
ANGULAR MOMENTUM OF PHOTONS

The results for iridium may be summarized:

1. ~t~ermai=L(14&6)+(64&2)E 'j.
2. For the first resonance:

Ep(0.64&0.015) ev,
~,r~=(5 to 20))&10 '4 (ev)'cm'/atom,
~o &~4500 (probably) . I' & 0.07 ev (prob-

ably).
3. For the second resonance:

Eo= (1.27&0.04) ev,.r2=(5 to 20),
o 0 & 4000 and F & 0.07 ev (probably) .

4. &r = (25 &4) for 2.2 ev &&E ~& 3.5 ev.
5. For the third resonance

Eo ——(5.2&0.2) ev,
OpF' =55 roughly.

6. For the fourth resonance:
Eo=(8.7+0.3) ev,
O.pF' = 50 roughly.

7. 0 = (18&3) near E= 14 ev.
8. For the "fifth" resonance

Eo (25w5——) ev.

9. The shape of the transmission curve for
B&25 ev indicates that probably more levels are
present at higher energies so O.pF' has not been
calculated for this "level. "

10. Iridium has the isotopes Ir'" and Ir'" of
38.5 percent and 61.5 percent abundance, re-
spectively. The above values of Op and 0-pI' for
the resonances are uncorrected values for the
natural element. Depending on which isotope is
responsible for a given level, the values should be
increased by a factor somewhat greater or some-
what less than two to give the true values for the
responsible isotope.

Conclusion

Since the measurements were made which have
been described in two previous papers" slow
neutron transmission vs. time of Right measure-
ments have been made for a large number of
elements and the slow neutron spectrometer
system has been considerably improved. In this
first of the new series of papers describing these
measurements, the results for Cd, Ag, Sb, Mn,
and Ir, have been presented and other results will

be presented soon in subsequent papers. This
work represents, in all, several thousand hours of
cyclotron running time. We wish to thank those
who have made this work possible and assisted in

the measurements.
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The theory of elementary particles permits one to attribute well-defined angular momentum

expressions & a given radiation field. A few simple examples are discussed, which involve

systems of two photons, and of one atom and one photon, and which permit one to account
for the conservation of total angular momentum. Conservation of total angular momentum,
including radiation, is, however, of little practical importance, because spatial orientation of
a given system requires, in general, the use of external magnetic fields, which perturb the
angular momentum balance.

1. INTRODUCTION

CCORD ING . to the field theory of ele-
mentary particles, angular momentum ex-

pressions can be attributed to a given particle
field, which, in general, can be divided into
an orbital angular momentum and a spin

part. ' In the particular case of electromagnetic
radiation, however, no gauge invariant separation
between spin and orbital momentum is possible. '

'F. J. Belinfante, Physica 6, 887 (1939); W. Pauli,
Rev. Mod. Phys. 13, 203 (1941).' L. Rosenfeld, Mdm. Acad. Roy. Belg. (Cl. Sc.) 18, 562
(1942).
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TABLE I. Quantum states.

1 1 1

v3 V3
—roo(.,;)+—r1 —1(+ 2)+ I' 11(12)

v3

1. 1 1 1——I'10( y 2)+—(I'01 1 2) —I'1 —1( 1 2) ——I' —11( 1 2)v2 v2 V2 v2

1 1 2 & 1
L, = 2 I'11(, ,) —I'10( )+—I'01( 1 2) — I'00( 1 2) ——I'1 —1( ) — I'-11( 1 2)v2 v2 3 6& 6&

1
~ 1

V2
——I' —10 (v1v2) +—I 0 —1 (v1v2)

v2

1 1

v2
—I —10(.1.2)+—I'o —1(.1.2) I' —1 —1(.1.2)

V2

The angular momentum operator of an electro-
magnetic field is given by

In the case of a single photon present in the
field, the angular momentum matrices become,
both for (8) and (M) waves,

J= trX[EtXH —HtXZ]dr,
8~c ~

E=+ a.(k)E,(k), H = P a.(k)H, (k),

(bnl J, jl' m) =kmbgg 8„„.,
(1)

(lml J,+i J„ll'm') =k[(l&m)(i&m+1) jl (4)

s, k s, k X ~llI ~m~ 1m~ y

where a, (k) and a, (k) represent, respectively,
emission and absorption operators, k the wave
vector, E, and H, field vectors belonging to an
orthogonal set of solutions of Maxwell's equa-
tions, normalized to represent single photons.

Equation (1) permits one to attribute to the
angular momentum of a radiation field a matrix
representation, which, in the case of a single
photon present, reduces to

1
J~= I rX[E,*XHa —HaXE;*/dr. (2)

8xc ~

Diagonal terms of (2) were already known in
classical theory and led M. Abraham to attribute
to a circular polarized dipole wave J,=J„=0;
J,= +W/2s v.

2. ANGULAR MOMENTUM MATRICES

It is well known that the use of a set of spheri-
cal solutions of Maxwell's equations is adequate
to our problem. We shall use the solutions given
by Born, ' distinguishing between electric (8)
and magnetic (M) waves, normalized by

1
(lm l

W(kk')
l
l'm') =—I [E*'"'(k') E'"(k)

8 J

yH*l'm'(k~) .H lm(k) ]d

=»41, ~« ~mm'

' M. Born, OPtik (Julius Springer, Berlin, 1933), p. 278.

while the transition elements (Z)~(M) vanish.
In the case of an arbitrarily large number of

photons, only those matrix elements do not
vanish, for which no transitions between states
of different frequency v and different angular
momentum l occur, and in which, within the
mentioned limitations, the total number of
photons is conserved and no more than one
photon shifted from one state, i, to another, f

J, turns out to be a diagonal matrix

(n, lJ, ln, )=k gnm;,
while

(n~ n," nq. .
I
3,&iJ„ln& n; 1n—f+1)

= 5[n;(nq+1) (1am, ) (l~m, +1)j' (6)

with mf =m;&1.
W. Heitler has proved that the matrices (5)

and (6) satisfy the well known commutation
relations between angular momenta. 4

3. COMPOSITION OF ANGULAR MOMENTUM OF
TWO PHOTONS

The matrices (5) and (6) permit us, immedi-
ately, to compose angular momenta of two
photons, which may have different frequencies,
v&/v2, but which may both beIong to dipole
waves'of angular momentum quantum numbers
m1, nz2. In particular, we shall denote the field
eigenfunctions of thisconfiguration bye'mymm(vyv2).

4 W, Heitler, Proc. Gamb. Phil. Soc. 32, 112 (1936).
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TABLE II. Angular intensity distribution. .

L=O

L=l
L=2

M=2

X.(1+cos2e)
X(i+ 2 sin28)

X(1+2 sin28)

Cx=—(+ )r2

X(1+cos28)

X(g+sin'8)
X(1+cos'0)
E(l+-, sin28) X(1+sin e)

Transforming the total angular momentum to
principal axes, we obtain nine different states
belonging to the total angular momentum quan-
tum numbers L=O, 1, 2; —L~& M~&+L, corre-
sponding to the following linear combinations
which are analogous to the eigenfunctions of two
material particles, obeying Bose-Einstein sta-
tistics. As in the case of material particles, the
solutions belonging to L =1 vanish, if we put
Vl V2

The linear combinations of Table I permit us
immediately to determine the angular intensity
distribution of the two photon fields (Table Il)
which is identical with that one would obtain in
classical theory by superposing the corresponding
dipole waves and averaging over the relative
phases. This last remark permits us to account
immediately for the polarization state of the field
in any direction.

It is a characteristic feature of the radiation
field, that no coordinates can be attributed to a
photon. The localization of a photon cannot be
made, therefore, unless we refer explicitly to the
type of position measurement we have in mind,
and it will depend, in general, on the particular
method 'adopted for position determination.
Measuring, e.g. , the position of our two photons
by the coordinates of two atoms in which they
produce photo-effects, we can easily study the
relative angular distribution of our two photons,
which shows interference phenomena similar to
those we find for the relative angular distribution
of two material particles, obeying Bose-Einstein
statistics. '

4. RELATIONS WITH THE ZEEMAN EFFECT

Applying our considerations to a system con-
sisting of a photon and a (Schrodinger) electron,

5 A more detailed account of this point will be given in
a paper to be published in the Rerjista 4e ta U'njord 3Ate-
matica Argentina.

we can easily transform the total angular mo-
mentum to principal axes. The linear combina-
tions which appear, for a p electron and a dipole
photon, are the same as those contained in
Table I if, now, the F's are understood to be
eigenfunctions of the system: electron-photon.
As a matter of fact, conservation of total angular
momentum should hold if an emission process
takes place in free space, without the inHuence
of an external field; Orientating the initial states
of an atom by a magnetic field, in order to have
a well-defined initial angular momentum, and
removing the magnetic field afterwards in order
not to perturb the subsequent emission process,
the total angular momentum of photon and
electron after emission has to be equal to that of
the initial state. It can be shown that the linear
combinations resulting from these considerations
are identical with the ones which one obtains
from the Zeeman transition probabilities in a
vanishing magnetic field. In a finite magnetic
field, however, we can determine individually
the angular momentum both of the electron and
the photon in the final state while the total
angular momentum is not transferred to principal
axes, inHuenced by the external field. In principle,
the conservation of total angular momentum
should hold for a weak magnetic field, i.e., not
one sufficiently strong for the decoupling of the
angular momenta of photon and electron. The
coupling energy between the two mentioned
momenta can be computed by a second-order
perturbation calculation and turns out to be
equivalent to an extremely weak magnetic field

(of the order of 10 "gauss in the case of dipole
radiation) .

It is a pleasure to express my indebtedness to
Professor G. Beck for having suggested this
investigation and for many helpful discussions
and advice.


