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Inhomogeneous integral equations connected with a certain class of neutron diffusion prob-
lems are treated by means of a variational method. It is shown how to obtain quite accurate
values of the asymptotic neutron density in the following three cases: (a) Milne's problem for
the plane, (b) infinite scattering medium surrounding black spherical core, (c) infinite scattering
medium surrounding black spherical core with air gap.

~ ~HE variational method for solving eigenvalue problems associated with integral equations is
well known. One starts with the integral equation:

f
p, (r) = c dr'p, (r')Z(r, r'),

where c is the (lowest) eigenvalue to be determined, pp(r) is, say, the neutron density as a function
of the coordinates, and Z(r, r') is the kernel (assumed to be symmetric in r and r'); the integration
is over the medium in question. It can then be shown that the functional:

f
dr p(r) p(r) —c dr'p(r')Z(r, r')

is an extremum for the actual solution pp of Eq. (1); furthermore, it is evident that:

f
drpp'(r)

drpp(r) dr'pp(r')Z(r, r')

Since the first variation of (2) vanishes, we may expect that the value predicted for the eigenvalue c

by the insertion of some trial function for the unknown po will be closer to the correct value of c
than the trial function is to po. It can be proved that the approximate eigenvalue is always larger
than the correct eigenvalue.

The extension of the variational method to inhomogeneous integral equations is possible and leads
to a simple procedure for obtaining fairly accurate solutions for a certain class of neutron di8'usion

problems. We shall first present briefly the method in general terms and then discuss specific appli-
cations. Suppose the inhomogeneous integral equation is 2

qp(x) = dx'Z(x, x')qp(x')+f(x), (4)

where qp(x) is the unknown function, Z(x, x ) is a positive symmetric kernel, and f(x) is bounded so
that J'~ f(x)

~

dx exists. Suppose, further, that we can express L
'
Jdqx( p)x$ in terms of gp(pp), say

gp(~) =k, I dxgp(x)f(x)+kp

*This work was done in the Montreal Laboratory of the National Research Council of Canada during the Spring of
1944 and is now declassified.

' This can be seen easily by writing the trial function p(r) as Lp&(r)+ ~(r)j (s(r) is the correction function), and showing
that the term of first order in e vanishes identically.

~ The method is presented for a function of one variable; the generalization to more than one variable, as in the case
of the homogeneous integral equations, is also possible.
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with ki, k2 known constants. Let us define- the functional:

)' dxg(x)f(x)

The reasoning then proceeds along the same lines as in the homogeneous case: (5) is an extremum'
for the actual solution, gp(x), of Eq. (4), and can be equated to Lk&/(gp(oo) —ko)]. For an arbitrary
trial function, g(x), the equation determining gp(oo) is:

,

t dxg(x) g(x) —
) dx'Z(x, x')g(x')

)~dxg(x) f(x)
"2 go(~) —&p

(6)

We shall now show how several neutron diffusion problems requiring a knowledge of the asymptotic
neutron density can be written in the form (4). The application of (6) will follow immediately.

We consider first the well-known Milne problem, i.e., the case of a semi-infinite, isotropically
scattering (but non-capturing) medium bounded by vacuum which sustains a constant current from
in6nity. A rigorous expression for the asymptotic neutron density is known for this problem this
is not the case for the other two problems discussed below where at present only approximate solu-
tions are available. The application of the variational method to the Milne problem will disclose
the manner in which values of the asymptotic neutron density are arrived at and give an indication
of the power of the method.

The integral equation for the neutron density, pp(x) (the boundary is taken at x=0 and the scat-
tering mean free path is taken as the unit of length), in the Milne problem is:

po(x) = —',
, dx'Zs(i x—x' ))po(x'),

00

where Z&(x) is the exponential integral function of order one. ' Since the asymptotic neutron density
is linear, we write pp(x) =x+gp(x); for large x, gp(x) approaches a constant which we denote by
gp(oo). Substitution for pp(x) into (7) yields:

Zp(x)
g.(x) =-', ~i dx'Z, (~x —x'~)go(x')+

0 2

where Zp(x) is the exponential integral function of order three. Equation (8) is of the form (4) but
we still require an expression for Jtgdxgp(x)Bp(x) in terms of gp(oo) before applying (6).

To obtain such a relation, ' we make use of a theorem proved by Davison, ~ namely that if we have

Dr. B.Davison, in the following article, discusses the conditions under which (5) is a minimum, not only an extremum,
for the actual solution.

E. Hopf, Mathematical Problems of Radiative Zguilibrium, Cambridge Tracts No. 31 (1934).
~ The exponential integral function of order e is: Z (x) =Ji fe~'jdt/t".

In the original report, the relation between go(~} and Je dxgo(x)f(x) in all three problems considered, was derived
by another method. It is more elegant to make use of Davison's theorem.

~ The proof of this theorem is simply as follows: Q(r) in (9) can be regarded as r times the neutron density in an infinite
{isotropically} scattering medium due to a spherically symmetrical system off'continuously distributed sources, the
source density at distance r from the origin being F(r)/r. The total output of these sources will be J'dr(E(r)/r)
=4~jo"rdrIi(r) and Q(~) is equal to 3/4m times the output of all sources; this leads to (10}.
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an integral equation of the form:

Q(r) =
p «'Q(r')LEi(lr —r'I) —Ei(r+r')J+E(r)

ai 0

and Q(r) is its solution bounded at infinity, then

Q(~) =3, rdrF(r).
~o

A comparison of Eqs. (8) and (9) yields:

~ oo ~GO oo

qp(pp) =-', '

xdxEp(x)+P) xdx)l dx'gp(x')Ei(x+x').
0 0 0

Interchanging the order of integration in the second term on the right-hand-side (r.h.s.) of (11) and
evaluating the resulting integral and the erst term on the r.h.s., we get:

qp( ) =$ dxgp(x)Ep(x) + p.
J0

Equation (12) is of the desired form and Eq. (6) becomes:

(12)

kp
dxq(x) g(x) —-', dx'q(x')Ei(ix —x'i)

dp

dxq(x)Ep(x)
J0

(13)

Equation (13) is the final result, and from it we may calculate gp( ~ ) for different choices of the trial
function g(x). The procedure now is to assume a function for q(x), and choose the parameters in this
function so that the left-hand side (l.h.s.) of (10) is an extremum; the resulting function is then
used to calculate gp(~). In this process the trial function g(x) is determined except for a. constant
factor; this factor may be taken so that g(x) is asymptotic to the value obtained for gp(pp).

As has already been remarked, the whole point of the variational method is that the choice of
g(x) may be quite rough and yet give a fairly accurate value for gp(~). Thus, in the present instance,
even if we assume g(x) =constant (for which no variation is necessary in the left-hand side of (13)),
we get:

-2

goo ~ 00

dx 1—-,'dx'Ei(ix —x'i)
a/0 . U0

= 17/24 =0.7083,

which is only 0.3 percent less than the correct value 0.7104.' The result can be considerably improved
by starting from a more elaborate trial function and actually using the extremum property of the
functional. In fact, LeCaine has shown that by choosing a trial function which simulates more
closely the the actual g(x), namely:

g(x) =const. L1 AEp(x)+BEp—(x)$
8 Cf. E. Hopf, reference 4; the value 0.7083 should be less than the true value (which it is!) since thf. J,h, s, of {f3)

shou1d give a minimum for the correct solution of the integral equation (8) (cf. reference 3).
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and extremizing the left-hand side of (13) with respect, to 2 and 8, one arrives at a value of go(~)
which agrees with the correct value to six decimal places (0.7104457 as compared to the correct value
0.7104461).

The second application of the variational method considered here is an estimate of the asymptotic
neutron density in an infinite, isotropically scattering (but non-capturing) medium supporting a
constant Aux from infinity and surrounding a perfectly absorbing spherical core. This problem was
treated by the spherical harmonic method, ' and we shall compare the results of the variational
method with those results. The integral equation for the neutron density in the medium surrounding
the black core can easily be derived; we find:

po(r) =-', Jt dr'po(r') {»(Ir r'I ) —E—i((r' —a') +(r"—a') )},

where po(r) is r times the neutron density and a is the radius of the black core.
We are interested in a solution of (15) which is asymptotically linear, and we write this solution as

p, (r) =r Q(r). — (16)

The existence of this solution can be established in the same way as the existence of the solution of
Kq. (7). On substituting (16) into (15), we find the integral equation for Q(r), namely:

where

Q(r) =
Jl dr'Q(r')K(r, r')+a~(r)

K(r r') =2{Ei(lr—r'I) —Ei((r' —a')'+(r" —a')')}

~~(r) = 2{ aE2(r —a)+E3((r' —a') ) —E~(r —a) j.
(17a)

(17b)

The kernel K(r, r ) is obviously symmetric; it is also positive, as can be seen by noting that
I
r r'

I & I
(r' —a—') &+(r"—a') *"j and that Ei(x) is a monotonically decreasing function of x. Moreover,

the function ei(r) is bounded and the integral J;"
I eq(r) I

dr exists. Hence, the variational method can
be employed to estimate Q(~) provided Q(~) can be expressed in terms of J;"drQ(r) es(r).

A relation between Q(~) and J;"drQ(r)e8(r) can be found by again making use of Davison's
theorem (cf. Eqs. (9) and (10)). For this purpose, we must define Q(r) and e&(r) in the interval
0~& r &a; we choose:"

Q(r) = —',Jt dr'Q(r') {Fi(lr r'I) Ei(r+r') }, —(0—&r&a),
a

(18a)

Further, we write:
eg(r) =0, (0&r&a). (18b)

~Q(r) = 2 «'Q(r') {»(Ir r'I) E—i(r+r'—) },
0

a

~iQ(r) =k)" «'Q(r') {Ei(lr —r' I) —Ei(r+r') }
0

(19b)

a,Q(r) =-',J" dr'Q(r') {E,((r' —a') &+(r"—a') &) E,(r+r') }, (r)~ a)—, (19c)

=0, (0& r &a). (19d)
' R. E. Marshak, Phys. Rev. 'll, 688 (1947).
'0 Cf. Davison's declassified Montreal report MT-232, "Influence of an Air Gap Surrounding a Small Black Sphere

Upon the Linear Extrapolation Length of the Neutron Density in the Surrounding Medium. "
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In view of the above definitions, Eq. (17) becomes:

Q(r) =~Q(r) —~iQ(r) —~iQ(r)+~i(r).

Equation (20) is also satisfied for 0 &~ r(u. If we now use Eq. (9), we get:

~QO p QO QO

Q( ) =3 rdr (r) — rdrIA, Q(r)J—
I d g,Q( )

40 6
(21)

The evaluation of the first term on the r.h.s. of (21) is straightforward; the result is 3a'/4. The
second term on the r.h.s. can be evaluated by interchanging the order of integration to give

3J rd—rQ(r). However, Q(r) for 0&~r(a is defined by (18a); inserting (18a) and interchanging the
order of integration a second time yields:

«'Q(r') t «r f&i(Ir —r'I) —&i(r+r') I.
4e 0

The third term on the r.h.s. becomes, on interchanging the order of integration:

~QO ~QO

«'Q(r') «r{&i((r'—o')'+(r" —Q')') —&i(r+r') I.

It is easy to show that:

C rs QO p QO

rdrZi( I r r'
~ )+ rdrZi((r—' —a') &+(r"—Q') &) — rdrZi(r+r') =&i(r'). (22)

Hence, Eq. (21) leads to the desired relation:

3Q2

Q(")= —3„' d Q(r) () (23)

Substituting (23) into (6) yields an equation corresponding to (13), namely:

Is
QO CO

drQ(r) Q(r) —-', dr'Q(r')K(r, r')

" drQ(r)eg(r)
Q( )

4 3

(24)

Again, as in the plane Milne case, we choose the simplest trial function, i.e. Q(r) =—const. ; we get

a 1
3 ——-+ i drZi((r' —Q') &)

2 336
(~) =

pQO, ~QO

1+2 dr dr'Z ((r' —ia') &+(r"—a') &)

(25)

Values of La —Q(~)g —i.e. , the "extrapolated endpoint" —as a function of a computed on the basis
of (25) are given in column 2 of Table I, while the values of the extrapolated endpoint predicted by
the E~-approximation of spherical harmonic method' are given in column 3. It is seen how powerful
the variational method is for the determination of the asymptotic neutron density. Of course, a
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Variational method

0.5
1.0
2.0
5.0

0.334
.494
.620

, .690
.709

slightly more accurate choice of trial function, TAa~z I. Extrapolation endpoint as function Of a.
which takes into account the exponential-type
approach of Q(r) to Q(00), would lead to con-
siderably more accurate values of the extrapo- 0.347

lated endpoint. Table I further indicates that .626
the actual solution of (17) maximizes the ex- .688

trapolated endpoint as is to be expected from
00 .708

Davison's paper. '
Finally, we have applied the variational method developed above to the case of a black sphere

(of radius a) surrounded by an "air gap" (of outer radius fi) which in turn is surrounded by an
isotropically scattering (but non-capturing) medium supporting a constant flux from infinity. The
integral equation for r times the neutron density turns out to be:

where:

po(r) =-,')t dr'po(y')K(y, r')

K(r, r') = Ei(~r r'~) —Ei(—(y' —b')&+(r" —b')')

pt' dR
+ ~l exp g+ ((g2+y2 y&2)- 4+2(y2 $2))$

R R
with

(y2 $2) &+ (y&2 AD(2)z P (y2 g2)$+ (y~2 g2) &

As in the two preceding cases, since capture is absent in the outside medium, the asymptotic solution
is linear. Following the procedure for the black sphere without gap, we obtain the integral equation
for Q(r), (po(r) =r —Q(r)), namely:

Q(y) = 2J~ «'Q(r')K(y, ")+~~(r), (27)

where:

t&(y) = YiL~@2(y &) @&(y &) +& ((y o~) ~ (& ii ) ') ($& o2) ~/2((r' —a2) ~ ($2 82) $)j (27a)

We find for Q(~) (cf. Eq. (23)):

38 —3 ~" «Q(y)~~(y).

Substitution of (28) into Eq. (6) then permits an immediate application of the variational method
to estimate Q(oc). No numerical results have been obtained for this case.

It is a pleasure to thank Professor J.Schwinger for a valuable conversation on variational methods.
Dr. Davison's cooperation is also appreciated.


