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small values of M so that the Fourier coefficients
F II1a2 go towards zero with increasing 3f.

One sees readily that

Q~W ltgp2 cos2~Ms= W &i&22M ~os2&~s

Accordingly the probability functions 8'&I which
characterize the stacking disorder can be syn-
thesized. The unknown numerical scale factor
can be determined from the requirement that W'~

is everywhere positive and fJ'W~dyqdy2=1.
In most instances it is found that the functions

lV~ approach a limit W'„as 3f increases. It is
therefore convenient to set

~or=~ +~M

where accordingly F~ represents Auctuations at

+P~ I HyH2 cos27r3fs.

Thus the functions W„ is generally to be asso-
ciated with the sharp maxima, the functions F~
with the diffuse maxima of the functions I'ele2.

If the function lV„ is a constant, implying zero
correlation between layers far apart, Wa&e2=0
unless II1=II2=0. Apart from the reHections

(00') all maxima of Pa~a2 will then be diffuse.
The writer has used the method outlined above

to determine the stacking disorder in several
crystals of the layer structure type.
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Localized states (Tamm levels), having energies distrib-
uted in the "forbidden" range between the filled band and
the conduction band, may exist at the surface of a semi-
conductor. A condition of no net charge on the surface
atoms may correspond to a partial filling of these states.
If the density of surface levels is sufficiently high, there
will be an appreciable double layer at the free surface of a
semi-conductor formed from a net charge from electrons
in surface states and a space charge of opposite sign, similar
to that at a rectifying junction, extending into the semi-
conductor. This double layer tends to make the work

function independent of the height of the Fermi level in
the interior (which in turn depends on impurity content).
If contact is made with a metal, the difference in work
function between metal and semi-conductor is compen-
sated by surface s'tates charge, rather than by a space
charge as is ordinarily assumed, so that the space charge
layer is independent of the metal. Rectification charac-
teristics are then independent of the metal. These ideas
are used to explain results of Meyerhof and others on
the relation between contact potential differences and
rectification.

INTRODUCTION

~HE generally accepted view' of the nature
of the rectifying contact between a metal

and a semi-conductor is illustrated in Fig. 1

which applies specifically to an excess semi-
conductor. Figure 1a shows an energy level
diagram of the metal and semi-conductor in
equilibrium, but with the contact separated.
The Fermi level is the same in both the metal and

'See, for example, N. F. Mott and R. W. Gurney,
E/ectronic Processes in Ionic Crystals (Oxford University
Press, London, 1940), Chap. V. The theory of rectification
is due in large part to W. Schottky. The most important
of his papers is Zeits. f. Physik 118, 539 (1942).

the semi-conductor. As shown, the work function
of the metal, y1, is greater than the work function
of the semi-conductor, y2', so that there is a
contact difference in potential, y1 —X2'. It is
assumed that when the metal and semi-con-
ductor are nearly joined, the potential distribu-
tion is as shown in Fig. 1b. A double layer is
formed such as to give a potential drop, q o, from
the metal to the interior of the semi-conductor
equal to the contact potential difference.

This double' layer is assumed to consist of a
space charge region in the semi-conductor, ex-
tending toadepth of theordqrof10 'to10 'cm,
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and an induced charge on the metal surface.
The space charge gives a rise in electrostatic
potential energy at the surface of the semi-
conductor. Electrons are depleted from the space
charge region, giving a layer of high resistivity.
If a potential is applied to the junction, most of
the drop occurs across this barrier layer. If the
potential of the semi-conductor is negative with
respect to the metal, the electron energy levels
in the semi-conductor are raised, and electrons
may fiow more easily over the potential hill into
the metal. This is the direction of easy How.

On the other hand, if the semi-conductor is
positive, the levels are lowered, increasing the
height of the hill, and making it more dif6cult
for electrons to travel from the semi-conductor
to the metal. This is the direction of high
resistance.

According to this view, the equilibrium height
of the potential hill, yo, and therefore also the
degree of rectification, depend on the work func-
tion of the metal. For an excess semi-conductor,
the larger the work function of the metal, the
larger is the potential rise, and the larger is the
reverse resistance of the barrier. If the work
function of the metal is less than that of the
semi-conductor there is a potential drop instead
of a potential rise, and no rectification will occur.
For a defect semi-conductor, in which the cur-
rent is carried by holes, just the reverse is true:
low metal work function gives high rectification.

A number of investigations have been carried

FK'. 1. Energy level diagram for metal and semi-con-
ductor in electrical and thermal equilibrium. p& and p, &

represent the Fermi levels in metal and semi-conductor,
respectively, and p& and p& the inner potentials. g& and f2
are the chemical potentials and x~ and yP the work func-
tions. Figure 1a shows a wide gap with a contact potential
difference x& —F20. In 1b, the gap is very small. There is a
space charge region in the semi-conductor which gives
an electrostatic potential energy rise at the surface
qo=x~ —x20. This is the usual picture in which no surface
states on the semi-conductor are assumed.

out which have verified these conclusions in some
cases, and in other cases have not. H. Schweickert,
as quoted by Schottky, ' has found a correlation
between the resistance of selenium rectifiers in
the blocking direction and the work function of
the metal. Selenium is a defect conductor, and
high reverse resistance was found for low work
function metals such as K, Na, Li, Ba, and low
reverse resistance was found for such high work
function metals as Ag, Au, Ni. The metal elec-
trodes were put on by evaporation.

%. H. Brattain, ' working in this laboratory,
has found a good correlation between degree of
rectification and work function for metal con-
tacts evaporated on cuprous oxide (a defect
conductor) and on both N- and P-type silicon. '
Metals used, listed in order of decreasing degree
of rectification, were Al, Ag, and Pt on cuprous
oxide; Pt, Be, Ag, Mg, and Al on N-type silicon;
and Mg, Cd, Ag, and Pt on P-type silicon. He
found that when contact is made to the semi-
conductor by a metal junction in air, the rectifi-
cation is practically independent of the work
function of the metal used. Results somewhat
similar to those of Schweickert have been ob-
tained by J. N. Shive' who studied the rectifica-
tion characteristics of a number of contacts made

by evaporation of various metals on selenium.
Metal contacts, listed in order of decreasing
degree of rectification, are Be, Zn, Pb, and Au.

A. V. JoEe' has studied contact potential
differences and the resistances of the contacts
formed from a large number of different semi-
conductors and metals. Most gave very poor
rectification characteristics. While there was
some qualitative correlation of contact potential
di6'erences with contact resistance, quantitative
agreement with theories of Schottky' and Davy-
dov' was poor.

' W. Schottky, Physik Zeits. 41, 5/0 (1940}.' Unpublished work done at the Bell Telephone Labora-
tories in 1940 under the general direction of J. A. Becker.
The author is indebted to Drs. Brattain and Shive for
permission to quote their results.

4 The designations N- and P-type refer to the direction
of rectification. An N-type is an excess semi-conductor,
and the direction of easy flow occurs when the semi-
conductor is negative relative to the metal. A P-type
semi-conductor is a hole conductor; and the direction of
easy flow is opposite. In both cases, the direction of easy
flow is that in which the carrier moves from the semi-
conductor to the metal.' A. V. Joffe, J. Phys. USSR 10, 49 (1946).

6 B. Davydov, J. Phys. USSR 4, 355 (1941).
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W. E. Meyerhof7 has recently been making an
extensive study of the relation between contact
potential difference and rectification for metal
point contacts applied to Si and Ge. He has
determined the potential rise, q 0, from the
rectification characteristics at different tempera-
tures and has also measured the ordinary contact
potential difference, or Volta potential, by a
modified Kelvin bridge method. Preliminary
results show little correlation between the two
sets of measurements. In fact, he has found that
yo is practically independent of the work func-
tion of the metal for metal point —Si reetifiers.
The same metal may rectify with both P- and
N-type silicon, in opposite directions.

These negative results indicate that a closer
analysis of the nature of the contact between a
metal and semi-conductor is warranted. The
main purpose of the present paper is to investi-
gate the effect of electronic states on the surface
of the semi-conductor on qo. There has been
considerable discussion in the literature con-
cerning the possibility of surface states, ' but
little direct evidence as to their existence.

IMPUMTY LEVELS AND SURFACE STATES

According to the modern theory of semi-
conductors, there is an energy gap between the
highest filled band of levels and the lowest state
of the conduction band. In the language appro-
priate to excess semi-conductors, conductivity
results from electrons thermally excited to the
conduction band from impurity levels. The im-
purity levels, which are intermediate in energy
between the filled band and conduction band,
represent states in which the electron is localized
around a foreign atom or other defect in the
crystal lattice. In normal semi-conductors there

E. Meyerhof, "Contact potential difference in
crystal recti6ers, " Technical Report No. 5, Univ. of
Pennsylvania, BuShips contract NObs-34144, Aug. 10,
1946; see Phys. Rev. Vl, 727 (1947).

'Surface states with energies in the "forbidden" band
were studied 6rst by I. Tamm, Physik. Zeits, Sowjetunion
1, 733 {1932),and are often called Tamm states. Later
theoretical work was done by R. H. Fowler, Proc. Roy.
Soc. A141, 56 (1933), S. Rijanow, Zeits. f. Physik 89, 806
(1934), A. W. Maue, Zeits. f. Physik 94, 717 (1935), E. T.
Goodwin, Proc. Camb. Phil. Soc. 35, 205 (1939), W. G.
Pollard, Phys. Rev. 56, 324 (1939), and %. Shockley,
Phys. Rev. 56, 317 (1939}.The last of these is the most
critical, and shows under what conditions surface states
are occupied in a normal crystal.

may be the order of j.0-' to 10-' impurity levels
for each atom of the crystal.

In addition to the impurity levels in the
interior of the crystal, there may be localized
states on the surface with energies in the
"forbidden" region between the filled and con-
duction bands. Shockley' and others have in-
vestigated the conditions under which surface
levels may be expected on an ideal crystal. His
analysis, based primarily on a one-dimensional
model, indicates that "in a plot of the energy
spectrum versus interatomic distance the surface
levels appear only at lattice constants so small
that the boundary curves of the allowed energy
bands have crossed. "The number of such surface
states is equal to the number of surface atoms,
and, in a neutral crystal, the surface states are
half 61led. The conditions for surface states are
fulfilled, for example, in a diamond-type lattice.

Surface states may also result from surface
imperfections, from foreign atoms on the surface,
etc. On general grounds, there is good reason to
suppose that the ratio of the number of surface
levels to surface atoms may be much higher than
the ratio of the number of impurity levels to
atoms in the interior.

The energy levels corresponding to the surface
states may be discrete, or they may have a
continuous distribution with all energies in the
gap between the 61led and conduction bands.
There is little evidence of either an experimental
or a theoretical nature on this point. Well-
defined impurity states of the same nature,
sparsely distributed over the surface, would all
have about the same energy and form a discrete
level. If the impurity atoms are densely dis-
tributed over the surface, so that there is
considerable interaction between them, a con-
tinuous distribution in energy is to be expected.
A continuous distribution is also expected for
surface states on clean surfaces of the type
discussed by Shockley, Goodwin, and others. In
the analysis to follow we assume that the surface
levels are continuously distributed in energy.
Many of the same general condusions would
follow, however, if discrete levels had been
assumed.

We wiH show that if there is a relatively high
density of surface states, there may be a double
layer on the free surface of a semi-conductor re-
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suiting from a surface charge caused by electrons
in surface states and a space charge of opposite
sign extending into the crysta1 to a depth of
j.0 ' to 10 ' cm. The double layer tends to make
the work function independent of the impurities
in the interior. If contact is made to a metal,
the contact potential difference is compensated
largely by a true surface charge rather than by
space charge, so that the height of the barrier
is largely independent of the metal.

NATURE OF CONTACT

Before discussing the eRect of surface states,
we will give a brief review of the nature of the
contact between metal and semi-conductor.

At a contact between any two electronic con-
ductors there is an electric double layer which
adjusts the potential of one relative to the other
for equilibrium conditions. This potential differ-
ence may be taken as a measure of the strength
of the double layer.

Some care must be taken in defining the
absolute value of the potential. There is, of
course, no way of measuring the potential inside
a metal or semi-conductor. The potential just
outside the surface can be measured, but the
difference between the potential inside and out-
side the surface depends on the double layer at
the surface. Only differences in potential between
different parts of a conductor can be observed
directly.

Nevertheless, it is desirable to consider the
potential in the interior. The true time-average
electrostatic potential is periodic, with the period
of the lattice. The macroscopic potential, 4, may
be defined as the space average of the actual
potential over a region large compared with
atomic dimensions. This definition is somewhat
arbitrary; another definition might yield a diRer-
ent value for the strength of the double layer at
a contact or at a surface. However, only diRer-
ences in double layers have direct significance,
and these are independent of the way the
potential in the interior is defined.

The general theory of equilibria' shows that
when two electronic conductors are in contact

' An excellent discussion is given by R. H. Fowler and
E. A. Guggenheim, Statistica/ Thermodynamics (Cambridge
University Press, England, 1939), Chap. XI. The author is
indebted to Dr. C. Herring for the method of presentation
used above.

and in thermal equilibrium, the electrochemical
potentials, p, ~ and p, 2, must be the same in both:

p~ ——'

p, 2 in equilibrium.

In the usual picture of an electronic conductor,
p is just the Fermi level which determines the
probability, p, that a state of energy 8 is
occupied.

P= &/(&+exPf(& P)/&T3).

The electrochemical potential in a region may
be defined thermodynamically, in a way which
is independent of any particular model, by the
equation:

where n is the number of electrons in the region,
and U and 8 are the energy and entropy. The
partial differentiation corresponds to a reversible
change in which the volume and temperature are
held constant. The internal energy U includes
an electrostatic potential energy, —eC, per elec-
tron. The choice of the zero or reference level
from which this potential energy is measured is
arbitrary, and there is the same arbitrary choice
in the definition of p, .

It is convenient to introduce a quantity which
depends on the chemical constitution of the
material, and on the electron density, but not on
the electrostatic potential. This quantity,
which is called the 'chemical potential, to dis-
tinguish it from the electrochemical potential,
is defined by

where

is the electrostatic energy per electron.
Let y, be the potential energy of an electron

just outside the surface of a conductor. This
potential is to be evaluated at a point where the
image potential is negligible, but at a distance
from the surface small compared with macro-
scopic dimensions. The work function of the
surface is then:

This is the energy required to take an electron
from the conductor and place it at rest at a
point, defined as above, just outside the surface.



FIG. 2. Diagram to illustrate double layers at a contact
between two conductors in equilibrium. There is a double
layer of stIength cpsI —yo at the suI'face of conductor j, ,
a double layer of strength q.2

—
q 2, in the opposite direction

at the surface of conductor 2, and a double layer of strength
q,2

—q&I=-(XI—y2) formed by surface charges on the
two conductors. The total strength, q 2

—
q ~, is independent

of the surface double layers.

Thc wol k fUnctlon depends on the double
layer at the surface. By replacing p by f+y,
according to Eq. (3), the work function may be
expressed in the form:

which shows explicitly that the work function is
th.c sum of the energy Iequ1rcd to take Rn elec-
tron through the surface double layer, q, —q,
and a body term, —g, independent of the surface.

It should be emphasized that the separation of
the work function into R surface term and a body
term depends on the precise way the potential
energy, q, in the interior of the conductor is
defined. We have suggested above that the
clect1ostatlc potcnt1al 4 bc defined as space
average of the actual potential. Another defini-
tion, might yield, for example, a smaller value
for y, —p and a correspondingly larger value for
—g. DiA'crences in double layers, such as might
yieM different work functions for different crystal
f'aces of the same material, are not affected by
the arbitrary definition of the inner potential.
Since the double layer involves a potential
difference, thc VRlUc 1S 1ndcpcndent of the
reference level, or zero of potential, which is also
RI blt1 Rry.

If two electronic conductors are in contact,
and in thermal equilibriu. m, the electrochemical
potentials must be the same in both. Thus,

or

The strength of the double layer at the contact,
p~ —j2, is equal to the di8'erence between the
chemical potentials. Since the chemical potentials
depend only on the internal constitutions of the
two conductors, the double layer is independent
of the work functions of the two surfaces bef'ore
they RIc bl"oUght into contRct.

The situation when there is R small gap be-
tween the two conductors in equilibrium is
illustrated in Fig. 2. There is R double layer of
strength peg —py Rt thc sulfRCC of condUctoI
a double layer of strength. y, 2

—
q ~, in the opposite

d11cct1on, Rt the sUrfRcc of condUcto1 2, Rnd R

double layer of strength y, 2
—cp, ~= —(xq —x~),

formed by surface charges on the two con-
ductors. The total strength of the double layer is:

(P i —P~)+(P 2 P i) (0"~ Pm) = Pm Fi (7—)
The surface double layers drop out, as they
should according to Eq. (6).

If the surfaces are in very intimate contact,
so that the electron space charges of the two
surfaces overlap, it is not possible to divide the
total double layer into different parts which
depend on the work functions of the individual
surfaces. All that can be said is that the strength
of the total double layer is y~ —q1. The work
functions of the surfaces before they are brought
1nto contRct plRy no I olc.

USUAL PICTURE OF RECTIFYING CONTACT

If one of thc condUctoI's 18 R semi-condUctor,
and the other is a metal, it has generally been
assumed that as they are brought into contact,
no surface charge forms on the semi-conductor. "
Instead, there is a space charge near the surface
which may extend to a depth of the order 10 6

to 10 ' cm. If the gap is small compared this
distance, but is still large enough so that there is

'0 H. Y. Fan, Phys. Rev. 61, 365 (1942); 62, 388 (1942),
has attempted to calculate the electron space charge
distribution in the double layer at the contact between two
metals„and at the contact between a metal and a semi-
conductor. Although his calculations are based on a highly
idealized model, they may serve to give a rough pIcture of
the charge density in the contact region. He does not
consider the eSect of surface states on the semi-conductor."N. F. Mott, Proc. Camb. Phil. Soc, 34, 568 (1938)
gives a discussion of the contact between a metal and an
insulator or a semi-conductor. A brief analysis is given of
the effect of a surface charge resulting from electrons in
surface states on the contact between a metal and an
insulator. Mott assumes a discrete energy level for the
surface states.
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sufficiently high, part of the double layer at the
free surface of a semi-conductor may be formed
by a surface states charge compensated by a
space charge. The height of the potential barrier
of a rectifier formed from the material will then
be determined in part by the normal space charge
of the free semi-conductor and in part by the
work function of the metal.

Cg

METAL SE Ml-CONDUCTOR

FIG. 3. Energy level diagram for metal semi-conductor
contact illustrating notation used in text. The Fermi
levels are pl. and p~ and the work functions g~ and y2.
The lowest state of the conduction band is denoted by C
and the highest level of the filled band by Ii. If the surface
states are filled to an energy eo below the conduction band
there is no net charge on the surface atoms.

no appreciable overlap, most of the energy drop
xj —X2' will occur in the semi-conductor rather
than in the gap. This situation is illustrated in

Fig. 1b. The space charge raises the energy at
the surface of the semi-conductor by an amount

xi —x2'. This is the usual picture which indicates
that the height of the potential barrier should be
equal to the difference in work functions, and is
that which is discussed in the introduction.

This picture is deficient in two respects:
(a) The contact may be so intimate that a

division of the double layer into one at the
surface of the metal, one at the surface of the
semi-conductor, and one caused by space charge
may not be possible. There will be a double
layer at the immediate interface, and another
due to space charge, but it is not possible to say
how the total strength is divided between them.
A cruder way of stating this is that the work
functions of the two surfaces are modified by the
contact. However, if the contact is intimate, the
separate work functions have no meaning.

(b) There may be electronic states localized
on the surface of the semi-conductor, so that the
surface atoms can become charged. An appreci-
able field may then exist in the gap. Part of the
total drop from metal to semi-conductor will

occur across the gap and part across the space
charge region. If the density of surface states is

FREE SURFACE OF SEMI-CONDUCTOR

Ke will first consider the free surface of a semi-
conductor, and then discuss the rectifying con-
tact. The notation to be used is illustrated in
the energy level diagram of Fig. 3. The lowest
state of the conduction band and the highest
state of the filled band of the semi-conductor are
indicated, with an energy gap c,. It is assumed
that the distribution of surface states is such
that the surface states give no net charge if
the states are filled to an energy ep below the
conduction band. " Since the Fermi level cuts
the surface above the level determined by ep, the
surface as shown will be negatively charged, this
charge resulting from electrons in states between
6p and the Fermi level. The picture applies to
an excess semi-conductor. " In the body of the

FIG. 4. Schematic diagram showing how the potential
rise &0-is determined from the density of surface levels
and the contact potential difference (see text).

"We refer to the net charge of the surface states as
"surface states" charge to distinguish it from the total
charge, including space charge, in the surface layer, which
we call "surface charge. ""The case of an excess semi-conductor seems to be easier
to visualize than that of a defect semi-conductor. All
results derived for one case, of course, apply to the other
with obvious changes in signs of the charges,
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semi-conductor, the Fermi level is an energy g
below the conduction band. The space charge
region extends for an approximate distance / into
the semi-conductor, giving a potential energy
rise pp at the surface. An energy q, is required
to remove an electron from the lowest state of
the conduction band near the surface to a point
just outside the semi-conductor. The work func-
tion, y2, depends on q, as well as on yp.

X2= g.+gp+g.
N TYF't: P TYPE

II

f.p

gp= ~p —
f& (9)

because, according to the definition of ep the
surface states will then be filled up to the level
corresponding to zero surface states charge. The
point A represents a value of yp for which
0,+0.;=0, which corresponds to a neutral surface.
It can be seen that if the density of surface states
is high, this value of pp will be close to that given
by Eq. (9).

For the limiting case of a very high density
of surface states, the line 0, becomes vertical,
points 2 and Z coincide, and Eq. (9) must be
satisfied; hence, according to Eq. (8):

+2 p8+ 6p

The work function is determined entirely by the

The amount and extent of the space charge
inside the free surface is determined by the
density of surface levels. For zero external field,
the positive space charge raises the potential at
the surface by an amount just sufficient to give
a compensating negative surface charge. The
larger the positive space charge region, the larger
is qp, and the smaller is the negative surface
states charge. For some pp the two will be equal
in magnitude. This is the equilibrium value.

These relations are indicated in a schematic
way in Fig. 4, which shows the variation of 0-, ,

the total space charge per unit area, of 0„ the
surface states charge, and of the surface charge,
o, +0-;, with q p. The other curves on the diagram
will be referred to later in connection with the
discussion of a meta1 contact. For a uniform
space charge in the boundary layer, 0; is pro-
portional to the square root of po (see the
appendix). The plot of 0; has a steep slope corre-
sponding to a fairly high density of surface states.
It passes through zero (point 8 in Fig. 4) when

(g) N TYPE P TYPQ

FIG. S. Energy level diagram showing contact potential
difference between two ends of a semi-conductor which
changes from N-type to P-type along its length. (a) High
density of surface states, small contact potential difference.
(b) No surface states, large contact potential difference.

surface, and is independent of the position of the
Fermi level in the interior.

On the other hand, if the density of surface
states is small, o-, +o-; is approximately equal to 0.;
and the condition for a neutral surface leads to
a small value for yp. In the limiting case of
vanishing surface states charge, qp=0, and the
work function is

x2 ps+I i

which of course does depend on the position of
the Fermi level in the interior of the semi-
conductor.

Some semi-conductors can be made either
excess or defect, or N- or P-type, ' depending
on the nature and concentration of impurities.
The distribution of impurities in a single sample
may be such as to make one end N-type and the
other end P-type. Silicon and germanium are
examples of materials which may behave in this
way. For an N-type conductor, f is small; for a
P-type conductor g is almost equal to the energy
gap 00, which is the order of one electron volt
for these materials.

If the density of surface states is low, a large
difference in work function between N- and
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The potential energy rise at the surface is

pop = (2m/~) e'XP,

where ~ is the dielectric constant.

(13)

P-type is to be expected. The difference will be
almost equal to the energy gap e,. For a high
density of surface states, the difference in work
function will be small. Figures Sa and b show
schematic energy level diagrams of these two
limiting cases. Both show the variation in poten-
tial along, and the work functions at the two
ends of a sample which changes from. N- to P-
type from left to right along its length. Figure Sa
is that corresponding to a high density of surface
states. There is a space charge region at each
end. The potential at the left is raised so as to
bring the energy level corresponding to a neutral
surface close to the Fermi level. The potential
at the right is similarly lowered. The difference
in work functions, xp —XN, is small. Figure Sb is
the case corresponding to a small density of
surface states. There are no space charge regions
at the ends, and the difference in work functions
is large.

A difference in work function can be detected
experimentally as a difference in contact poten-
tial. Meyerhof' has 'in this way measured the
differences in work functions of various samples
of N- and P-type silicon and has investigated the
effect of surface treatment on these differences.
He finds that the difference between N- and
P-type samples is about 0.25 ev, which is con-
siderably smaller than the energy gap of about
1.1 ev. It is quite possible that there is a high
density of surface states, either on the pure
material or resulting from surface films or im-

purities, which is sufficient to account for this
discrepancy.

We have so far discussed the density of surface
states in a purely qualitative way. It is of interest'

to make an estimate of the density required to
produce an appreciable space charge layer at
the free surface of a semi-conductor. The density
depends on the density of charged centers, or
donors, in the boundary layer. If there are N
such centers per unit volume, and if the thickness
of the boundary layer (assumed uniform) is l,
we have for the total space charge per unit area

0-; =eel.

Let the number of surface states in the energy
interval do be ndp/pp W. e assume, for simplicity
that n is a constant, which is of the order of
the total number of surface levels per unit area
&pith energies in the gap. The change in surface
states charge density corresponding to a poten-
tial energy rise go at the surface is then

60'8 = enpp/pp. (14)

METAL SEMI-CONDUCTOR CONTACT

As a metal surface approaches that of a semi-
conductor, the electrostatic field in the gap
increases. There is a surface charge 0.~ on the
metal surface, and a charge of equal magnitude
and opposite sign divided between a surface
charge, o.„and a space charge, o, (the latter has
been defined as the total space charge per unit
area, of surface). Thus

ow = —(o,+o ~). (16)

In the case of the metal, the surface charge causes
only a very slight change in work function.
However, the charge on the semi-conductor may
cause appreciable changes in its work function,
so that its value x~ will differ appreciably from
the zero field value X2'. These changes can be
analyzed with the aid of Figs. 3 and 4.

According to Fig. 3, the field in the gap
between metal and semi-conductor is (yz —xp)/ea.
This is produced by the surface charge which
gives a fIeld 4pr(o. +o;). Equation (8) expresses
x~ as a function of yo. Equating the two ex-
pressions for the field leads to:

Xx —f —ps —po

The condi:tion for an appreciable space charge
layer is that q 0 be of the order of magnitude of Eo

when 60, =0;. This requires that n be the order
of Xl. Taking, for example, ~ 1S, and N 10",
Eq. (13) gives l 10 ', so that

n, Ãl 10"states/cm'

This density corresponds to about one surface
state per thousand surface atoms. Other things
being fixed, the limiting density of surface states
is proportional to the square root of the density
of charged centers in the boundary layer.
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The left-hand side of the equation is plotted in
Fig. 4 as the line "L," and is a straight line of
negative slope. The solution to (17) is repre-
sented by the point 8, which is the intersection
of "L" with the line representing o,+o;. The
line "L" crosses the axis at the point D, which
corresponds to y~ =xi, or

0 o=X1 Ps (18)

slope of a, =m, =en/eo,
slope of I.= —mz ———1/4s.eu. (21)

It can be seen that if the density of surface
levels is high, so that 0., and 0.,+0.; have steep
slopes, the point 8 will lie close to the point A
which gives the value of yo for the free surface.
In this case,

po &o
—

g&

and is practically independent of the work
function of the metal. This is a possible explana-
tion of the results of Meyerhof, who found that
the value of po for metal points on silicon does
not depend very much on the metal used.

In the limiting case of vanishing surface states
charge density, 0;=0, and the solution of (17)
is given by the point C of Fig. 4. The value of
q o is then close to that given by the intersection
of the line I. with the horizontal axis (point D).
In this case,

Po Xi —P.—C (20)

and the usual picture of the contact between
metal and semi-conductor applies.

As the metal is brought closer to the semi-
conductor, the slope of the line "I" increases
with decreasing "a" and one might expect a
transition from a solution near A to one near D
with a resulting value of &p& given by Eq. (20).
However, even if there is only one surface state
per hundred surface atoms, the slope of the line

o, is so great that the solution still lies near
point A even when u is reduced to atomic dis-
tances, say 3A. This may be verified by making
a rough calculation based on Fig. 4. For the
value of po to be largely determined by the semi-
conductor, the value of qo for the solution 8
must lie closer to A then to D. The necessary
and suAicient condition for this is that the slope
of the line 0, be much greater, in absolute value,
than the slope of "L." We have

The condition that m, /m~ be large is

or
m, /mI„= 4se'an/eg))1,

n)& co/4s e'a.

(22)

(23)

Setting for example, 6o 10 "erg and u 3X10—'
cm, this condition requires that

n»&0 3. (24)

Thus if there is appreciably more than about one
surface state per hundred surface atoms, the
metal work function will have little efFect on po.
This is about an order of magnitude larger than
the surface density required for the existence of
an appreciable, ', boundary layer at the free surface. "

The theory is worked out in detail for the
special case of a uniform Schottky exhaustion
layer' in the appendix.

CONCLUSIONS

If the density of surface levels with energies
in the "forbidden" band is su%ciently high
() 10"/cm'), there will be a double layer at
the free surface of a semi-conductor formed from
a surface states charge and a space charge of
opposite sign. The space charge region is similar
to that which exists at a rectifying contact. This
double layer tends to make the work function
independent of the height of the Fermi level in
the interior, and so independent of the impurity
content.

The total strength of the double layer at a
rectifying junction between a metal and semi-
conductor is fixed by the diAerence in chemical
potentials, and so depends on the body proper-
ties of the metal and semi-conductor, and is
independent of the work functions of the surfaces
before they are brought into contact. The double
layer consists of the following parts:

'4S. Benzer, Phys. Rev. 'F j., 141 (j.947), has recently
reported on the current-voltage characteristic observed
when contact is made between two pieces of the same
(homogeneous) germanium crystal. He states that "the
characteristic observed for both polarities is more the
order of the back resistance observed when either piece of
the crystal is contacted with a metal; in both directions
the negative resistance at high voltage appears, which is
typical of the back characteristics of metal-Ge contacts
using these alloys. " The presence of a space charge layer
at the surface of each piece which is little modi6ed by
contact would result in a characteristic similar to that of
two rectihers in series opposition. Such boundary layers
are to be expected if the density of surface states is the
order of that given by Eq. {24) and if the contact is not
too intimate, Benzer's results are thus indirect evidence
for surface states on germanium crystals.
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(1) A double layer of atomic dimensions at
the metal surface.

(2) A double layer of atomic dimensions at
the semi-conductor surface.

(3) A double layer formed from surface
charges on the metal and semi-conductor, both
of atomic dimensions.

(4) A double layer formed from a surface
charge of atomic dimensions and a space charge
extending to a depth of 10 ' to 10 4 cm into the
semi-conductor.

The strengths of the double layers may be
estimated in different cases as follows:

(a) If the density of surface levels is suffi-

ciently high (& 10'P/cm') the double layer (4)
will be independent of the metal, and will be
the same as that for the free surface of the semi-
conductor. The rectification properties will then
be largely independent of the work function of
the metal. The difference in contact potentials
is compensated by (3).

(b) If the density of surface levels is small

(( 10"/cm') the double layer (3) will be
small, and (4) will be determined approximately
by the difference in work functions.

(c) If the contact between the metal and semi-
conductor is very intimate, it may not be possible
to distinguish between the double layers (1),
(2), and (3). The metal will tend to broaden
the surface levels, but if the broadening is small
compared with the energy gap, conclusion (a)
will still be valid.

(d) If the broadening of the surface levels by
the metal is large, no conclusions about the
space charge can be drawn from measurements
of contact potential differences.
It is believed that all of these cases may be
realized.

The author is indebted to various members of
the technical staff of the Bell Telephone Labora-
tories, particularly to W. Shockley, C. Herring,
and %. H. Brattain, for the bene6t of numerous
discussions concerning the subject matter of this
paper, and for helpful comments on the prepara-
tion of the manuscript.

the semi-conductor and its dependence on qo.
The dependence of surface charge on yo is also
required. We will carry through the calculation
explicitly only for the case of a Schottky exhaus-
tion layer' with a uniform density of charge.
This case is particularly simple and brings out
the essential features of the problem. For sim-
plicity we also assume that the surface states are
uniformly distributed in energy.

Let eN be the positive charge density in the
barrier region, assumed constant. Let l be the
thickness of the charged layer. Let ndp/op be the
number of surface levels per unit area with
energies in the range de. Ke assume that n is a
constant, independent of energy I'or. other nota-
tion see Fig. 3.

We have the following relations:
(a) The total space charge per unit area is:

o,=¹l. (12)

(b) The potential energy at the surface of the
semi-conductor is

(13)

where a is the dielectric constant.
(c) The surface states charge is

o, = —en( p p
—yp —I )/ pp.

(d) The total surface charge is

o;+o., =Nel en(pp rpp
—g)/pp. (25)

(26)

Equating o;+o, with (x&—xp)/4prea, we get
Eq. (17) from which pop or the thickness of the
barrier layer, l, can be determined. With the
notation:

lp =—(1 f/p—p)
Ã

(27a)

l, = «p/2nePn,

lp' ——K(xg —y, I )/27re'N, —
(27b)

(27c)

(e) The work function of the semi-conductor
1s:

APPENDIX

Theory for Schottky Exhaustion Layer

The detailed calculation of q 0 requires a
knowledge of the distribution of space charge in

Eq. (17) reduces to:

l'/l&+I l p = (lp' I')/2Ko„— —

which is a simple quadratic equation for l.

(28)



Whether the semi-conductor or the metal pre-
dominates in determining l, and thus the barrier
height, depends on the relative magnitudes of
the terms on the left and right sides of Eq. (28).
The terms on the right side will be negligible if

l1(+2KQ (29)

lp&)lpP/2aa.

The first condition requires that

n)& p p/2 pre'a,

(30)

(3&)

Rnd thc second that

pp&)(pp/4pre'a}(xg —pp, —i)/(pp —i). {31a)
These conditions are essentially equivalent to

that given by Eq. (23), and lead to the conclusion
that n&&I013 in order that the metal have little
inHuence on the space charge region. In this
case of high dcnslty of surface States) thc cquR-
tion for the layer thickness reduces to that for
thc frcc suI'face of thc semi-conductor:

iP/lg+l lp =0— (32)
Equation (32) may, of course, be used to

estimate the thickness of the space change region
at the free surface of the semi-conductor, regard-
less of thc density of sul fRcc states. Thc limiting

-cRsc of high density corresponds to

l0%Ã$)

e'&&Xe p p'/2 pre'(p p i—} . (33b)
This is essentially the requirement, stated above
Eq. (15), that ts be large compared with Xl.
The approximate solution of Eq. (32) is then

P =lo)1.

The product loll is independent of n, and is just
the square of the thickness of the Schottky layer
for a barrier height

vo= &0 —F (34)
This is the condition that the Fermi level cross
the surface near the energy corresponding to
zero surface states charge.

In the limiting case of a, vanishingly small
density of surface states, the thickness of the
barrier layer is determined by setting the right-
hand side of Eq. (28) to zero. This gives

p p=Xx-p. -i'. {35)
The height of the barrier is equal to the difference
in work functions.

Equation (28) may be used for intermediate
CRSCS.
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The rectifying portion of a crystal rectifier is the contact
between a small point made of metal such as tungsten, and
a semiconductor such as silicon or germanium con, taining.
suitable impurities. The potential energy of a conduction
electron near the contact determines the rectifying action
of the crystal rectifier. The most important feature of this
potential energy, as far as the present paper is concerned,
is the height of the potential barrier, which the electrons
have to overcome when they pass from the metal to the
semiconductor or vice versa, The height of the barrier is
called here contact potential difference (c.p.d. ), because
theoretically it is equal to the difference in the work func-

Condcnsatlon of a dlsscrtatioQ 1Q Phys1cs presented to
the Graduate School of the University of Pennsylvania in
partial ful61lment of the requirements for the degree of
Doctor of Philosophy. Dissertation published with limited
distribution under "University of Pennsylvania, BuShips
Contract NObs-34144, Technical Report No. 5, August 10,
1946." Copies available from University of Pennsylvania,
Department of Physics, Philadelphia 4, Pennsylvania.

tions of the substances in contact. T'4e c,p. .d. has been
measured using both Q- and p-type silicon and different
metalhc contacts. (The c.p.d. can be obtained from the
variation of the contact resistance with temperature. ) The
work function differences (w.f.d.) between the same sub-
stances were obtained independently by a parallel plate
condenser method (Kelvin method). The results showed no
correlation between the c.p.d. and the w.f.d. The c.p.d.
is practically independent of the kind of metal used and
also of the structure of the silicon surface. These results are
in contradiction to the present theoretical model of the
silicon crystal recti6er.

~* This work was done under Contracts OEMsr-388 and
NObs-34144 between the Trustees of the University of
Pennsylvania and the Once of Scientific Research and
Development and the Navy Department, Bureau of Ships,
respectively, which assume no responsibility for the ac-
curacy of the statements contained herein.
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