
PHYSICAL REVIEW VOLUME 71, NUMBER 11 JUNE 1, f 947

Equivalence of the Riesz Method and the z-Limiting Process for the Classical
Electromagnetic Field of a Point Source
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The Institute for Advanced Study, Princeton, Rem Jersey
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It is shown generally that the Riesz method of analytic continuation and the X-limiting
process give, in general, the same results for both the classical electromagnetic potential of a
point source and all its derivatives with respect to the coordinates of the field point.

(ii) half the radiation field strengths for a point
on the world line.

Unlike the retarded field quantities given by
the formula of Lienard and Wiechert, the values
on the world line of the derivatives of the radia-
tion field potentials, with respect to the coordi-
nates of the field point, cannot be derived from
the corresponding values of the potentials by
simple differentiation. The agreement of the two
methods found by Fremberg therefore raises the
question of the equivalence of the two methods
in general. It is the main purpose of the present
investigation to give a general proof of the
equivalence of the two methods for the electro-
magnetic field generated by a point source. The
case of the meson field can be studied in a
similar manner.

It follows from the general equivalence of the
two methods that the Riesz method provides us
with an additional method of calculating the
radiation fields. This is of practical importance
for the sake of computation, as the Riesz method
is usually simpler and more straightforward for
evaluating the higher derivatives of the radiation
fields, which appear in the equation of motion of
a particle having a multipole moment.

Before giving the proof, we shall first derive
in Section II a new expression for the Riesz field,
which will help bring out the connection between
the two methods. Explicit results for the po-
tential and its first two derivatives on the world
line will be-given in Section III, which will be
seen to agree with those of the X-process. A
general proof of the equivalence of the two
methods will be given in Section IV.

II. THE RIESZ FIELD

We begin by considering the electromagnetic
field generated by a source distribution J which

7

I. INTRODUCTION

T is we11-known that the X-limiting process
- - developed by Ken tzel, Dirac, and Pauli'
leads to divergence-free results for classical wave
fields of a point source. In the case of the
electromagnetic field, the X-limiting process gives,
for a field point not on the world line of the
particle, the Lienard-Wiechert retarded field just
as in the ordinary theory. On the other hand,
for a point on the world line, where the ordinary
mathematical treatment gives divergent results,
the X-limiting process gives one-half of the radia-
tion field, i.e., half the difference of the retarded
and advanced fields, which is finite on the world
line. Dirac' studied in detail the field strengths
of the radiation field of a point charge. General-
ized investigations for the fields of point sources
possessing higher multipole moments were later
made by Bhabha and Harish-Chandra for both
the electromagnetic and meson fields. '

An alternative mathematical treatment of the
problem was introduced by M. Riesz. 4 The
application of Riesz' method has recently been
developed by Gustafson' for the quantum theory
and by Fremberg for the classical . theory.
Fremberg has shown that, for the wave fields of
a point charge, the Riesz method gives the same
results as the X-limiting process for the following
field quantities: (i) the retarded potentials and
field strengths for a point not on the world line;

'G. Wentzel, Zeits. f. Physik 86, 479 and 635 (1933);
8'7, 726 (1934); P. A. M. Dirac, Ann. de l'Inst. Poincare
9, 13 (1939);W. Pauli, Phys. Rev. 64, 332 (1943)-' P. A. M. Dirac, Proc. Roy. Soc. 16'7, 148 (1938).'H. J. Bhabha and Harish-Chandra, Proc. Roy. Soc.
A185, 250 (1946); Harish-Chandra, Proc. Roy. Soc. A185,
269 (1946).

4 M. Riesz, Conference de la Reunion internat. des
math. tenue a Paris en Juillet 1937 (Paris, 1939).

~ T. Gustafson, Kgl. Fys. Sallsk. i Lund Forhandl. 15,
No. 28 (1945); 16, No. 2 (1946).' N. E. Fremberg, Meddelanden fran Lunds Univ. Mat.
Seminariurn V (1946); Proc. Roy. Soc. 188A, 18 (1946).
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may be a scalar, vector, or tensor of higher
rank, and the held potential A determined by
the wave equation

CIA =4pr J.
The Riesz potential is defined as

The field quantities are to be calculated first for
a value of 0. large enough for the integrals to be
convergent, and the final results are obtained by
analytic continuation to 0. =0.

It will be convenient to base our later investi-
gation on a somewhat different expression for the
Riesz potential, namely,

A& &(P) = A(Q)R 4dQ,
Hp(n) ~op'

where H4(n) denotes the factor

(2)
Rg

A& &(X) =n t A"'(X R)R 'dR.

&2i &2 ]
D8" is the domain of integration bounded by the
retrograde cone with its vertex at the field point
I' and a space-like surface S, and R is the
hyperbolic distance between the points I' and Q.
In the case of a point source moving along a
world line Z(r), the source density is of the form

J(X) =J~S(r) &&(xp
—sp) 8(x, —s,)

X h(xp —sp) 11(xp —sp)dr, (4)

where 7 is the proper time of the particle. In
order to simphfy our considerations we assume
that there is a single source which begins to
radiate at an instant v-~ and we take S to be a
surface which cuts the world line at the point
Z(r~). It will also be assumed that there is no
incoming field present. Under such conditions,
the Riesz potential becomes

Here R plays the role of a variable of integra-
tion, R~ is the length of the vector X—Z(r~),
and A"'(X, R) denotes the value of the potential

A"'(X, R) = S/(V, R),

at the retarded time when the vector X—Z(r)
has the magnitude R, and V=(r&p, v) denotes
dZ/dr. The retarded potential given by Eq. (9)
differs from the ordinary Lienard-Wiechert po-
tential in that the variable R is in general not
zero.

To derive Eq. (8) from Eq. (6), we note that
(6) may be written in the form

4m
A&~&(X) =— — S(r)dr

H4(n+2) &

(
p~ sLrp (rp+p')'j—

X —p -'d p, (10)
~ p (r'+ p')'*

4x
A& &(X) = S(r)R 'dr-

H4(n+2) &,~

where p~ is the length of X—Z(r~). This may be
verified with the help of the general formula
which states that

where v., is the retarded proper time and R is the
length of the vector X—Z. We denote the time
and space components of R by r0 and r and
denote the length of r by r, so that

R = (r,' r')'. —(6)

F&»""'(X)= A& &(X).
Bxp Bx„

Equation (5) holds for the region xp sp(rg) )0,
(X—Z(rz))') 0, i.e. , the region where the
Lienard-Wiechert potential does not vanish
identically. The derivatives of A& '(X) with re-

spect to the coordinates of the field point X are
of the form

f(p)&La(p)jdp
0

f(p)
~Lg(p)3&g(p)

(dg(p)/dp)

f(pi)
or 0

(dg/d p).=.

according as g(p) has a zero pi between 0 and p~
or not, f and g being two arbitrary functions
with g subject to the condition dg/dp)0. We
carry out the integration with respect to v in

(10) by applying (11) with p replaced by r and
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using the relation

The result is

the x„. These terms are independent of the
variable R and therefore vanish when n is put
equal to zero.

The analytic continuation to 0.=0 is governed
by the following general theorem: For any func-
tion f(x) which can be expanded into a Laurent
series of the form

SA" (X) =~K l~ pa —ld p
~o (V, R) v=,

which is just Eq. (8) with A"'(X, R) given by
Eq. (9). The factor

f(x) =g a x" (m=O, 1, 2, ),

we have
X

A x x dx~Qp

(15)

H4(a+2)

has been replaced for brevity by o, , as the ratio
of these two factors becomes unity when n=0
and so its omission does not make any difference
in the final result.

It follows from Eq. (8) that the deriva, tives of
Ai i(X) in Eq. (7) are given by

Rg

Fi &(X) =n ~ F""(X R)R —'dR
Jp

when analytic continuation is performed to n =0,
irrespective of the magnitude of the upper limit
X. The coefficient up may be regarded as the
finite part ("partie finie") of the function f(x)
It follows from this general theorem, and Eqs.
(8) and (14), that tke Riess method consists in
reptacing tke Lienard Wiechert -potential and its
derivatives by their finite parts when R is taken as
the independent vari aMe

It was pointed out by M. Riesz* that the use of
the square of R as the independent variable
brings the retarded potential to a very simple
form. Writing

(17)

A"' = dT/d tR.

where F"'(X,R) denotes the Geld quantity that and
can be derived from the formula of Lienard and S(r) = ,'dT/dr, —-
Wiechert by differentiation with respect to the
x„with R kept fixed. We have neglected in Eq. we have from Eq. 9

(15) terms arising from the variation of Rg with

(18)

(19)

III. EXPLICIT EVALUATION OF THE FIELD QUANTITIES ON THE WORLD LINE

Equation (9) may be written for brevity

A"' = S/K
where

K=(V, R).

(20)

The derivatives of A"' can best be calculated by a method used by Dirac in his classical theory of
radiating electrons. The first two derivatives of A"' are

a 1 d ~sr~y—A"'= ——
~

Bxtt K d7 E K )
0' 1 d It' S) d 1 d Sr~r"A"'=- g~"—

]
—[+———

BxKBxp K dry KJ dr Kdr K

(22)

(23)

* I am indebted to Professor Riesz for this remark.



For the explicit evaluation of the radiation field quantities at a point. X on the world line, it is
convenient to take as the independent variable a = ra —r, ra being the time when Z(r) =X. Since

(24)

Fi &(X) =n
~0

with F given by Eqs. (20), (22), and/(23) for the potential and its first two derivatives, ag being
the value of 0 corresponding to 7g. Using the expansions

(dsq 1 (d'Sq 1 (d'Sq
S=sa —

I
—

f ~+—
/

—
/

a' —-/
/

a'+.
i dr) a 2 i dr') a 6 (dr') a

1 (dV ) 1 (O'V) 1 (O'V)
I "+-I

I
"-—

I 1
"+"

2 &dr) a 6&dr') a 24&dr') a

1 (dVy' 1 (dVfd'Vy
I
"+—

I
—

I
"+"

24 &dw ) 0 24 Ed& dv') 0

n —2 (dV q
' n —2 (dV O'V~

ga—2 —+a—2 ]
I (

a~+
I I

ir~+
24 &dr) a 24 (dr dr')a

(26)

(27)

(28)

where the suffix 0 denotes the value at time ra, we obtain from Eq. (25) and the general relation
of Eq. (16)

A(X) = —(d S/d. )„ (30)

BA(x) (dV ) ' (d'v„y dv„ds d'8
= —'-', Sv„] [+-',8] - "(+ "—+v„

&dr) &dr') dr dr dr' a

(31)

and a rather lengthy expression for O'A/Bx„Bx„, which will not be written down here. These results
are just half the corresponding quantities of the radiation field given by the X-limiting process,
namely,

A(X) = -',
I (8/K) „.,+ (8/ii), a, I,

1 8 8 (8 ) (8 )F"" (X) =-
2 ax„ax„Ex),.~ ~ ~).g.

(33)

The calculation here is simpler than the previous calculation of the radiation field because the
Riesz field has finite values on the world line from the beginning, so that we do not have to consider
its values in the vicinity of the world line.

We give now a general proof that the two methods give the same results for the da, ssical electro-
magnetic field. It is obvious that the two methods are equivalent. for a point not on the world line,

since at such a point the retarded field quantities given by the formula of Lienard and Kiechert
are finite, and therefore the finite parts given by the Riesz method are just the retarded field quanti-

ties, in agreement with the ),-limiting process.
This is no longer the case for a point on the world line where the Lienard-Wiechert potential

becomes infinite. To show the equivalence of the two methods in such a cage we use the expansion

method introduced by Dirac and developed in detail by Bhabha and Harish-Chandra.
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Let us consider a field point X near the world line at a distance e from its "contemporary point"
Zc, i.e., the point at which ~ =0. Using the suffix c to denote the value of a quantity at the contempo-
rary point and writing r —r, =Dr, we have, as shown by the above authors,

~dSy 1 f'd'Sq 1 f
O'Sq

S=S+I —
I

& +-I, l
(~ )'+-I, I

(~ )'+"
&dr), 2 &dr'), 6 &dr'),

1 ( f'dVi '
x= —(1 —~,')hr+-,'a, (Ar)'+ —

~ ~

—
( +~."' ~(»)'+6«dr), ' )

1 dV~'=-"+(1- ')(~ )'--:""(~)'—
i i

——i+"'" I(& )'+
124 &dr),

(35)

where ~, ', a,",etc. denote (R, dV/dr)„(R, d'V/dr')„etc. From Eq. (35) with R set equal to zero,

Ar = &6(1+2 K' + jjKg ) + Kg E +(1/24) (dV/dr) 'c + ' ' (36)

where the upper and lower signs are to be taken for the advanced and retarded times, respectively.
From Eqs. (34) and (36),

(S q S. f' dS S~'y )3~" ~" (dVq ' e q dS e d'S
=—+I ——-+—I+ Si ———-I —

i
—i- '—+-—,+"

E ~) «& e E dr 2e). E 8e 3 &dr) 24) dr 2 dr'

The value of the same quantity at the advanced time is obtained by writing —e for e in the right-
hand side. It follows therefore,

—
I
—

) +I —
I

=-i —I- I-S"'+—"I+
2 ( x) ... E ~).„&dr), (3 dr

(38)

Kith the help of the formulas

Br. ( vt'

gg„&1—~'),

( v~v" )-g""-
I

E1 —a'),

(39)

(40)

(41)

Bhabha and Harish-Chandra reached the conclusion that the expression in Eq. (38) and all its
derivatives are of the form

where the a„are functions of r, and R, which are finite on the world line. It follows therefore that
the radiation potential and all its derivatives are finite when & =0, i.e. , when the point X lies on the
world line.

For the Riesz field R is not necessarily zero. For the purpose of evaluating the finite parts, however,
it is suAicient to consider values of R in the neighborhood of zero. Ke can then take 8 to be a small
number and solve again Eq. (35) for Ar, the result being

Dr = +(1+~ K~+ 3 K&2) (~2++2) $+LK ~~(62+R2) + (1/24) (dV/dr) 2(~2++2)$+. . .
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for the advanced and retarded times respectively. Equation (42) differs from Eq. (36) only in having
(e'+R')' instead of e. Similarly,

(S i dS S~'

,+ —+
g j (e2+g2)r dr 2(62+@2)$

3g'~ K" (e~+g2) t (dv ) &) (gS (g~+g&) k d2S-
+ SI-

I
I-"—+—

(8($2yg~)k 3 24 /dr j j gr 2 dr2
+P a (e~+R')"+g h (c'+R') "+*

0

(43)

where the h denote functions similar to the a„. Using the formulas (39), (40), (41) and

B(e'+R') Be'
= —2r~,

Ox' Bx)g
(44)

we see that both the expression in Eq. (43) and all its derivatives are of the form

P a„($2+/2)&+/ h„(e&+/~)&+&
0 —m

when m is either zero or a positive integer.

The expansion in Ect. (45) contains the results of both methods for the field quantities o tnke vuorld tine
The X-limiting process consists in putting R =0, taking the mean value

( co m $ ( ao m ) ao

—
I P a.e'"+g h e'"+' (+~~ g a.e'" —P b.e'"+'

( =P a.e'"
2 (0 —,. j (0 — j 0

and finally putting & =0. On the other hand, the Riesz method consists in putting e =0 and replacing
the expansion

g2n+Q h +2@+1
0 —m

(47)

by its finite part. We see therefore quite generally that the two methods are equivalent.
I am indebted to Professor W. Pauli for a discussion which suggested the present investigation,

and for his advice.


