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TABLE I ~

Element

4 Be
5B

12 Mg
13 Al
16S
26 Fe
28 Ni
29 CU
30 Zn
34 Se
47 Ag
48 Cd
50 Sn
51 Sb
80 Hg
82 Pb
83 Bi

(R~~hR;) ~ 10» cm

3.22 +0.074
4.30+0.24
5.40 +0.13
5.54 &0.11
5.02 +0.14
6.63 +0.06
6.47 &0.074
6.75 W0.15
6.96+0.17
7.31&0.20
7.81 &1.09
8.23 &0.07
8.50 +0.085
8.33 ~0.096
9.50 &0.16
9.00&0.071
9.08 &0.097

Statistical error
Standard deviation

1,5

0.55
0.63
2
1.2
1.5
0.3
3
0.55
1.3
2.3
4

10
0.58
0.87
3.7

about half of the cases we found that this ratio was smaller,

and in the other half was greater than unity, so we believe

that the main error is purely statistical. This means that
the probability for the real value to deviate by an amount

AR; from the observed value may be represented by means

of a normal distribution (Gaussian law}.
Under this reasonable assumption, we may calculate the

probability that a given distribution will deviate from the

interpolated straight line as much, or more, than our

observed points.
Such a probability is obviously given by

where

p &,x&+n ldX &
—qx Xn ldX

(x» & 0
(3)

y'= ZI (aR;/SR;}' (4)

and n is the number of measured points used for comparison

with the interpolated straight line of Eq. (1};in our caSe

n=17. The deviations of the observed points from the

interpolated line are indicated with AR; and the corre-

sponding experimental errors are BRi (see the second column

of Table I).
The function defined by (3) is formally identical to the

function P introduced by Pearson for his "x2 test, "
although in our case the definition of p' is slightly different

from his. In order to calculate p, the most convenient linear

representation (1) is the one that makes y' a minimum.

According to the definition (4) of x', this obviously means

that the constants b and r0 of (1) must be determined by
the least-squares method, considering the different preci-

sion BR; of the single points.
In this way we get

b= (0.696+0.082) X 10 "cm,
ro= (1.52+0 02)X10 "cm, (5}

that is, two values quite different from those obtained with

the graphical interpolation (2), in which we intentionally

over-rated the points corresponding to heavy elements.

Applying definition (4), with the experimental values of

Table I, and through the representations (1) and (5), we

obtain for x' the value x'—270 which corresponds, for

n=17, to a very small value of P defined by (3}.From

Pearson's tables, ' it is seen that, for n = 17, p is smaller

than 10 6, even for x2= 70.

Thus we must argue that representation (1) is not a good

one if we assume purely accidental errors; in fact, the prob-

ability of obtaining a distribution such as the one we found

for the deviations of the experimental values from a linear

law (1) is exceedingly small. However, it is well known that
a small value of P does not necessarily indicate that the
experimental deviations from law (1) are systematic, be-

cause the "goodness of fit" test has meaning only in the

case of purely accidental errors.
We believe that the very small value obtained by us for

P gives good evidence for a dependence of the nuclear

radius on the number of particles in a nucleus, which is

more complex than the simple law (1).
E. Amaldi, D. Bocciarelli, B. N. Cacciapuoti, and G. C. Trabacchi,

Nuovo. Cimento, in press. Presented at the conference on elementary
particles and low temperature at Cambridge, England, July, 1946.

2 H. A. Bethe, Phys. Rev. 54, 436 (1938); E. P. %'igner, Phys. Rev.
56, 519 (1939).

3 K. Pearson, Tables for Statisticians and Biometricians, Part I.

Search fox Element 87'

HORIA HULUBEI
Bucarest, Rumania

March 31, 1947

~HE article by F. R. Hirsh, Jr.' "The Search for

Element 87" came to my notice only recently because

of the interruption of postal relations between America and

Rumania during the war. I wish to comment on the nu-

merical data employed in his research and on the research

itself. He adopts 0.812A and 1.045A for the presumptive

wave-lengths of the absorption line I.lip and the emission

line Ln, respectively. The former departs by 0.011A from

the value deduced, by Moseley's law, from the most reliable

experimental values obtained for neighboring elements.

The latter departs by 0.017A from the value to be expected

for In&, and by 0.011A from the average of the to-be-

expected values of L,nI and I.n2. Convincing evidence for

the element 87 could not be found, even assuming the

element to be present in the sample, with such expectations

as to the wave-lengths. I suggest that his categorical objec-

tions to the inferences of other authors are based on very

inexact estimates of the emission-lines which are to be

expected.
I find the experiments of Hirsh far from convincing. He

used a tungsten filament and two molybdenum anticath-

odes, and had to clean the anticathodes frequently to

remove the pulverized tungsten from them. A photograph

taken with an exposure of 36 hours, and having given no

indication whatever of the tungsten L lines under the con-

ditions of his observations, should not be expected to reveal

the presence of an element present very probably in much

smaller quantities than the tungsten remaining on the anti-

cathode even after hourly cleanings. In addition, the Lp
lines of tungsten would mask the presuInptive line I,nI of

element 87 if they were both emitted. Similarly, the lines

of molybdenum should have made their appearance:

whether or not they were suKciently excited by the narrow

residual band of continuous x-rays springing from the pri-

mary anticathode under a 25-kv bombardment and falling
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on the secondary anticathode, they should have appeared
as scattered radiation. What is one to think of the scatter-
ing with change of frequency considered by Hirsh and
apparently the object of an inexact formula in his text?
Myself, I should not have melted the sample even "gently"
in order to insert it into the hole in the anticathode, in view
of the presumptive properties of element 87.

The search for a stable isotope of element 87 in a mixture
of heavy, volatile, and absorbing alkaline substances is
difficult, even if the element should be present in propor-
tions of 10 4 or 10 '. The methods of spectrum analysis and
the conditions of excitation must be the best attainable.
Our observations were generally made by primary excita-
tion, with tubes constructed specially for great stability of
operation even when volatile substances are present. My
spectra do not allow me to come to the same conclusion as
that reached by Dr. Hirsh. For the reasons expounded
above, I feel that his investigation does not help in the
least to settle the question of the existence of a durable
isotope of element 87.

~ F. R. Hirsh, Jr., Phys. Rev. 63, 93 (1943).

The Magnetic Quenching of Superconductivity
J. W. STOUT

Institute for the Study of Metals, the University of Chicago,
Chicago, Illinois
April 12, 1947

'N a letter with the above title Sienko and Ogg' suggest
that for the "soft" superconductors Pb, Hg, Sn, In,

Tl, CuS, AuqBi, Zn, and Cd the threshold magnetic field,
II&, for the destruction of superconductivity, is better
represented by the expression II& =A (T,&—T&) than by the
parabolic relation Hz =B(T,' —T'). T. is the temperature
at which the metal becomes superconducting in zero field.
Careful measurements of the threshold magnetic fields have
been made on Sn'4', Hg'', In&', Tls' and Pb&'. Within
the accuracy of the measurements neither the parabolic nor
the —,'-pomer law exactly fits the data. However, the para-
bolic law is in all cases the better approximation. The
variation in the constants A {~s-power law) and B (para-
bolic 1am) between about 1'K, and the transition tempera-
ture are: Sn (A 30 percent;- B 10 percent), Hg (A 18 per-
cent; B 3 percent), In (A 12 percent; B 8 percent), Tl (A 9
percent; B 5 percent), Pb (A 19 percent; B 8 percent). The
values quoted are the averages obtained by the various
experimenters. In general the variations among the meas-
urements from different laboratories are less than the
deviation from either the parabolic or —,'-power relation.

It is true that the constant A is more nearly the same for
different elements than is B, but A as determined from the
initial slope of IIT vs. T varies from 90 for Cd' to 46 for Sn,
a variation mell outside the experimental error and suffi-
cient to make it doubtful that A is a combination of uni-
versal constants as Sienko and Ogg suggest.

From an expression for the threshold curve and the mell-

known thermodynamic relation

C,—C„=(VT/47r) I (dIIz /d T)'+IIp(d'Hz /d T') I,
one can calculate the difference in heat capacity, C,—C,

between the superconducting and normal states. V is the
volume. For the —,'-power relation one obtains

C.—C„=(VA'/4x) {3T' —-', T.&T&),

and for the parabolic relation

C.—C„=(VBs/2 )(3Tg—T.sT).

Measurements on Sn' and Tl' indicate that the heat ca-
pacity of these two metals in the superconducting state
obeys a T' law. For metals in the non-superconducting
state the experimental heat capacities at low temperatures
are in agreement with the theoretical prediction of an elec-
tronic heat capacity proportional to the temperature plus
a lattice heat capacity which in simple cases varies as T'.
The parabolic relation predicts a difference in heat capacity
of superconducting and normal metal in agreement with
these considerations. The absence of a term linear in tem-
perature from C,—C„obtained from the —,'-power law is
inconsistent with the experimental and theoretical results
for the heat capacity of metals in the non-superconducting
state.

~ M. J. Sienko and R. A. Ogg, Phys. Rev. 71, 319 (1947).' W. J. de Haas and A. D. Engelkes, Physica 4, 325 (1937).
3 A. D. Misener, Proc. Roy. Soc. A174, 262 (1940).' J.G. Daunt and K. Mendelssohn, Proc. Roy. Soc. A160, 127 (1937).' J.G. Daunt, A. Horseman, and K. Mendelssohn, Phil. Mag. 27, 754

(1939).
e N. Kurti and F. Simon, Proc. Roy. Soc. A151, 610 (1935).' W. H. Keesom and P. H. Van Laer, Physica 5, 193 (1938),
e W. H. Keesom and J. A. Kok, Physica 1, 175 (1933).

Bounded Linear Harmonic Osci11ator and
Phase Transitions of Second Order

B. SURYAN

Bangalore City, South India
March 28, 1947

N a recent letter in the Physical Review, Corson and
Kaplan' have put forth the idea that the concept of a

linear bounded harmonic oscillator in the theory of solids
may be of help in understanding anomalies in the specific
heat-curve of a crystalline solid. Similar ideas were de-
veloped by the author in 1945 and were reported in a lec-
ture at Central College, Bangalore City, South India. These
ideas were not published at the time, but in view of the
considerations of Corson and Kaplan, it has seemed desir-
able to place them on record.

The problem arose in connection with specific heat
anomalies at low temperatures in crystalline solids. , It was
thought that the concept of the linear bounded harmonic
oscillator might be of service in studying these phenomena.
The relevant theory has been worked out by Auluck and
Kothari. ' The allowed energy values are no longer (e+&)hv,

where v is the frequency of the oscillator, but increase
rapidly with decreasing amplitudes of oscillation. However,
the present author applied the above concepts to the
second-order phase transition or X-anomalies of Ehrenfest. 3

It is well known that such phase transitions are all ac-
companied by marked changes in the expansion coefficient
of the solid. Therefore, if at the P -temperature the different
oscillators in the crystal are bounded to different extents,
the oscillators will be distributed among two well-defined


