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Two Ayylications of the Variational Method to Quantum Mechanics
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By using the. unperturbed wave function with a variable scale factor as trial-function for a
perturbed Schroedinger equation, a lower bound for the second-order perturbation energy oF
the ground state in terms of the unperturbed and first-order perturbation energy is obtained.
A minimum property of the sum of the n lowest proper values is utilized in a new method for
obtaining higher proper values and functions.

r. INTRODUCTION

N IHos t pl RctlcRl pl ObleIIls of quan tulTl IIle-
~ ~ chanics the Schroedinger equation,

cannot be solved explicitly, and one must take
recourse to approximation methods.

The present note, which is based on the
method of Ritz, contains (1) an estimate of the
second-order perturbation energy in terms of the
unperturbed and first-oI deI' pertuI batloI1 energy;
and (2) a new approach to the evaluation of the
proper values and functions of higher energy
stRtes.

The first-order perturbation energy, ~», of the
ground state is obtained by substituting its
unperturbed, normalized wave function, $0, into
the expression

E= Jt Q*Hpdx. '

OSX X.

2. SCALE FACTOR AND SECOND-ORDER
PERTURBATION ENERGY

%'e +rit the Hamiltonian of a perturbed
systeITi as

H = T(x) + V(x) +»(x),

Now let us take as trial-function the (normal-
1zed) function X "I i/0(»), where BN ls the dimen-
sion of the con6guration space and X is to be
adjusted to minimize E. Making use of (3) and
(4) we obtain

g represents the coordinates of the
system;
is the kinetic energy operator, m repre-

2fn gg~ senting the masses of the particles;
V(x) is the potential energy operator of the

unperturbed system; and
kv|'x) is the perturbing potential energy

operator.

It follows from the de6nition of T(x) that

T(x/X) =X'T(x),

and if we confine ourselves to electrostatic
potentials, then

V{x/X) =X V{x), v(x/X) =Xv(x).

*At present in the Department of Physics, Harvard
Universl ty, Cambridge, Massachusetts.

&=
J A*(»)LT(x)+ V(x)+»(s) jA(»)d(»)

f'x$ (x) (x)
=~ tt, *(x) T( —(+VI —[+»I —

) y, (x)dx
&x)

or

X=X' "&0*(x)T(x)$0(x)dx

+~ Oo'()V()a.()d.

+Xk f0*(x)v(x) $0(x)dx. (8b)

' The integral to be taken over the configuration space.
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The first and second integrals in (8b) represent,
respectively, the average kinetic and potential
energy of the unperturbed system. According to
the Virial theorem in quantum-mechanics, ' these
are equal to —Bo and 2BO, respectively. Thus
(Sb) may be rewritten as

for the normal state of a helium-like atom of
nuclear charge Ze.

Here 1/Z corresponds to our k so that
Eo = —2Z gy = 1.25Z and gg = —0.314'9Z Our
correction term,

eg' = (1.25Z~) ~/( —SZ') = —0.1953Z~ (15)
E= —EpX'+ (2Ep+kei)). .

Minimizing with respect to t we obtain

(9) accounts for 62 percent of ~~.

3. HIGHER ENERGY STATES

where

X =1+kci/2Eo, E=Eo+kei+k ~u', (10)

eg' eP/4E——O.

The term k~j. is just the first-order perturbation
energy. The next term, k'~&', is negative and
therefore improves our estimate of B.

Furthermore, e~' is (in absolute value) a lower
bound of the second-order perturbation energy,
e&. For, if we subtract the true perturbed energy,

E„=Ep+kei+k'e, +k'e, + (12)

from E, as given by (10), we find

E E„=k'(eg'——eg) —k'e3—

and remembering now that 8 is an upper bound
of E„we obtain, on letting k tend to 0, c~'&~ eg.

Since e~' is negative this proves our statement.
In summary we may say that if one chooses as

trial-function for a perturbed system the unper-
turbed wave function of the normal state, but
with an adjustable scale-factor, the variational
method leads to an energy which agrees with the
perturbed energy to the first order and in addi-
tion contains a correction in terms of the first
order and unperturbed energy (see (11)), which
is a lower bound of the second-order perturbation
energy.

In applying the Ritz method to a higher energy
state only functions orthogonal to all lower

proper functions may be admitted for competi-
tion. Unfortunately, the task of assuring ortho-
gonality is, in general, prohibitively complicated.

Hylleraas and Undheim' have used the fact
that the nth root of a secular determinant is an
upper bound of the nth proper value, to approxi-
mate the 2'S term of belium. However, their
method is in practice quite cumbersome and
only slowly convergent.

As an alternative we shall derive an expression
for the nth energy state whose properties are
analogous to (5): Its minimum value is the nth
proper value and the function which leads to
this minimum gives us the nth proper function.

Our method is based on the following

Lemma'

Let Pi, f~, P„be the n lowest normalized
proper functions of (1) so that

E;=)If,*HP;dx, i=1, 2, .n.

Further, let

H =)I y;+Hydx, i=1, 2, '' I, (1'1)

Example: The Helium 1'S Term

Hylleraas' derived the expression

E„=—2Z +1.25Z
p 1 q

&Z)

(1 )—0.3149Z'i —i+ . (14)
EZ')

~ A. Sommerfeld, Wave Mechanics (Methuen and Com-
pany, London, 1930) p. 248.

~ E. A. Hylleraas, Zeits. f. Physik 60, 624 (1930).

where y&, y&, ~ ~ ~ y„are any normalized orthog-
onal functions. Then

Ei+E~+ E„=min. (Hii+Hgg+ H ), (18)

where degenerate proper values are to be counted
multiply. The minimum is attained whenever

4E. A. Hylleraas and R. Undheim, Zeits. f; Physik 60,
759 (1930).

.
' Courant-Hilbert, Meth. d. Math. Phys. (Verlagsbuch-

handlung, Julius Springer, Berlin, 1931), second edition,
p. 399. No proof is given there but it can be easily supplied
by expanding the y —s in terms of the p —s and thence
deriving expressions for H;; in terms of the 8;.



VARIATIONAL METHOD IN QUANTUM MECHANICS 637

with
pi = (~~ —Iipi)/(&' —Ii')',

t p2"pgdx, Ii ——
J

pi*p2dx

(19)

pi p2, p„arise out of Pi, |i2, P„by an
orthogonal transformation.

An application to the estimation of higher
proper values suggests itself immediately.

Let q i be a normalized approximation to the
lowest proper function of (1) and let p2 be an
arbitrary function. Then the functions yj and

Z„=min P (H, ;—E;)+~ H„„—2 Q IN,„

e—1 n—1 ( n—1

+g PI,I;H, i ( ~

E' P —I ), (26)')
& i i )

where q», q ~
~ q„& are any orthogonal functions

and y„ is arbitrary. In the special case when

Ipi =i(i ' ' ' Ip~ i = 'IJ/~ ir we have

(27)

are normal and orthogonal. Consequently, by
our lemma,

Zi+E2 min
J

pi—*—H pidx+ J
p2*Hpgdx (21)

f+
—i

Z„=min 8+) P (E—Z,)I,' (

which leads to

H22 2I1H12+Il II11
E~ ——min Hii —Ei+ (22)

Examyle: The Helium 2'$ Term

where

N' —Ii'

IIsj = Pi II&jd& (23)

To obtain an approximation to the wave
function of the 2'5 state it was assumed that
the "inner" and "outer" electrons move in

coulomb fields corresponding, respectively, to
Z=2 and Z=i. This led to the function

We note that (22) does not involve the correct
Pi but only Ei which can be easily and accurately
estimated by the Ritz method.

The p&'s for which the minimum is nearly
reached are seen to be approximations to'P2.

For practical purposes (22) is rather compli-
cated. It simplifies considerably when pi ——Pi,
becoming

(&—&i)Ii' H22
E'2 ——min E+,where E= . (24)

p, = (-,'ri —1)exp L',ri] exp I 2r2]

+(-', r& —1)expL-', r&] exp —L2ri], (29)

(27/16) 3 27
exp ——(ri+ r2)

16
(30)

where r~ and r2 denote distances from the nucleus.
For the wave function of the ground state the
approximation

was used.
Substitution of (29) and (30) into (24) gave

—4 24 Ry as approximation to E2. This is
still considerably higher than the observed —4.29

Ry, but in view of the crudeness of our trial-
function the improvement over the first-order
perturbation value of —4.07 Ry may be con-
sidered satisfactory.

Strictly speaking we are now obliged to use the
exact wave function, Pi, for the computation of
I&. But fortunately, if y2 is well chosen, the
"un-orthogonality integral" Ii and consequently
also the term following 2 in (24) are small.
Therefore, to estimate Z2 great accuracy in the
evaluation of I& is not necessary and a simple
approximation of Pi is quite sufficient.

For the Ith energy stat
analogous notation,
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