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A stack of N identical, parallel, and equidistant layers is used as a simple model of a layer
structure. Irregularities in the relative displacements 0 parallel to the plane of the layers cor-
respond to stacking disorder. The stacking disorder is described by means of a set of functions
8'~(S) which measure the probability of finding a relative displacement 5 for layers M spacings
apart, It is shown that x-ray diffraction data permit a direct determination of the Fourier
coefficients of the functions TV~. Thus these functions can be synthesized and the nature-of the
stacking disorder directly deduced.

INTRODUCTION

'RREGULARITIES in the relative displace-. d ment of the layers parallel to their own planes
occur in many crystals of layer structure type.
This stacking disorder gives rise to characteristic
features in the x-ray and e1ectron diffraction
patterns of such crystals. The purpose of this
paper is to show that the specific nature of the
stacking disorder can be directly deduced from
the observed di8raction effects.

In order to demonstrate clearly the general
principles upon which the method is based it is
convenient to use a simple model of a layer
structure. The extension of the method to layer
structures of more general type can be made
without serious difficulty.

A SIMPLE MODEL OF A LAYER STRUCTURE

Our model is a sequence of ¹dentical, parallel,
and equidistant layers. The periods within the
layers will be denoted by a& and a2, while a3 is
the period in the third principal direction (not
necessarily normal to the plane of the layers).
The individual layers in the stack will be
numbered consecutively by means of an index
J3, the layer L3=0 being chosen arbitrarily. The
symbol 81,3 will be used to represent the dis-
placement, parallel to the plane of the layers, of
layer I.3 relative to layer L3=0.

The position vector of any atom in the crystal
has the form

The model just described corresponds to an
ordered layer structure if 61.3 varies periodically
as the index J3 is allowed to run through the
sequence of integral value. We shall assume that
the 5-values are not periodic, in which case the
model corresponds to a layer structure with
stacking disorder.

We shall assume that the distribution of
8-values throughout the stack is independent of
the crystal surface. In order to study the con-
sequences of this assumption we imagine the
stack of layers to be periodically repeated in
space. Our assumption implies that any sequence
of N consecutive layers bodily removed from the
periodic stack corresponds to a crystal specimen
representative of the given disorder. Clearly there
are X such diR'erent but statistically equivalent
specimens. In discussing the disorder we shall
therefore have to think in terms of the assembly
of N specimens rather than in terms of a single
specimen.

The stacking disorder for the assembly can
be described by means of a series of probability
functions Wjr(S), where M=o 1 2 N i. —
A function lV~ represents the probability of
Finding a relative displacement 8 between two
layers M spacings apart.

The displacement 8 can be expressed in the
form S=y~aq+yna2where 0&y;(1.Clearly W0=0
for all values y&, y2 except y&=y&=0. Since the
functions lV~ are even and periodic functions we

where/the Fourier coe%cients converseiy are

7i5

may set
r;+I.iaaf+1.2a~+I 3a3+SL3.

r; is the position vector of the jth atom within a
Hy H2

unit parallelogram of a layer and L» 12, L3 are
a set of three integers.
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THE X-RAY DIFFRACTION PATTERN

This section is devoted to a theoretical study
of the x-ray diffraction patterns of structures
with stacking disorder. Since each individual
layer is assumed to be a fully ordered two-dimen-
sional lattice we shal 1 obviously find that the
scattering is restricted to directions with "Miller
indices" (H1H2s) when Hl and II2 (but not neces-
sarily s') are integers. We shall show that the
intensity of scattering in a direction (H1H2s) can
be expressed in terms of the Fourier coefficients
W~m»am. Secondly we shal 1 show that the in-
dividual Fourier coef6cients can be deduced
from the experimental data and that hence the
probability functions W~ can be synthesized.

The mean intensity of the scattered x-rays
from the assembly of N crystals discussed in the
preceding section becomes

I(S) =XA (S) +24 cosS Map(cosS 624)A„. (2)

In this expression s = 222(k —kp) where kp and k
are the wave vectors of incidence and of scat-
tering. A (s) represents the intensity of scattering
from a single layer.

It is convenient to set

s = 22r(Hlbl+H212) +2m (plbl+ppbp+sbp)

where H» and H2 are integers and b», 12, b3 the
vector set reciprocal to a», a2, a3. In this way the
functions IH1H2(P1P2s) represent the intensity
distribution in the reciprocal lattice.

The function AH1H2(P11 P2 s) for given s has a
maximum at pl = pp =0. The half width of this
maximum depends upon the lateral dimensions
of the layers. Unless the crystal dimensions
parallel to the layers are of colloidal or subcol-
loidal order of magnitude one will not be able to
observe the variation of A e»e2 as function of p»
and pp. For this reason we shall deal not with the
intensity IH1H2(P1P2s) but with the experi-
mentally significant quantity PH1H2(s) defined by

The expression for Pe» e2 becomes

PH1H2(s) =Ipse VBH1H2(s) p W H1H2cos2~Ms. (3)

The quantities W~e»a2 are the Fourier coef-
ficients which were introduced in the preceding
section. Jo is the intensity of the incident beam
and 8 V is the volume of a single crystal specimen,
which for the sake of convenience is assumed to
be so small that absorption and extinction can be
neglected, The function Be» e2 can be written in
the form

B»H2 = V 'Tl PH1H21'

where V = al a2 Xap, g H1H2 the structure factor
and T= (I+cos'28)e4/2mpc4R2 the Thomson scat-
tering factor.

Experimentally one does not measure directly
the power distribution PH1H2(s) in the reciprocal
lattice, but rather the power QH1H2(n) in terms
of a parameter a which is suitable for the par-
ticular experimental procedure which is used.
The reduction of the observations QH1H2(n) to
the reciprocal lattice distribution PH1H2(z) is,
however, a trivial problem which involves the
evaluation of the appropriate Lorentz factor.

Since WHpp= 1 for any M the function Ppp(s)
will have maxima for integral values of s =H3,
and the half width of these maxima is deter-
mined by the total height of the stack of layers.
In other words the stacking disorder has no
eEect on the refiections (00H2).

If the nature of the stacking disorder, i .e ., each
function W~, is known, the calculation of the
functions PH1H2(s) by means of Eq. (3) is a
simple matter, and the nature of the stacking
disorder can be found by a trial and error pro-
cedure. Equation (3) suggests, however, a direct
method for the determination of the specific
character of the disorder.

The distributions PH1H. (s) can be regarded as
functions which are known from experiments,
however, on a relative rather than absolute
scale. The functions BH1H2(s) are known if the
structure of each layer has been determined.

Hence, the quantities

DH1H2(s) =PH1H2/Ip5 VBH1H—2

PH1H2(s) = i IHlH2(pll pp~ s)dpldp2.
are known functions except for a numerical scale
factor. By the Fourier reciprocity theorem we
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have

a

W HyHg = ~t DHyH2(8) COS27l'Msds.

small values of M so that the Fourier coefficients
F II1a2 go towards zero with increasing 3f.

One sees readily that

Q~W ltgp2 cos2~Ms= W &i&22M ~os2&~s

Accordingly the probability functions 8'&I which
characterize the stacking disorder can be syn-
thesized. The unknown numerical scale factor
can be determined from the requirement that W'~

is everywhere positive and fJ'W~dyqdy2=1.
In most instances it is found that the functions

lV~ approach a limit W'„as 3f increases. It is
therefore convenient to set

~or=~ +~M

where accordingly F~ represents Auctuations at

+P~ I HyH2 cos27r3fs.

Thus the functions W„ is generally to be asso-
ciated with the sharp maxima, the functions F~
with the diffuse maxima of the functions I'ele2.

If the function lV„ is a constant, implying zero
correlation between layers far apart, Wa&e2=0
unless II1=II2=0. Apart from the reHections

(00') all maxima of Pa~a2 will then be diffuse.
The writer has used the method outlined above

to determine the stacking disorder in several
crystals of the layer structure type.
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Localized states (Tamm levels), having energies distrib-
uted in the "forbidden" range between the filled band and
the conduction band, may exist at the surface of a semi-
conductor. A condition of no net charge on the surface
atoms may correspond to a partial filling of these states.
If the density of surface levels is sufficiently high, there
will be an appreciable double layer at the free surface of a
semi-conductor formed from a net charge from electrons
in surface states and a space charge of opposite sign, similar
to that at a rectifying junction, extending into the semi-
conductor. This double layer tends to make the work

function independent of the height of the Fermi level in
the interior (which in turn depends on impurity content).
If contact is made with a metal, the difference in work
function between metal and semi-conductor is compen-
sated by surface s'tates charge, rather than by a space
charge as is ordinarily assumed, so that the space charge
layer is independent of the metal. Rectification charac-
teristics are then independent of the metal. These ideas
are used to explain results of Meyerhof and others on
the relation between contact potential differences and
rectification.

INTRODUCTION

~HE generally accepted view' of the nature
of the rectifying contact between a metal

and a semi-conductor is illustrated in Fig. 1

which applies specifically to an excess semi-
conductor. Figure 1a shows an energy level
diagram of the metal and semi-conductor in
equilibrium, but with the contact separated.
The Fermi level is the same in both the metal and

'See, for example, N. F. Mott and R. W. Gurney,
E/ectronic Processes in Ionic Crystals (Oxford University
Press, London, 1940), Chap. V. The theory of rectification
is due in large part to W. Schottky. The most important
of his papers is Zeits. f. Physik 118, 539 (1942).

the semi-conductor. As shown, the work function
of the metal, y1, is greater than the work function
of the semi-conductor, y2', so that there is a
contact difference in potential, y1 —X2'. It is
assumed that when the metal and semi-con-
ductor are nearly joined, the potential distribu-
tion is as shown in Fig. 1b. A double layer is
formed such as to give a potential drop, q o, from
the metal to the interior of the semi-conductor
equal to the contact potential difference.

This double' layer is assumed to consist of a
space charge region in the semi-conductor, ex-
tending toadepth of theordqrof10 'to10 'cm,


