LETTERS TO

on the secondary anticathode, they should have appeared
as scattered radiation. What is one to think of the scatter-
ing with change of frequency considered by Hirsh and
apparently the object of an inexact formula in his text?
Myself, I should not have melted the sample even ‘“‘gently”’
in order to insert it into the hole in the anticathode, in view
of the presumptive properties of element 87.

The search for a stable isotope of element 87 in a mixture
of heavy, volatile, and absorbing alkaline substances is
difficult, even if the element should be present in propor-
tions of 10~ or 1075, The methods of spectrum analysis and
the conditions of excitation must be the best attainable.
Our observations were generally made by primary excita-
tion, with tubes constructed specially for great stability of
operation even when volatile substances are present. My
spectra do not allow me to come to the same conclusion as
that reached by Dr. Hirsh. For the reasons expounded
above, I feel that his investigation does not help in the
least to settle the question of the existence of a durable
isotope of element 87.

1F. R. Hirsh, Jr., Phys. Rev. 63, 93 (1943).

The Magnetic Quenching of Superconductivity

J. W. Stout
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N a letter with the above title Sienko and Ogg! suggest
that for the “soft” superconductors Pb, Hg, Sn, In,
Tl, CuS, AusBi, Zn, and Cd the threshold magnetic field,
Hy, for the destruction of superconductivity, is better
represented by the expression Hy=A (T.}— T%) than by the
parabolic relation Hr=B(T2—T1?). T, is the temperature
at which the metal becomes superconducting in zero field.
Careful measurements of the threshold magnetic fields have
been made on Sn?45, Hg%¢4, In35, TI%5 and Pb%5. Within
the accuracy of the measurements neither the parabolic nor
the §-power law exactly fits the data. However, the para-
bolic law is in all cases the better approximation. The
variation in the constants 4 (3-power law) and B (para-
bolic law) between about 1°K, and the transition tempera-
ture are: Sn (4 30 percent; B 10 percent), Hg (4 18 per-
cent; B 3 percent), In (4 12 percent; B 8 percent), Tl (4 9
percent; B S percent), Pb (4 19 percent; B 8 percent). The
values quoted are the averages obtained by the various
- experimenters. In general the variations among the meas-
urements from different laboratories are less than the
deviation from either the parabolic or $-power relation.

It is true that the constant 4 is more nearly the same for
different elements than is B, but 4 as determined from the
initial slope of Hr vs. T varies from 90 for Cd® to 46 for Sn,
a variation well outside the experimental error and suffi-
cient to make it doubtful that 4 is a combination of uni-
versal constants as Sienko and Ogg suggest.

From an expression for the threshold curve and the well-
known thermodynamic relation

Co—Co=(VT/4m){(dHr/dT R+ Hy(d*Hr/dT?)},

one can calculate the difference in heat capacity, Cs— C,,
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between the superconducting and normal states. V is the
volume. For the $-power relation one obtains

Co— Co=(VA2/4w)(3T2— T ATY),
and for the parabolic relation
Co— Co=(VB2/27)(3T*—T2T).

Measurements on Sn” and TI® indicate that the heat ca-
pacity of these two metals in the superconducting state
obeys a T3 law. For metals in the non-superconducting
state the experimental heat capacities at low temperatures
are in agreement with the theoretical prediction of an elec-
tronic heat capacity proportional to the temperature plus
a lattice heat capacity which in simple cases varies as T3
The parabolic relation predicts a difference in heat capacity
of superconducting and normal metal in agreement with
these considerations. The absence of a term linear in tem-
perature from C,—C, obtained from the §-power law is
inconsistent with the experimental and theoretical results
for the heat capacity of metals in the non-superconducting
state.
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Bounded Linear Harmonic Oscillator and
Phase Transitions of Second Order

B. Survan
Bangalore City, South India
March 28, 1947

N a recent letter in the Physical Review, Corson and
Kaplan! have put forth the idea that the concept of a
linear bounded harmonic oscillator in the theory of solids
may be of help in understanding anomalies in the specific
heat-curve of a crystalline solid. Similar ideas were de-
veloped by the author in 1945 and were reported in a lec-
ture at Central College, Bangalore City, South India. These
ideas were not published at the time, but in view of the
considerations of Corson and Kaplan, it has seemed desir-
able to place them on record.

The problem arose in connection with specific heat
anomalies at low temperatures in crystalline solids.. It was
thought that the concept of the linear bounded harmonic
oscillator might be of service in studying these phenomena.
The relevant theory has been worked out by Auluck and
Kothari.2 The allowed energy values are no longer (n+3%)hv,
where » is the frequency of the oscillator, but increase
rapidly with decreasing amplitudes of oscillation. However,
the present author applied the above concepts to the
second-order phase transition or A-anomalies of Ehrenfest.?
It is well known that such phase transitions are all ac-
companied by marked changes in the expansion coefficient
of the solid. Therefore, if at the A-temperature the different
oscillators in the crystal are bounded to different extents,
the oscillators will be distributed among two well-defined



