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as Dr. Aston's estimates made from incompletely
resolved spectra are the only ones now available. '
iXew abundances were deduced from an indirect
comparison with the gadolinium, in which the
densities from standard light intensities served
as a reference in both cases. These new normal
abundances are used in plotting the photographic
density curve in Fig. 3, made from 6ve spectra
with different exposure times on one plate.

The abundances of the isotopes in the exposed
sample were altered by a reduction in the isotope
at mass 149 and an increase in the mass at 150.
This is shown in Fig. 4 where the new abundances
shown on the lines at the bottom for the fIve
spectra are those required'to make the observed
densities fall on one photographic density curve.
The normal abundances of Fig. 3 are shown for
comparison in the top scale. Although the

6 F. W. Aston, Proc. Roy. Soc. A146, 46 (1934).
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changes are less than in the case of gadolinium,
the samarium isotope at mass 149 has become
less abundant, from 12.8 to 10.0 percent, and
the isotope at mass 150 has increased from 5.0 to
7.1 percent. We may conclude that the large
absorption in samarium is due primarily to the
isotope at mass 149.

The authors are indebted to Dr. L. Horst for.

preparing the thin deposits and exposing them
in the Clinton Pile.

These observations were carried out while the
authors were associated with the Metallurgical
Laboratory at the University of Chicago.
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It is shown that for very large values of the rotational quantum number J the energy of
interaction of the electric quadrupole moments of a homonuclear diatomic molecule may be
expressed as the sum of the energies of states of the single nucleus problem. This approxima-
tion becomes less accurate for any J value as the applied magnetic field is decreased.

HE effect of the nuclear electric quadrupole moment in the magnetic spectrum of a hetero-
nuclear molecule has been given by Feld and Lamb. ' In this work the molecule was treated

as if the two nuclei were entirely independent. The calculations were actually carried out for the
case of a single nucleus interacting with the molecular fIeld.

In the case of a homonuclear molecule certain apparent complications arise due to the exchange
degeneracy and to the fact that both nuclei are coupled to the molecular rotational angular mo-
mentum through the quadrupole interaction. The Hamiltonian expression for two nuclei with
quadrupole moments in a magnetic Beld is

8 g1 8 g23C= (3(&i'J)'.+k(&i'J) —&i'J'I+-
27(2J —1)Ig(2' —1) 2J(2J —i)I2(2' —1)

x{3(i2J)'+-,'(4 J) —4'J'I+pogiH L+"Og2H 4+Bog JH J, (&)

* Publication assisted by the Ernest Kempton Adams Fund for Physical Research of Columbia University, Ne~ Yolk.' B. T. Feld and W. E. Lamb, Phys. Rev. 6T, 15 (1945), hereinafter referrecf to as FL,
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in which Qi and Q& are the quadrupole moments, I& and I& the spin vectors of the nuclei, and g&

and g2 are directly related to the electric field gradients at the positions of the nuclei. ' It is assumed
that the energy of interaction between the magnetic moments of the nuclei, and of the molecular
rotational magnetic field with the nuclear magnetic moments, is small compared to the quadrupole
energy.

For the discussion of the energy levels of a homonuclear molecule it is convenient to employ a
"strong-field" representation, in which the rotational angular momentum, the spins of the individual
nuclei, and the components of each of these quantities in the direction of the magnetic field are
diagonal matrices. In the absence of the quadrupole interaction all states with the same value of m J
and of Ms, the component of total nuclear spin in the magnetic field direction, are degenerate.

If the wave function representing a nucleus with z component of spin given by i is n;, then the
part of the total nuclear wave function which depends on the nuclear spin coordinates may be
written a;(1) ni(2) where i+&=Ms. It is useful to alter the representation by forming the sym-
metric and antisymmetric combinations of these functions

The magnetic terms in the Hamiltonian are diagonal in this representation with energy values

gIMsII. +gJm JII,.
The matrix elements of the quadrupole interaction for an individual nucleus have been given by
Kellogg, Rabi, Ramsey, and Zacharias. Non-vanishing matrix elements exist between states with
the following relationships of quantum numbers

ams=
~ms =+1
ams= -&
~ms ——+2
Dms = —2

AmJ= 0
hmJ= —1

bmJ=+1
hmJ = —.2
hm J=+2

In the case of a homonuclear diatomic molecule there are no matrix elements of the two quadrupole
terms between the states defined in the I' representation having a common value of Ms. Thus if
the quadrupole interaction is considered to be a small perturbation (strong-field condition), the 1'

representation is the correct set of wave functions in first-order approximation. The diagonal matrix
element of the quadrupole operator for a single nucleus is given by

imJ
Fang -', t 3i' ——Ii(Ii+—1)5[3m g' J(J+—1)5

For two identical nuclei in the F representation the diagonal element is

MOJ ksl J
F'~g+F~mg =

t
-', i'+ ,'O' —Ii(Ii-+1)][3mz' —J'(/+1) j.

(2)

The total nuclear spin is not diagonal in the I'g, functions, that is, the wave functions in terms of
which the quadrupole energy is a diagonal matrix consist of combinations of functions corresponding
to different values of total nuclear spin. The first-order quadrupole energy consists simply of the
sum of the energies of two individual nuclei. It will be shown below that if the rotational angular

I

momentum is very large the eigenvalues of the magnetic and quadrupole energies may always be
expressed as the sum of two eigenvalues of the individual nucleus problem. '

The Hamiltonian of Eq. (1) may be written as

X =Hi(Ii JH)+Hg(Ig JH).
' J. M. 8, Kellogg, I. I. Rabi, N. F. Ramsey, and J. R. Zacharias, Phys. Rev. 5'7, 677 (1940).
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(The rotational moment term is not important for the following discussion. ) The matrix elements
for an individual nucleus in the strong-6eld representation are

I SbJ
VQ&'Rm JISm J~, m J+i —l+ VM&'5&, &'

m
in which Um is the magnetic interaction energy (diagonal), and Up&Real Smg. , m J +i —t is the quadrupole
matrix element between nuclear spin states i and j and rotational states m J and m J . The energy
matrix of Eq. (4) in the I' representation is then

ikmJ i mJ k mJ k
IIn lm J~ = VQnRm Ji 6k, lcm J~, m J+i—n+ VMn5, , nlk, ~+ VQ~8y, nRm J~ 8m J~, m J+k —l+ V&~8k, ~6j., n. (6)

In this matrix non-zero elements appear only between states of equal values of 3EI, the z component
of total angular momentum. Within each sub-matrix for any value of M there are no matrix elements
between states of the same M~. In such a sub-matrix the value of the rotational magnetic quantum
number has at most 4II+1 values distributed in the interval M —2II&mJ&2II+2Ij. If J is very
large compared to I~, the variation of the matrix elements R J. with mJ, with mJ —mJ 6xed,
will be small in this interval. (This will not be the case for the small fraction of states in which @zan

or J—mJ is comparable with I&.) If this variation be neglected R"~z, depends only on

mJ —mJ =n —i or mJ —mJ. ——l —k

and the matrix element Eq. (5) may be written U, '. '.The homonuclear matrix element of Eq. (6)
becomes

ikII I,
= V'~r, ~+ Vi'~~, (7)

In the matrix element V ' the rotational matrix element R ~J, may be set equal to its average value
for which m J is equal to M.

We assume that the energy matrix of the individual nucleus problem is brought into diagonal
form by a transformation matrix A. Thus %=A VA ' in which lV is a diagonal matrix. The direct
product matrix

e=AXA or ng,"'——a ak'

is to be applied to the complete energy matrix of Eq. (7)

mt mt ik nL

H'„, = P P ng, H)(n-')„,
nl ik

g P ~.m~„k
I U if )+ U kg. } (n

—1) n(n--I) E

= W„"b,, ,b„„+W, '8,
Thus the transformation matrix 0,' diagonalizes the energy matrix, and the diagonal values are
just the sums of eigenvalues of the individual nucleus problem.

It is clear that any system consisting of two (or more) parts, the energy matrix of which can be
put into the form of Eq. (7), will show this same additivity of the energies of the individual parts.
Thus a heteronuclear molecule of large rotational angular momentum, and with quadrupole inter-
actions, will yield eigenvalues expressible as the sums of the energies of the individual nuclei. ,The
inclusion of an interaction between the nuclei will of course destroy the form of the energy matrix
of Eq. (7).
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A weak oscillating magnetic field H' introduces a p'erturbation of the form

=pogrH lz+pogrH 'Iu

leading to transitions between the levels given by Eq. (9). From the properties of the matrix 8 it
may be shown that the possible transitions are restricted to changes in the value of only one of the
terms of Eq. (9), and the selection rules for these transitions are identical with those in the spectrum
of a single nucleus. Subject to the approximation that the rotational angular momentum is large,
we have the general rule: the magnetic nuclear spectrum of a homonuclear diatomic molecule,
including electric quadrupole interaction, is identical with that of a single nucleus with the same
spin. This rule is not in agreement with the recent results of Feld.

The physical mes. ning of Eqs. (3) and (6) may be expressed quite simply. In a strong magnetic
field the two spin vectors and the rotational angular momentum are decoupled and precess inde-
pendently in the field. Equation (3) expresses the fact tha, t the energies of the precessing spin vectors
are additive. As the field is reduced to zero, the spin vectors are each coupled to the rotational
angular momentum through the quadrupole interaction, and the three vectors form a resultant
total angular momentum. If the rotational vector J is very large the spin vectors may be considered
to be precessing about J. In this case the rotational vector has the role of a strong applied field

and the energies are additive (Eq. (6)).
The eRect of a finite value of rotational angular momentum is to make important the variation

of the rotational matrix elements with m J- within a group of states of fixed M. In this case the com-
plete matrix of Eq. (6) may not be diagonalized by a transformation of the form O', =A XA with

eigenvalues expressed simply as sums of eigenvalues of the individual nucleus problem. The strong
field first-order solution of Eq. (3), however, shows the additive property even for small values of J,
and it is clear from the foregoing discussion that the deviations from additivity become more im-

portant in higher approximations. To investigate the maximum effect we proceed directly to the
zero-held case. The following discussion will deal only with the quadrupole interaction in zero field.
In this case we may use a representation in which I', rnp, I, J, I&, I2 are diagonal. Ii is the quantum
number of total angular momentum, and mp is its component on a fixed space axis. I is the total
nuclear spin. The matrix elements of the quadrupole interaction are given for reference in the
Appendix. Non-zero matrix elements exist between states differing in total spin by AI=O+2.
For any value of io = I —J the states of total spin values I&io must be diagonalized. The combina-
tions of total spin wave functions in which the quadrupole perturbation is diagonal for any value
of $p, are the same as the total spin combinations in the strong field case for an identical value of M8.

For a single nucleus, in the zero-field case, Feld and Lamb gave an expression (FL III 7) for the
energy which is accurate for large J values

Zq e'qQ[3ii——' Ii(Ii+1—)5/4Ii(2Ii —1), ii = F J. — (10)

These authors also gave the exact solution of the single nucleus problem (FL III 5). The eigenvalue
solution in the homonuclear problem described above may be expressed as the sum of two expressions
of the type of Eq. (10) for large J values, in accordance with the general rule (Eq. (9)). For smaller

J values, and particularly for large values of nuclear spin, deviations from simple additivity will

occur. Investigation of several special cases indicates that these deviations are of the same magnitude
as, though not identical with, the differences between the exact single nucleus solution (FL III 5) and
the values given by Eq. (10). For nuclear spins as large as I=5 and with J =20 these deviations
are important, and the simple formula of Eq. (10) will not apply accurately in either th'e homonuclear
or heteronuclear case.

The author wishes to thank Professor I. I. Rabi for several interesting discussions of this problem

3 B. T. Feld, Phys. Rev. 70, 112A (1946).
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APPENDIX

The matrix elements of the quadrupole interaction in Eq. (1) in the weak-field representation in
which F, mi, I, Ii, I2, J are diagonal are given here. The matrix elements of (Ii J) are4

(JIF{I J{JIF) =— {F(F+1) I(I—1) J(J—+1)},
2 2I(I+1)
1 (I Ii+ Ig)—(I+Ii—I2) (Ii+I2+I+1)(Ii+ I2 —I+1)

(JIFiIi J{JI 1F)=———
2 4P(2I —1)(2I+1)

X I (F+I J)(F—+J I+1)—(F+I+J+1)(I+J F) }&—
= (JI 1F

i

—Ii.J {JIF),
1 (I+1 Ii+I2) (I—+1+Ii I2) (Ii+I—2+I+2) (Ii+I2 I)—JIF Ii JI+1F =—
2 4(I+1)'(2I+ 1)(2I+3)

X {(F+I+1 J)(F+—J I)(F+—I+J+2)(I+1+I F)}i—
=(JIy1F{I,.J{JIF).

The off diagonal elements for (I2 J) are minus the corresponding elements in (IisJ).
In the homonudear case Ii =Ii, and the matrix elements of the quadrupole terms of Eq. (1) are

obtained by matrix multiplication:

(JIF{Hq{JIF) = e'g
-3S[F(F+1) I(I+1)—J(J—+1) ]'

2J(2J—1)Ii(2Ii —1)

3 (2Ii+1)' —I'
+ - (F+I J)(F+J I+—1)(F+I+J—+1)(I+J F)—

8 412—1

3 (2Ii+1)' —(I+1)'+ - (F+I+1 J)(F+J —I)(F+I+J—+2)(I+1+J F)—
8 (2I+ 1)(2I+3)

+43/F(F+1) I(I+1)—J(J—+1)]—2Ii(Ii+1)J(J+1)

3e'g 2Ii+1 ' —I+1 '
(JIF

{ Hq {JI+2F) = — (F+I+1 J)(F+J I)— —
2J(2J—1)Ii(2Ii —1) 4(2I+1)(2I+3)

& (2Ii+1)'—(I+2)'
X (F+I+J+2)(I+J+1—F) (F+I+2 —J)

4(2I+3)(2I+5)

X (F+J I 1)(F+I+J+—3) (—I+2+J F)—
= (JI+2F {Hq { JIF),

3e'gQ (2Ii+1)'—P
(JIFIHs{JI 2F)=- (F+I J)(F+J I+1)—(F+I+J+—1)

2J(2J—1)Ii(2Ii —1) 4(4P 1)—
(2Ii+1)' —(I 1)'— s

X (I+J F) —(F+I J 1)(F+J I)—(F+—J+I)(I+—I F 1)——
4 (2I—3)(2I—1)

4 E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra I'Cambridge University Press, 1935), p. 71.


