from several independent ex-
perimental quantities.

As m and n are intrinsically positive, D3 will

always be smaller than C3, values of the ratios
of these coefficients to C2 for various values of
(m+n) are shown in Table II. Since, as it will

appear later, the most common experimental
values for (tiKo/ti2')o are in the neighborhood of
5, it may be justifiable for many purposes to
neglect Ds/Cs where the neglect of Cs/Co would
introduce serious error. It is thus advantageous
to treat most of the questions involving large
compressions in terms of the Eulerian strain;
the same results may be obtained with the
Lagrangian form, but at the price of retaining
terms of higher order.

Pressure-volume relations are furnished by
Born and co-workers for a number of special
cases, but the results are given in numerical
form and comparison is not immediate, except
for zero temperature. At 1=0, however, it is
readily found that the power-law potential leads
to the general form,

P =constant

X [(Vo/ V) "'"'"—(Vo/ V)"'"'"j (3g)

and also that, al.ternatively,

pop =constant+A ( (ri m) ti—'/2!
—[(n+ 2) (~+4) —(m+2) (m+4) js /3!

+[(n+2) (n+4) (n+6)
—(m+ 2)(m+4)(m+6)]s4/4! — I. (39a)

Whenever m and n are both even integers, the
development in e becomes simply a polynomial;
if either m or n is odd, (39) gives an infinite
series which ultimately diverges for very high
compressions (see Table I). It is hardly to be
expected that the assumed power-law potential
remains valid for such compressions, regardless
of its suitability for small volume changes. The
expression in ti is always convergent, since
never exceeds —'„ for compression; but also it is
never a polynomial. The terminating property
of (39) possibly accounts in part for its usefulness
in dealing with reasonably large compressions.
Except for ionic crystals, good approximations
to the potential can probably always be obtained
with even values of m and n (within the scope of
usefulness of the power-law form of potential)
and it seems unlikely that the larger of these

TABLE III. c44'-/c44 as function of volume.

This equals (34) for m=2, n=4, in which case
D3=0. For other values of m and n, these
expressions will be equal only with the inclusion
of higher order terms in (34).

The higher order coefficients may be found
for the special case of hydrostatic pressure by
developing the power-law potential in terms of
s and of ti. Putting Vo/ V = (ro/r)', we have

0
0.05
.'10

.15

0.05
.10
.15

0
0.0164
.0323
.0477

0.0247
.0495
.0818

Vo/V

1.000
1.0247
1.0488
1.0724

1.0375
1.075
1.125

1.000
1.125
1.247
1.363

1.189
1.378
1.625

m=6, n=12
1.000
1.193
1.405
1.635

m=4, n=8
1.207
1.436
1.711

C44'/C44
(Birch) (Gow)
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need ever exceed 12. For n=12, the expansion
terminates with the sixth power of t.. Smaller
values seem more suitable for most of the metals.
The expansion in e is given below for several
pairs of values of m and n.

For m=2, n=4; pop=constant+Ac'.
For m=2, n=6; pop=constant+A'e'(1 —-', e).
For m =4, ti = 8; po~t =constant+A"e'(1 —2e+e').
For m = 1, n =8; a good approximation for most

of the alka, li halides, pojh =constant+A" Q

X(1—e+-,'e'+-'e'+ ).
These expressions are found from the power-

law potential and hence possess the same restric-
tion to zero temperature, but it appears probable
that the differential effect of temperature upon
the coefficients of the various powers of e will not
be great, at least for moderate temperatures, and
hence that the values for such ratios as DI/C2,
D4/C2 and so on, which are immediately obtain-
able from the above expansions for zero, will be
approximately valid at higher temperatures. Ke
notice that for m=2, n=4, we have D3 and all
higher order D's equal to zero, and the pressure
is given by the relatively simple expression,
P =constant X L( Vo/ U)"' —( Vo/ V)'I']. Da de-
pends only upon (n+m) but the other terms
depend upon the individual values of n and m.
Thus for m=2, n=6, D4 and higher coe6.cients
are zero, while for m = 1, n = 7, D4/C2 = 9/8,
Dz/C2 ——3/8, and so on.

In treatments which deal only with the case of
hydrostatic pressure, development of the po-
tential in terms of strain components is of course
unnecessary; any function of the volume may
serve, subject to certain restrictions. Thus Slater
expands the free energy in terms of (1 r/ro). —
This is equal to 1 —(1+2')& which becomes
approximately —q for small compressions. If,
however, the individual elastic constants are of
interest and not merely the compression and its
various derivatives, it is necessary to expand the
free energy in terms of the strain components,
as has been done by Born and his associates,
using the equivalent of y„,. It is possible that in
the general case, as well as in the special case of
hydrostatic compression, the use .of the c„,

TABLE IV. Calculated effect of pressure on c44' for
several substances.

Substance

Na
Cu
Ag
Au
AI
W
Fe
Mgo
NaCI
KBr
CaF2

7+(C11+2C1~)/C44

9.85
12.60
13.86
20.2
15.28
13.02
11.46
10,0
12.74
14.22
14,52

1 BC&4

C44 8P
(P in bars)

70.2X10 6

2.97
4.63
3.83
6.59
1.41
2.22
2.15

17.2
31.8

5.7

instead of the p„, might lead to more rapidly
convergent results.

A paper by Miss Gow' gives the variation with
pressure (and temperature) of all of the elastic
constants for face-centered monatomic cubic
lattices, using a potential of the form just con-
sidered; the lowest values of m and n for which
calculations are presented are m=4, n=8. The
results are given in numerical tables, in terms of
a parameter P related to the volume by (1+$)
= ( Vo/ V) &" "'".Comparison with the results of
this paper can be carried out by computing the
changes of the corresponding elastic constants
for the same changes of volume. This has been
done for c44 in Table III, where we have taken
the approximate form of (29), neglecting the
third-order coefficients Di44 and Di66..

c44'/c44 = 1 —eg7+ (cii+2ci2)/c44$. (40)

As shown in Table IV, the coefficient of c in (40)
varies between 10 and 20 for various materials,
most of the values falling near 14. In Table III,
the figure 15.28, the value for aluminum, has
been used.

Miss Gow gives

c44/I'0 = ( Uo/ V) pA 3/Q+B4T/8],

where A3/u and B4 are tabulated as functions of
$; Pp, 0 are constants, T the absolute tempera-
ture. This c44 is equivalent to our c44'. For
comparison with (29), we form the ratio for
T=O, ci4'(P)/c44(0) = (Vo/ V) [Ag(P)/Ai(0) j; this
ratio is not greatly affected by including the

' J.C. Slater, Introduction to Chemica/ Physics (McGraw-
Hill Book Company, Inc. , New York, 1939), p. 393.

'Margaret M. Gow, Proc. Camb. Phil. Soc. 40, 151
(1944}.
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TABI.E V. Experimental values of change of compressi-
bility with pressure: elements {pressure in bars). ~

Element tC 106a 10»b 2b/a~ = (BKO/8P) o

Pt
Rh
Cr
Ni

Pd
Co
8
Au

V
Cu

30
75
30
30
30
30
75
30
30
30
30
75
30
24

{Ebert)** 20
30
30

(Ebert)** 20
Mn 30
Ag 30

(Ebert) ** 20
Al 30

(Ebert) ~* 20
(Birch) 23

1"e 30
Th 30
Pb 30

{Birch) 20
(Ebert) ** 20

Pr 30
La 30
Ca 30
Sr 30
Ba 30

0.32
.32
.363
.364
.525
.535
.54i
.534
.546
, 558
.584
.577
.577
.5941
.603
.617
.729
.7182
,731
.803

1.002
1.025
1,365
1,328
1.370
1.378
1.435
1.850
2.415
2.340
2.354
2.448
3.451
3.578
5.805
8.278

10.39

0,1
.2
.3

1.5
.9
.9
.8

.8

.8
2.0
.8
9
.83

1.37
1.35
1.6
.9

2.6
4.2
3-7
1.9
49
3.7
3.1
7.2
48

12
19.6
10.2
14.3

12.2
13.9
65

1.03
133

2

5
23

7
6

6
5
5

12
5
5
4.7 (to 30,000)
7.5 (to 5,000)
7.1
6.0
4 (to 30,000}
9.7 {to 5,000)

13
7.4
3.6 (to 5,000)
5.3
4.2 (to 30,000)
3.3 (to 5,000)
7.6 (to 10,000)
4.6
7
6.8
3.7 (to 30,000)
5.1 (to 10,000}
4.9 (to 5,000)
2,0
2.2
3.9 see Table VIII
3.0
2.5

+ Unless otherwise noted, the measurements are by P. W. .Bridgman,
and the range is 12,000 kg/cm2. Several corrections have been applied
to the values published in the original papers and in The Physics of
High Pressure (Bell and Sons, London, England, 1931), notably for
the new value of b for iron given in Proc. Am. Acad. Arts Sci, 74, 11-20
(1940). See also Proc. Am. Acad. Arts Sci. 70, 285-317 (1935), and
Rev. Mod. Phys. 18, 1 (1946). Corrected values, expressed as above
in bars rather than in the original kg/cm~, are tabulated in Handbook
of Physical Constants, Special Paper No. 36, published by the Geological
Society of America, Section 4. Values of a and b for the new measure-
ments on Cu, Pb and Al, still unpublished, were computed by Birch.
Entries marked "Ebert" are from H. Ebert, Physik. Zeits. 36, 388
(1935). Those marked "Birch" are from F. Birch and R. R. Law,
Bull. Geol. Soc. Am. 46, 1219 (1935).

++ Single crystal.

temperature terms. Values of the ratio, as a
function of volume, are given in Table III, for
m=6, n=12, and for nz=4, n=8. Again it is
clear that better agreement would exist for
smaller values of m and n.

The magnitude of the neglected terms in (29),
(D144+2Di66)/2, relative to the quantity re-

tained, (ic44+c»+2c&2), may be estimated by
using Furth's evaluation' of the third-order
coefficients, and the identity (18). The, C's and
the c's are given in terms of the quantity 5(2)
for certain combinations of m and n. In this way,

it may be estimated that for the face-centered
cubic lattice, with m=4, n=8, the neglected
terms would increase the pressure coefficient by
about 14 percent; for m =4, n = 6, the neglected
terms would reduce the coefficient by about 4
percent. The few experimental determinations"
of the effect of pressure on rigidity support the
calculated values of Table IV: the measured
values of the relative change of rigidity with
pressure are 2.7 10 for copper, 7.6.10 ' for
aluminum, and 2.36 10 6 for steel (P in bars).
However, these are for polycrystalline materials,
and are not strictly comparable with the calcu-
lated values for a particular direction in the
crystal, although it seems probable that the
e8ect will not differ greatly for different orienta-
tions.

The correction to Born's theory arising from
the stress-strain relation (10) for finite strain
will apply only to the expressions for the elastic
constants; the pressure-volume relation escapes
this correction, since it is based on the exact
thermodynamic relation for the pressure as
volume derivative of the free energy. The relation
(10) should be regarded as the exact extension
of this thermodynamic relation to the general
finite strain.

'F. COMPARISON WITH MEASUREMENTS
OF COMPRESSION

The compression of a large number of ma-
terials crystallizing in the cubic system has
been measured over pressure ranges sufficiently
great to establish a definite departure from
linearity. Most of the measurements have
been made by Bridgman, who has extended the
working range from about 12,000 kg/cm' in his
early work to 100,000 kg/cm' in recent publica-
tions. The results for the lower ranges are usually
given in the form, 6V/Iro=aP —bP', where—
AV is the change of volume from the initial
volume Vo at zero.pressure, to the pressure P
c and b depend upon the temperature. Thus, at
constant temperature, (BZO/BP)o= 2b/a'. Table
V includes the measurements for all of the
elements of cubic symmetry except for those of
high compressibility (Table VII and VIII), and
several (Mo, Ta, Ce) which show anomalous

"P. W. Bridgman, Proc. Am. Acad. 63, 401 (1929);
F. Birch, J. App. Phys. 8, 129 (1937).
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negative values of b. Table VI includes measure-
ments for a number of cubic compounds. Meas-
urements made before 1940 have been corrected
to the new value determined for iron at that
time; this correction amounts to a reduction of
the former values for b by about 1.5 10 "and is
thus of importance for the materials of low
compressibility.

Most of the values of 2b/a' in both Table U
and Table VI lie between 4 and 7; if the distri-
bution is considered to represent a normal
probability curve, the most probable value for
the elements is about 4.5 with a half-width of
about 0.5, an amount not inconsistent with the
experimental uncertainty when reasonable allow-
ance is made for such defects of material as
initial strains and porosity. Occasional deviations
seem to be of this character, as for gold, where
an erratic value occurs for 30'C, a normal one
for 75'C. The values for rhodium and for manga-
nese are almost cer tainly erratic. The most
probable value for the compounds is between 5
and 6. The only significant deviation is for the
sulfides and perhaps certain Ruorides, where
2b/c' is about12. It is noteworthy that the latest
and most precise measurements, to 30,000 kg/
cm', show even lower values for 2b/a' than the
earlier ones for such relatively reliable materials
as Al, Pb, and Cu. Figures lower than 5 mean
positive values of D&, and correspond to very
small exponents in the power-law potential
(Table II). Low values occur both at the be-
ginning and end of Table V, which is arranged
in the order of increasing compressibility. Not
too much weight should be attached to the low
value for tungsten, where the experimental error
must be relatively large; but the same reasoning
would suggest that the values for Ca and Sr
should be very reliable. Other data for Ca in Table
VI II demonstrate a more "normal" variation.

Slater" has concluded that 5 is probably the
best general value of 2b/a' for the metals; this
leads to a figure of 1.833 for Gruneisen's con-
stant, as compared with about 2.4 preferred by
Furth. An outstanding feature of Tables V and
UI is the evidence that (BXp/BP)0 has approxi-
mately the same value for such diverse materials
as metals and various types of ionic compounds.

"J.C. Slater, Phys. Rev. 5'7, 744 (1940).

TABLE VI. Experimental values of change of compressi-
bility with pressure: compounds. Measurements at 30'C
(I' in bars). *

Compound

TjN
TiC
Pyrope (garnet)
Fe304
MgO
Andradite (garnet)
Fe.S
CoAsS
CdF.
ZnS

CaF2
I iF (s)

SrF2
Pbs
Cu20
BaF.
NaF
CaS
SrS
CUC1
CuI
BaS
Ag..S
KF (S)
LiCl (S)
Nacl
LiBr (S)
NaBr03
NaC103
NaBr (S)
KCl (S)
CsCI
LiI
KBr (S)
CsBr
RbBr (S)
Kr (S)
CsI
RbI (S)

10sa

0.334
.477
.545
.547
.598
~ 673
.68
.767

1.120
1.303
1.258
1.226
1.53
1.52
1.607
1.869
1.943
1.964
2.11
2.321
2.426
2.508
2.802
2.946
3.265
3.30
3.40
4.260
4.30
4.401
5.033
5.07
5.62
5.94
6.00
6.70
7.05
7.93
8.53
8.565
9.56

10»b

0.87
.8
~ 9
.82

1.0
.86
.87

1.88
7.5
1.28
5.4
6.49
7.6
5.5
9.4
7.43

29.3
14
17
39
38.8
13.3
24.8
52.8
49.5
32
32.3
51
51
76
95
63
75
99.5

110
105
149
137
155
209
204

2b/u'

16
7
6
5.5
5.5
3.8
3.8
6.4

12
1.5
6.8 (to 50,000)
8.7
6.5
4.8
7.3
4.3

10,1
7.3
F 7

14.5
13.2
4.2
6.3

12.1
9.4
5.9
5.6
5.6 see Table IX
5.6
7.8
7.5
4.9 see Table IX

5.7 see Table IX
6.1
4.7
6.0 see Table IX

4.3
5.7 see Table IX
4.5

+ All measurements by P, W. Bridgman (see references for Table V)
except those marked "S," which are by J. C. Slater, Phys. Rev, 23,
488 (1924).

This is understandable if the ratio (—Ds/C2),
which is the part of (BXO/BP)o which depends
upon the individual . peculiarities of the inter-
particle forces, is generally no greater than
unity, or in other terms, (tn+n) no greater than
8 or 9.

The same conclusion may be reached by
examining the striking body of data for com-
pressions up to 100,000 kg/cm' given in two
papers by Bridgman, as well as some earlier
results to 45,000. The data are given as —6 V/ V'
for various pressures. In a number of instances
the density was more than doubled, and in many
cases, raised by 25 percent or more. Taking the
pressure-volume relation in the form (34), we
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TABS.E VII. Compression of the alkali metals to 45,000
kg/cm' and values of F/P. * TABQE VIII. Compressions to 100,000 kg/cd and values

of F/P. ~

P
in 10~ Li

&g/
cm~ V/Vo F/P

5 0.957 641
10 .926 599
15. .899 584
20 .875 581
25 .855 573
30 .835 577
35 .816 581
40 .798 591
45 .782 597

V/Vp F/P

0.929 113
.883 107
.852 9$
.818 100.791 100
.767 100
.746 100
.727 101
.710 101

V/Vo F/P

0.884 210
.817 202
,770 196
.732 194
.699 196
.671 197
.647 199
.627 199
.604 206

V/Vo F/P

0.826 374
.767 301
.721 280
,684 271
.655 264
.629 261
.607 259.587 259
.569 260

Cs

V/Vo F/P

0.818401.729 397
.674 38'l
.628 395
.586 417
.568 392
.542 400
.519 409
.499 417

P
in 10'
kg/
cm~

10
20
30
40
50
60
70
80
90

100

Li Na Rb Ca

0.926 598
.875 581
.835 575
.798 591.763 621.728 668
.695 720
.664 776
.634 842
.606 913

0.883 106
.818 100.767 100
.727 101.690 104
.657 108
.628 112.603 116
.581 120
.560 124

0.817 202
~ 732 194
.671 197
.627 199
.581 216
.543 232
.508252
.478272.451 293
.427 316

0.767 301
.684 271
.629 261
.587 259
.538 288
.499 313
.461 351
.425 401
.392 459
.362 527

0.942 449
.897 451
.861 449
.832 443
.805 447
.780 454
{Transi-

tion)

V/Va F/P V/Vo F/P V/Vo F/P V/Vo F/P V/Vo F/P

*P. W. Bridgman, Phys. Rev. 57, 237 (1940};Proc. Am. Acad. Arts
Sci. 72, 207 (1938).

see that if it is permissible to neglect Do/Co,
we obtain the simpler form,

with
F = FCo/2,

F= [(Vo/ V)"'—(Vo/ V)"""j.

The ratio F/F is in this case a constant, 2/Co
=2xo/3. The following test has been applied to
the measurements of Tables VII, VIII, and IX:
Ii has been formed from the measured values of
Vo/ V and divided by the corresponding measured
pressures. The test is extremely sensitive since
F varies rapidly with Vo/V. All, or nearly all,
of the measurements of inorganic cubic materials
have been included except those which show

polymorphic changes in the pressure range, a
fairly large fraction of the whole.

Let us first examine the alkali metals in the
45,000 kg/cm' range, shown in Table VII. F/P
is constant within the precision of the measure-
ments for all of these metals except Rb, where
there is an abnormally high initial compressi-
bility; the first value for Li also deviates widely.
For the others, . the initial compressibility can be
obtained with an error of less than about 10
percent from any single volume determination.
There is no particular trend which would suggest
that improved agreement would result from the
next approximation, with a non-zero D3.

The measurements on the alkali metals to
100,000 kg/cm' (Table VIII), do show a definite
trend, with F/P increasing beyond 50,000, by
roughly 50 percent for Li and K, nearly 100
percent for Rb, and about 20 percent for Na.
The values above 50,000 can be 'fitted by in-

cluding a term in Do, as in (34), but Do turns
out to be large and positive and far beyond any

+ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 74, 425 (1942); or
Phys. Rev. 60, 351 (1941).

value compatible with the measurements below
50,000. It seems fairly clear that the determina-
tions for these two ranges are not mutually
consistent. Bridgman has discussed the possible
sources of fairly large errors in the higher range.
In view of later determinations to 100,000, we

may conclude that the abnormal behavior of the
alkali metals above 50,000 is somehow connected
with the method of correcting the data, which
was improved in the later work. For example,
gs shown in Table IX, if the data for indium

(a tetragonal crystal) given in the two papers
(1942 and 1945) are reduced in the same way,
we find that F/F increases in the former,
though much less than for the alkali metals,
whereas it decreases in the latter.

A decrease or approximate constancy of F/P
is characteristic of the 1945 determinations,
shown in Table IX. The decrease is readily
accounted for by restoring D3, which may be
evaluated by plotting F/F versus ( Vo/ V) i;
according to (34) this should be a straight line.
In a fairly typical case, we find Do/Co —0.8 for——
CsI. This corresponds to a value of 5.53 for
25/a', whereas from Table VI, we find 5.7; and
from Table II, (m+I) between 7 and 8.

With the retention of the constant D3, the
measurements of Table IX can all be reproduced
with an error not exceeding about 3 percent on
the pressure. This is probably less than the
experimental error of pressure determination for
this range, and there is some indication from
the data that the experimental pressures may
be perhaps 10 percent lower than supposed. We
reach this conclusion by observing that the ratio
(F/P)io, ooo to (F/P)ioo, aoo is close to 1.1 for 9 of
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the 14 materials of Table IX; it is nearly con-
stant for AgC1 and CsBr and equal to about i.2
for CsC1 and T1NO3. There appears to be no
correlation with the amount of compression.

The approximate form (41) thus gives the
pressure corresponding to the extreme compres-
sion in terms of the measured compression at
10,000 with an error not exceeding 20 percent,
and generally less than 10 percent for the entries
of Table IX. This is probably not far from the
limits of experimental precision for this range of
pressure.

Bardeen" has calculated the zero-point energy
as function of density for Li and Na by approxi-
mate quantum-mechanical methods, obtaining
the energy in the form, @=Ay'+J3y' —Cy, with
y=(UO/U)&. A, 8, and C are constants which he
calculates and compares with the experimental
values. This leads to a formula for the pressure
which is approximately,

P=constantt (Vo/U)"' —(Vo/V)"'j, (42)

equivalent to the form for a power-law potential
with vs=i, n=2. Comparison with experiment
requires a somewhat uncertain reduction to
absolute zero, and the numerical agreement for

the constants is not very close. If, however, the
constant of (42) is determined from the measured
initial compressibility, the agreement with the
measured compression of the alkali metals to
45,000 is very nearly as close as for (41). Fiirth'
has applied the power-law potential to some of
the measurements to 100,000, with values of m
and I larger than are implied by (41); the
agreement with the experimental values is less
good. It appears that larger values of the expo-
nents in the force law are required to satisfy the
experimental determinations of temperature ef-
fects than to fit the measurements of pressure
effects. It may be questioned whether this is
mainly the consequence of an inadequacy of this
form of potential, of some approximation in
Born's treatment of the entropy of the lattice,
or of more fundamental causes, as suggested by
Bridgman in a discussion of the implications of
Schottky's theorem. "

8. CONCLUSION

Besides the application of the theory of finite
strain to find the eR'ect of pressure upon the
elasticity of cubic crystals, we have attempted a
clarification of certain questions regarding the

TABLE IX. Compressions of cubic compounds and values of F/I. Compression of indium.

P
in 10o

kg/cmo

10
20
30
40
50
60
70
80
90

100

10
20
30
40
50
60
70
80
90

100

V/Vo F/P
NaCl

0.962 279
.932 270
.907 264
.885 260
,865 258
.848 254
.832 253
.817 253
.803 252
.790 252

TINO8

0.963 271
.932 270
.905 271
.882 266
.863 264
.848 255
.835 246
.824 238
.815 228
.806 222

V/Vo F/P
CsC1

0.952 362
.914 359
.882 359
,856 353
.834 348
.816 338
.801 329
.788 319
.777 309
.767 301

Nar

0.944 429
.902 424
.868 417
.840 411
.816 406
.795 404
.777 398
.761 393
.747 388
.734 383

V/Vo F/P
T1C1

0.962 279
.929 285
.901 285
.8/7 284
.856 282
.838 279
.823 274
.809 270
.798 262
.787 258

CsI

0.935 513
.887 508
.849 505
.818 501
.792 496
.770 490
.751 484
.734 479
.719 473
.706 467

V/Vo F/P
ARC1

0.979 145
.960 149
.942 150
.926 149
.910 152
.896 152
.883 153
.871 152
.860 151

0.950 379
.910 379
.877 378
.848 381
.823 384
.802 382
.784 378
.768 373
.'?55 366
.744 356

V/Vo F/P
NaBr

0.957 321
.922 319
.893 315
.868 313
.847 309
.829 303
.814 . 296
.801 288
.'?89 282
.778 277

1940

0.978 155
.958 156
.940 155
.925 152
.913 146

V/Vo F/P
CsBr

0.947 405
.905 406
.870 409
.840 411
.814 416
.'?92 413
.773 411
.757 405
.742 402
.728 400

Indium
1942

0.977 166
.955 168
.936 167
.919 167
.903 166
.888 167
.874 168
.860 170
.847 172
.835 173

V/Vo F/P
NH4Br

0.951 370
.912 369
.880 367
.853 364
.830 361
.811 354
.795 346
.781 338
.768 332
.756 327

1945

0.9760 170
.9558 164
.9381 162
.9219 159
.9068 157
.8928 15/
.8798 15'8
.8676 156
.8561 1.58
.8451 157

P. W. Bridgman, Proc. Am. Acad. Arts Sci. 75, 1 (1945), (Halogen compounds and indium); 74, 428 (1942). (Indium); 74, 21 (1940), (Indium ),

"J.Bardeen, J. Chem. Phys. 6, 3/2 {1938). "P.W. Bridgman, Rev. Mod. Phys. 'V, 1 (1935).
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scope of this theory. It is shown that there is no
ambiguity: the alternative methods developed
by Murnaghan lead to identical results for com-
parable approximations. The choice of method is
a matter of convenience; for studies of large
compressions, the Eulerian form furnishes sim-

pler, more compact relations. Lattice theory does
not conAict with this method; in cases where it
can be sufficiently developed, it furnishes numer-
ical values for the elastic constants in terms of
atomic parameters, but many relations of a
general nature are obtainable without a detailed
specification of lattice structure and forces. The
present method is valid for elastic strain at any
constant temperature, and hence avoids the
complexities which arise in lattice theory when

temperatures other than zero are considered. It
is shown that a relatively simple approximation
accounts for practically all of the measurements
at high pressure. The fact that this first approxi-
mation is also a good one, is shown to imply
values for the exponents in a power-law form of
potential considerably lower than have com-
monly been adopted.
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APPENDIX

Derivation of Third-order Terms of the Free Energy for Cubic Crystals

The general methods of taking into account the symmetry of a crystal for various properties are described in Voigt, "
Koosterls and other texts on crystal physics, and the application to the second-order elastic coefficients is given in con-
siderable detail in Love."The symmetry of all classes of cubic crystals is such as to reduce the 21 possible second-order
coefficients to 3. There are 56 possible distinct third-order coefficients, and this is the actual number for a triclinic crystal.
Using the customary short notation, where we write 1 for the pair of indices 11, 2 for 22, 3 for 33, 4 for 23 and 32, 5
for 31 and 13, and 6 for 12 and 21, the 56 third-order terms are as follows where evidently C„„=C„„=C,„„and so on:

Cll1'Ql +C112$1 'g2+ C113'gl 'g3 +C114'0l g4 +Clls'gl 95 +C116'gl $6

+ C122'gl'g2 +C128$1$253+C124'915254+ C125'gl'f295+ C126'glgÃ6

+C183'gl'g3 +C134$1$854+ C13591'9355+C136$1'$356

+C144'Ql'Q4 +C145$1'gas+ C146$1'Q4'Qe

+C155$1$5 +Cise'qlgsqe

+Cleeglge2

+ C222'Q2 +C228$2 'g3 +C224g2 g4 +C225$2 'Qs + C226'Q2 $6

+ C288g2'g3 +C284$2'g8$4+ C235'g2$8g5+ C236'g2$3$6

+C244'g 2/4 +C245'g2'gas+ C246$2g4g 6

+C255'g2'gs +C256'g2'/see

+C26eg2ge'

+C383$8 +C334$3 g4 +C335$3 $5 +C33ef)8'ge

+C844$3$4 +C845'Q8'Q4$5+ C346'Q3$4'ge

+C355$8'Qs +C856'Q3$5$6

+Ceeen8ne'

+ C444'g4 +C445'q4 gs +C446'g4 ge

+C455g4v)52 +C456g4qsge

+C4eeg4g62

+Csssg53 +Csseg52ge

+Ceesnee

The crystallographers have amused themselves by inventing a variety of ways of designating the 32 crystal classes
and of describing the elements of symmetry. Table X shows in parallel form a few of the proposals with regard to the
5 classes of cubic or isometric symmetry. Only two of these classes are characterized by the tetragonal symmetry about
the three cubic axes which one might expect to be a common property; the other three classes possess digonal symmetry

'4 W. Voigt, Lehrbz&ch der Eristallphysik (B. G. Teubner, Leipzig, Germany, 1928).
'5 W. A. Wooster, A-- Textbook on Crystal Physics (The Cambridge University Press, New York, New York, 1938).
'A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (The Cambridge University Press, New York,

New York, 1937).
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TABLE X. Designations and elements of symmetry of the isometric classes.

Dana (Groth-Rogers)

Hexoctahedral (galena)

Gyroidal (cuprite)

Hextetrahedral

Diploidal {pyrite)

Tetartoidal

Lewis

Ditesseral central

Tesseral holoaxial

Ditesseral polar

Tesseral central

Tesseral polar

Cubic II

Cubic I

Cubic V

Cubic IU

Cubic I I I

Name or symbol of class

Miers
Hermann-
Mau guin

4 — 2

m m

4 3 2

4 3 m

Schoenflies

O(A)

Elements of
symmetry

C, 334, 433, 622

334, 433, 632

433, 332

C, 4aa, 332

433, 322

Note: In the last column, C denotes a center of symmetry, A4 an axis of fourfold symmetry, Aa an axis of threefold symmetry, A2 an axis of
twofold symmetry. The numbers before the A's denote the number of such axes. This notation is used in Dana and Hurlbut's Manual of Miner-
alogy (John %'iley and Sons, Inc. , New York, 1941) and is by far the most intelligible and useful to the reader unversed in crystallography. The
H'ermann-Mauguin symbols are to be found in the first volume of International Tables for the Determination of Crystal Structures (Borntraeger,
Berlin, Germany, 1935).The other notation has been extracted from Love.

about these axes. All classes possess trigonal symmetry with respect to the 4 cube diagonals. This is expressed analytically
as an invariance of properties under cyclic permutation of indices. Thus if the three original axes of coordinates are
Xl X2X3, coinciding with a set of cubic axes, then rotation of 120 about a trigonal axis defines a new set of
axes, Xl' X2' Xa', say, such that X2' coincides with Xl, Xa' with X2 and Xl' with Xa, for example. This corresponds to
the scheme:

X,' X,' X,'

Xl 0 1 0
X2 0 0 1

Xa 1 0 0.

The strain components referred to the new axes, g„', will be related to the strain components referred to the original
axes by the general transformation equation for second-order tensors, il„'=ni„n~,q„|„p,g, r, s=1, 2, 3, where n» is the
cosine of the angle between Xl and Xl', and so on. For this transformation, this becomes simply

I
Ql 'g3

I

$4 Qs

il 5
I

'Q 8 /san

TABLE XI. Effect of the elements of symmetry upon the
third-order elastic constants.

Now the free energy must possess the same form with re-
spect to the new axes as to the old; thus we must have

Trigonal
symmetry

4 axes

C222= Caaa
C133—C223
C332= C122
C22s = Caas
C226= Ca34
C224 = Caas
Csss = Csee
C684 =Csse
Cess = Css4
C138 C235
C134 = C236
Clas = C234
Case= C2ss
Cise= Cass
C266= Clss
C364 = C2ss
C356 C245
C348 = C246

Cl11

C112
Clla =
C114=
Ci I 6 =
C116
C444 =
C44s =
C44s =
C124=
C125 =
C126=
C144=
C244
C344 =
CI45
C146
C158
C123
C4ss

Non-zero distinct
constants

20

Diagonal
symmetry

3 axes

Cl 11

C112
Ci 13
=0
=0
=0
=0
=0
=0
=0
=0
=0
C144
C166
Clss
=0
=0
=0
C12a
C4se

Tetragonal
symmetry

3 axes

Cl 11

C112
C112

C144
C166
= Cise

C468

so that

Xl
Xl
Xa

'0 l 91
n2'=~2

Xl' X2' Xa'
—1 0 0

0 —1 0
0 0 1,

'Q4

'Qs 'gs

$8 — $6~

Application of this transformation, taking into account
the equalities already found, gives, for example, C»4p12p4

C»4$]. il4 and hence C114=0. By this process, the 20
constants are reduced to a maximum of 8.

Clllrtl +C»2/1 $2+ ' ' ' C»lrll +C112gl g2 + ' ' 'g

the C's being necessarily the same on both sides. Substitu-
tion for the il„' of their values in terms of g,, as given
above, leads to equalities among the C's. By this process,
the 56 constants are reduced to 20, as shown in Table XI.

In addition to the trigonal symmetry, all 5 isometric
classes possess digonal symmetry about the 3 cubic axes.
The corresponding transformation scheme for rotation of
180' about the Xa axis is:
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Finally, for two of the classes, the cubic axes are axes of tetragonal symmetry. For a rotation of 90', we have the
typical scheme

Xi' X2' X3'

Xi 0 —1 0
X2 1 0 0
X3 0 0

leading to

Ke find two additional equalities, Cii2 —C$$3 and C$55 C$66) the number of constants is thus reduced to 6. This is the
minimum obtainable from considerations of symmetry alone, although further reduction may result from special assump-
tions about lattice structure and forces, as Born and Misra have shown.


