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As in the Wigner-Seitz and Slater cellular approximation
it is assumed that the valence electron potential is spheri-
cally symmetrical within a lattice cell. Then the Schrod-
inger equation becomes separable in spherical coordinates
so that the eigenfunction can be expanded in terms which
are products of spherical harmonics and solutions to the
radial equation. The method differs from the previous
ones in that: (1) eigenfunctions belonging to special wave
vectors are first constructed by suitable linear combinations
of spherical harmonics so as to satisfy symmetry require-
ments and thus, essentially, including more terms in the
expansion without increase in labor and (2) surface bound-
ary conditions are satisfied exactly, in effect, at points
which are more representative of the cell surface. The
method was tested by applying it to the Shockley empty

lattice (body centered cubic) for which the eigenvalues
are known exactly. The lowest four eigenvalues belonging
to the reduced wave vector (0,0,0) and the lowest three
belonging to (0,0,7/a) showed errors of one percent or
less in energy using from two to four terms in the eigen-
function expansion. When applied to sodium results
showed that electrons in the first few Brillouin zones are
indeed very nearly free, having free electron energies
within a few percent even at points near the center and
corners of reduced wave vector space. Furthermore on
the boundary of reduced wave vector space in the (0,0,1)
direction there is no energy gap between the first and
second DBrillouin zone eigenvalues since they ‘stick
together” at that and equivalent points.

INTRODUCTION

N the W-S!2 cellular method because of the
periodicity of the electron-potential it suffices

to focus attention upon a single cell of the crystal
lattice. Schrédinger one-electron solutions for
the valence electrons are sought satisfying the
BC (cell boundary conditions) imposed by sym-
metry and periodicity. The interactions of va-
lence electrons with nuclei and core electrons of
the cell are represented in this approximation by
an ordinary, appropriately chosen, potential V.
Because of high symmetry and the essentially
neutral electrical nature of surrounding cells,
their contribution to this potential is assumed
to be zero.

In the interest of mathematical simplicity and
justified? on grounds of high symmetry the
potential, V, is assumed to have spherical sym-
metry within a cell. The Schrédinger equation
then becomes separable in polar coordinates and

* The method and results were presented in condensed
form at the New York Meeting of the American Physical
Society, January 14-135, 1944.

** Now at the Clinton Laboratories, Oak Ridge, Ten-
nessee.
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the one-electron eigenfunction, ¢, can be ex-
pressed as

Y=2141[ZnCinYi™(s, 0) JR:(E, p) 1)

where the Yy are SH (surface spherical har-
monics), and the R;(E, p) are the solutions to
the radial equation with an energy parameter,
E. The constant coefficients 4;, Cwn and the
energy parameter E can all be chosen in principle
so as to fit the appropriate BC at the surface of
the cell. (The split between 4; and Cun is of
course largely arbitrary but convenient for some
of the following.)

The labor without limit implied in (1) was
reduced by Slater? to practical limits by the
approximation of assuming all Ci's to be zero
for [ greater than a certain fixed value. Then, of
course, the BC cannot be fitted over the entire
surface of the LC. Slater therefore selects certain
points on the surface of the LC at which he
satisfies the BC by appropriate choice of the
Cin's which are not assumed zero. The fitting is
done in this way for any arbitrary wave vector*
k. However, Shockley® has shown that Slater’s
procedure leads to large errors for an-empty

3], C. Slater, Phys. Rev. 45, 794 (1934).

471t is assumed that these eigenfunctions, v, have been
brought into the Bloch form wiz. ¥ =ux(0)expik-@ where
k is a reduced wave vector and uk(@) is periodic with the

period of the crystal lattice.
5 W. Shockley, Phys. Rev. 52, 866 (1937).
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EIGENFUNCTIONS

lattice for which the value of the energy E as a
function of k is known. He concluded that a
much larger number of Cu.'s will have to be
used than was done in Slater’s calculations.

It is the aim of this paper to include Cu,'s up
to much larger I's without increasing the labor.
This can be done for eigenfunctions belonging to
certain points in k space (reduced wave vector
space) of especially high symmetry, i.e., points
having the complete symmetry of the cubic
lattice, or lying on symmetry lines or planes.
The symmetry of the wave functions at such
special points in k space was discussed by BSW.®
Our method consists now of constructing, once
and for all, combinations Z,,Ci. Y™ which have
the correct symmetry required according to
BSW; these we call Kubic Harmonics (KH).
Then choice of the 4; in (1) serves to fit the BC;
note that the BC need to be fitted only on a few
of the surfaces of the LC, symmetry then makes
them automatically satisfied on a number of
other surfaces. By using only 3 or 4 different 4,’s
we can generally include values of / up to 6 which
would require 49 coefficients Ci, in Slater’s
method.

Actual calculations in the present work were
confined to the specially symmetrical points
k=(0,0,0) and k= (0,0,7/a) of k-space belonging
to the body centered cubic lattice. The method
was tested by applying it to the limiting concept
of Shockley’s® empty lattice for which the value
of the energy E is known. For the eigenfunctions
tested, the results of the ELT (empty lattice
test) were encouraging beyond expectation; the
corresponding eigenfunctions and energies were
therefore obtained for sodium.

METHOD OF CONSTRUCTING EIGENFUNCTIONS:
KUBIC HARMONICS

For any distinct wave vector” Kk, there is a
certain group of symmetry operations on the
coordinates which do not change k. This “group
of k” is the full cubic symmetry group for the
two values of k here considered, (0,0,0) and
(0,0,7/a). The eigenfunctions can then be classi-
fied according to the irreducible representation

6 L. Bouchaert, R. Smoluchowski and E. Wigner, Phys.
Rev. 50, 58 (1936).

7 For the meanings of “distinct k" and ‘“‘group of k"’ the
reader is referred to BSW, reference 6.
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of the group of k which describes their transfor-
mation under the symmetry operations of the
group ; each irreducible representation represents
a ‘“‘type.” For the cubic group, for instance,
there are 10 different types (see below). For each
type, we can find various ‘‘sets” of KH which
transform according to the representation char-
acteristic of the type. By a set we mean functions
which transform into each other by the sym-
metry operations of the group of k. A set will
contain only functions of the same order /, and
of course of the same type. Not all types occur
for a given Z, nor all I's for a given type.

It is the aim now to show how each correct
linear combination - of spherical harmonics
2nC1n Y™ belonging to a type, for each order 7 in
which the type occurs, may be constructed.
This construction proceeds in three steps: (1)
constructing a ‘“‘group table” showing the be-
havior of each type under transformation of each
element of the group of k, i.e., whether the
element of the type is unchanged, designated by
+, or changed in sign only, —, or whether it is
transformed into a linear combination of other
members of its type, 0. (2) constructing ‘‘char-
acteristic polynomials,” CP, in x, y, 2 for each
type and order / which have the transformation
properties of the group table constructed above,
and (3) deriving the correct linear combinations
of the SH by dividing the CP by pl=(x*+y?
+22)42 and orthonormalizing. This process is
carried out below for the types belonging to
wave vectors (0,0,0) and (0,0,7/a) of the body-
centered cubic lattice. These correct linear com-
binations for these wave vectors are the KH
sought.

The group of these wave vectors is the full
cubic symmetry group.® It consists of 48 ele-
ments, 24 rotations forming a normal divisor,
N, and these 24 rotations followed by inversion
about the center forming a coset, JN. N and JN
each contain five classes and, therefore, there
are 10 irreducible representations and ten types
of KH «, 8, v, 8, ¢ and &, 8/, 7', &, ¢ corre-
sponding to the five “‘positive’’ irreducible repre-
sentations I'y, T's, T's, Ty, T's, and the five ‘‘nega-

“tive' irreducible representations I'Y/, Ty, T's’, T'//,

"y’, with dimensions 1, 1, 2, 3, 3, respectively.
It is useful to know the type of KH and the
number of sets of a type that can be constructed
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TaBLE 1. Group Table. Behavior of Kubic Harmonic types under operations of the Cubic Symmetry Group. Plus indi-
cates invariance under the element; minus means change of sign only; zero indicates change to one of the other functions
with which the given function is degenerate. If the type is degenerate the behavior of that function is listed which has the

z axis as a unique axis.

1 2 3 4 5 6 7 8 9 0 11 12 13
Class Operation Rotation @ o B8 4 Y ~ 5 & € ¢
E x ¥y 3 none + + + + + + + + + +
C. -x ~y 2 z through = + 4+ + + + 4+ + + + +

x —y —3 % through = + 4+ 4+ 4+ 4+ + - - = =

-x ¥y —z y through = + + 4+ + 4+ 4+ = - - =

Cs -y x 3z z through +x/2 + 4+ - - 4+ 4+ 4+ 4+ - -
y —x z z through —=/2 +  + — - 4+ 4+ 4+ o+ - -

X —z y x through 7/2 + + - - 0 0 0 0 0 0

x g —y « through —=/2 + 4+ - - 0 0 0 0 0 0

2y —x y through =/2 + 4+ - =0 0 0 0 0 0

-z ¥y x y through —=/2 + + - - 0 0 0 0 0 0

Cq y x —2 x=1 through = + -+ - - -+ + - - + +
z -y X x=2z through = 4+ 4+ - - 0 0 0 0 0 0

-x z Yy y=g through = -+ -+ — - 0 0 0 0 0 0

-y —Xx —3 x=—19 through = + 4+ - - 4+ 4+ = = 4 +

—2z —y —x x= —gz through = + 4+ - - 0 0 0 0 0 0

—x —z —y y= —z through = + 4+ - - 0 0 0 0 0 0

Cs z X ¥ x=y=3z through+2x/3 + 4+ 4+ 4+ 0 0 0 0 0 0
y 3 x x=9y=z through —27/3 + 4+ 4+ 4+ 0 0 0 0 0 0

3 —x =y = —y=z through +27/3 + + 4+ 4+ 0 0 0 0 0 0

-y —2z X x= —y=g through —27/3 + 4+ 4+ 4+ 0 0 0 0 0 0

-z —x .y x= —y=—gz through 27 /3 + 4+ 4+ 4+ 0 0 0 0 0 0

-y 3 —X x= —y= —z through —2x/3 + + 4+ 4+ 0 0 0 0 0 0

-z X —y x=y= —gz through 27/3 + 4+ 4+ 4+ 0 0 0 0 0 0

y —z —x x=y=—z through —27/3 + 4+ 4+ 4+ 0 0 0 0 0 0

J —x —y —z none + - - e -+ — — -4 + —
JC: x ¥y —z z through = + — - + o+ - + 4 -
-x ¥y 2 x through = -+ — - + -+ - + — - +

JC; y —x —2 z through £7/2 + - 4+ - 4+ - 4+ - - 4+
—-x z —y x through =4=7/2 + - 4+ = 0 0 0 0 0 0

JC, —y —x 2z x=1 through = + - 4+ - 4+ - 4+ - 4+ -
-z ¥y —x x=2z through = + - + - 0 0 0 0 0 0

JCs —g —x —y x=7v=3z through 2w/3 + - -+ 0 0 0 0 0 0

for each order /. One of us® has derived this and
the results are: for: =0, one « type; /=1, one §;
=2, one each of v and ¢; I=3, one each of
B, 8, €; =4, one each of «, v, ¢, §'; =5, one
each of v/, ¢ and two §; =6, one each of «, v,
B’, & and two e.

Construction of the Group Table

The behavior of each type of KH under the
transformations of the crystal group is shown
(for one function of a set of each type) in Table 1.
This is obtained by a study of the lower order
SH using the above results as a guide. For I=0

8 H. Bethe, Ann. d. Physik 3, 133 (1929).

there is the non-degenerate type « and there is
one SH which is spherically symmetrical and
remains invariant under all transformations.
The behavior of this type is shown in column 4.
For I=1 there is the triply-degenerate § type.
The three SH are x/p, ¥/p, 2/p. The latter one
transforms according to column 10, and only
into either itself or one of the remaining two SH.
For =2 there are the doubly degenerate v type
and the triply degenerate e type. The SH are
[22—1/2(x+3%)1/p?; (y*—%?)/p%; 25/ p?, 2y/p* and
xy/p?. The behavior of the first of these is shown
in column 8. In those cases in which it does not
transform into itself it transforms only into a
linear combination of itself and the second listed
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above. It is therefore double degenerate and is
identified with the vy type. The behavior of
xy/p? is shown in column 12; it is degenerate
with the remaining two, and is identified with
the e type. For [=23, there is among others the
non-degenerate 8 type. Among the SH of =3
there is found the function xyz/p®. This obviously
satisfies the requirements for a non-degenerate
function and its behavior is listed in column 6.
The remainder of the table corresponding to the
behavior of the o/, 8/, v/, &', € types can now be
determined with ease by observing that their
behavior differs only in sign from corresponding
unprimed types whenever an inversion is in-
volved.

Construction of Characteristic Polynomials

For this purpose it is noted that any power of
p is invariant under the transformation of each
element of the cubic group. Thus not only the
SH x/p, y/p, 2/p form functions of type & but
also the first order polynomials x, y, 2 or the third
order polynomials xp?, yp?, 2p®. All sets which
differ only by a power of p are therefore con-
sidered “identical’ for the present purposes.

The problem of constructing CP is the problem
of finding linear combinations of terms of the
form x?y9z” (I=p-+q-+r) which are linearly inde-
pendent of other chosen polynomials of the same
order (or identical polynomials of lower order)
and which behave according to their type (Table
I). The results of reference 8 quoted above aids
in pointing out types for which a search is
instituted.

As an example, the procedure for obtaining
the CP of order four is briefly outlined, assuming
CP of lower order have already been obtained.
This order contains one set each of types a, v, €
and ¢’. These are nine linearly independent func-
tions to be constructed from the fifteen linearly
independent polynomials: three of form x#, six of
form xy?, three of form x?yz, and three of form
x%y%. However, these fifteen are effectively re-
duced to nine because of the six fourth order
polynomials obtained by multiplying identical
lower order polynomials by powers of p? viz:

a type, Pi: pf,

v type, Pa: p*(x*—y?%), p*(y*—2%),
€ type, P3: p’xy, p*yz, pzx.
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With an eye on the Table I there are constructed
the following :

Polynomials obviously of the a type

Py xt4yt4-zt
Py: x*y2+y222+4-2%? is not new but is equal
to ‘%(Pl—‘PQ

Polynomials of v type

Pg: xt—yt, yt—2t
Py: (x2—v2)22, (y*—32)x? not new viz. Py— Pg

Polynomials of € type

Pg: xy2?, yax?, zxy?
Py: x*y+xy®, yz+y28, 22x+2x4° not new viz.
P;— Py

Polynomials of the & type
Pio: x¥y—xy3, y2—y38, Px—ax°

These exhaust the possible number of fourth
order linearly independent functions. The three
fourth powers are exhausted in the three function
P, and P, the six of form «x*y in Py and Py,
the three of form x%yz in P, and the three of
form x?y* in Py and P;.

Construction of Kubic Harmonics from the
Characteristic Polynomials

Dividing the CP of order I by p! yields func-
tions of the angles alone. These functions, Fj,
have the correct symmetry properties of type s
but do not obey Legendre’s differential equation
of order I. However, from their nature it follows
that they are linear combinations of SH of order
! and lower. In order to eliminate all lower order
harmonics Fj, can be made orthogonal to all SH
of order less than . Because of the orthogonality
of functions belonging to different irreducible
representations, it is only necessary to make Fi,
orthogonal to all KH of type s and lower . This
is done by expanding Fi in terms of KH of the
same type and orders / and lower, and obtaining
the KH, K, in the usual way. One of us® has
obtained all the KH up to [=6; these are listed
in Table II.

9 H. A. Bethe, unpublished paper (1935).



TasLE I1. List of the Kubic Harmonics classified according to symmetry properties. All functions normalized to 4.
Factors of p~! are omitted throughout, i.e., x, 3, z are written for x/p, ¥/p, 2/p. Functions in square brackets indicate
functions with normalization factors omitted.

type a ap=1

SN
a4=————————5(347) (x‘+y“+z‘—§p‘)

3-7-11(2-13) 1 1
ag= 8( ) (&"J"A"-*-?Z{ag]pz_m pe)
. <11 ]
B s (AT M PRy o )
type 8 Bs=(3-5-T)lxyz
.5.7-13)%
O TI  S)
11
. 3 (3-5)}
type v (rah =52 -3 +57);  (v2)e="" (%2 —92)

=" (4 (w4) =S0sd)s e =2 Y (w—= naDer?)

C11(2-7-13)}
=T 1

(rohs (5= 38~ 13 Dot 5Tt

(rs=HEET IR (o o280, 30— STt
type &t (81):=3%
(5::):: 5(5)4(23'—%sz>

60, = Z T o Dra1 -0 1)

7. ¥
(aﬁl)z=3(5—721_1).2(x4+y4_%(x2+y2)2)
type ¢ (€2)s=(3-5)bxy
. L]
(0:= 2Ty (- 22)
. .3.5.7. L]
(=3 1102:3:57:18) "‘y(z°‘"161 ol p,,)
.3.7.11- ¥
(s E3 TNy g g0 Sy
type o’ g = CRRAL '81& 17 19)’xy2(x‘(y2—zz)%T(zz—x2)+2“(x2—-y2))
.3.5-7-11- 3
type ﬁ’ ﬂ6’=£§w(x4(y2_z2)+y4(zz_x2)+z4(x2_y2))
7. ]
tper (= (5T 1)@ — 3 s); (1= gt

.5.7. ]
(=BT () — = 15 %)

. 3-13(5-7-11)% 10
(v1)e= ( i ) xyz(x4—y4-—ﬁ(x2—y2)p2)

3(5-7)%
type & (64')z=~(§2—)—xy(x2—y2)

3-11(7-13)
4

. .5.7)%

_3(3-5-7-11)k _
== (z3

(55’)2

Jat) (2 —9%)

1 For types & and ¢, which are triply degenerate, the other two functions are found by cyclic interchange of coordinates.
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BOUNDARY CONDITIONS AT THE SURFACE OF
THE CRYSTAL CELL

The BC on the surfaces of the crystal cell are
fixed by the periodicity of the eigenfunction
which in turn is the property of its wave vector.
A translation from a point 4 on one face to the
point B perpendicularly opposite on a parallel
second face is a translation of a lattice-point
vector T. It is well known® that y(o+T)
=y(g)exptk-T so that, in general

IPB =1/erxpik-T. (2)

These BC can be put into a generally more usable
form by employing the symmetry properties
(listed im a group table) of the eigenfunction
type. For the KH this is now done.

The unit crystal cell for the body centered
cubic lattice is shown in Fig. 1. It has two non-
equivalent face forms: six square faces on planes
x¥=za, y==a, z==+a; and eight hexagonal
faces whose normal vectors are (+a/2, +a/2,
=a/2). The translations between pairs of square
faces are (0,0,2a), (0,2¢,0), and (2a,0,0) and those
between the hexagonal faces are (+a,4a,a). For
the wave vectors (0,0,0) and (0,0,r/a) (to which
the KH belong) the periodicity conditions are
particularly simple. From (2) they are:

for £=0,0,0  Eigenfunctions are periodic
with the periods of all
pairs of parallel faces of the
cell

Eigenfunctions are periodic
with the period of pairs of
square faces
Eigenfunctions are anti-
periodic with the period of
pairs of hexagonal faces

(3a)

for £=0,0,7/a
(3b)

(3c)

(By “anti-periodic” is here meant that the func-
tion changes sign only upon a displacement by
the ‘“‘period” stated.) Correspondingly, eigen-
functions belonging to k=0,0,0 are here said to
be periodic; those belonging to k=0,0,r/a, anti-
periodic.

As an example, the working BC are now de-
rived for the anti-periodic é-type function with
z axis preferred. Non-equivalent pairs of faces
are considered separately. For the square faces
z=z=a: Periodicity, (3¢), and symmetry oper-
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ator x, v, —z (Table I), give successively

‘P(x, Y, a)=¢(x; Y, ““ll) = _‘l/(xy Y, a)

so that the eigenfunction vanishes over this face.
For the square faces x==+a (or y= =a): Perio-
dicity and symmetry operator —x, y, g gives

¢(d+€, Y, Z) =ll/(—‘d+€, Y, Z)=t//(a'—‘6, Y, Z)

so that the normal derivative dy(a, v, 2)/dx,
vanishes over this surface. For the hexagonal
surfaces ==x=4y-+2z=4(3/2)a: Anti-periodicity,
(3¢c), and symmetry operator —y, —x, —z gives

¥(x,3,2)=—¢(x—a,y—a,z—a)
=+y(@a—y,a—x,a—2)

so that the function is symmetrical about the
line {=0 (Fig. 1). Similarly, the normal deriva-
tive is anti-symmetric about the same line.
Table III lists working BC similarly obtained
for all types of functions for that function of a
type which has its z axis preferred.

Fitting of the Boundary Conditions—
Empty Lattice Test

In the notation of Kubic Harmonics the candi-
dates for eigenfunctions (1), have the form

"ps:zltAlthltRl(Ev P), (4)

Fic. 1. Unit lattice cell for the cubic body centered
crystal lattice. The lattice constant, 2a, for sodium, is
shown as 8.138 Bohr radii. The circle on the hexagonal face
is the trace of an equal volume sphere and it was over this
circle that the boundary conditions were approximately
satisfied.
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TaBLE III. Boundary conditions on ¥ and its normal
derivative on the faces of the unit cell. For degenerate
types the BC on that eigenfunction is listed which has its
z axis preferred. 0 =function vanishes over surface; ¢ =anti-
symmetric; s =symmetric.

Square faces Hexagonal faces
(Either periodic or anti- Symmetry about line
periodic funptions) =0
x=za Anti-
‘Type (or y = =ta) 2=4a Periodic periodic
v Ly 2y ¥y X
m Y 3 %
o 0 0 s a a s
B8 0 0 a s s a
v 0 0 K a a s
) 0 0 a s s a
€ 0 0 s a a s
o 0 0 s a a s
g’ 0 0 a s s a
~' Q- 0 s a a s
& 0 0 a s s a
€ 0 0 s a a s

where / is summed over those orders containing
the type s, and ¢ is summed over the multiple
sets of a type which may occur for the higher
orders of /. Because the Kubic Harmonics contain
all the requirements imposed by the symmetry
of the lattice, (4) already satisfy proper BC at
many points on the surfaces of the cell. It
remains to satisfy the remaining BC imposed by
periodicity shown in Table III.

The radial functions R; can in general only be
obtained by numerical integration (see next
section) and depend on the special potential V'
used in the Schrédinger equation. Obviously,
the coefficients A4;; will also depend on the
special problem and cannot be determined ana-
lytically. To keep the labor within limits, only
a finite number of terms in (4) must be used.
Actually at most, four terms were used in which
case three® constant coefficients 4;; and the
eigenvalue E can be determined. This allows, in
principle, the BC on at most! four distinct (not
symmetrically equivalent) points to be satisfied,
aside from those points whose BC are automati-
cally satisfied by the KH. Eigenvalues obtained
by various choices of sets of points yielded results
10-100 percent in error'? for an empty lattice.

10 The fourth coefficient is determined by normalization.

1t Most points on the hexagonal faces have BC on both
¢ and its normal derivative so that if such a point were
included the number of points that can be fitted would be
reduced.

2 Tt is noteworthy that choices including the central
point of the hexagonal faces used by Slater gave results

F. C. VON DER LAGE AND H. A.
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It became evident that some method must be
developed to produce a better ‘‘average” fit.
This is now described.

To simplify arithmetic and to put (4) in a
generally more convenient form, polynomials
related to the Kubic Harmonics are defined

Pu=p'Ky
so that (4) becomes
V=24 1uPux,y, 2)SIE, p), ©)
with
Sl=Rzp'_l. (Sa)

The functions S; are obtained by mechanical
integration. The form (5) or its normal derivative
is used directly to fit BC on chosen points of a
square face (actually at most only one point on
squares, a central point, was fitted).

On the hexagonal surfaces an ‘‘average’ fit
was desired. For this purpose, a more complicated
method had to be used: Eq. (5) was transformed
to cylindrical coordinates, 7, o, £ (=0 in direc-
tion +7, Fig. 1, and ¢ normal to the surface).
Each polynomial, Py, was expressed as a Fourier

‘series in o whose coefficients, Pj;,, are homo-

geneous polynomials in ¢ and 7 of order I. The
result is

v=[ZuAuS«E, p)ZuPi cosna ]
+[Z04165:ZmPiim sinma’]  (6)

wherein either # is summed over zero, and all
positive even integers, and m over all positive
odd integers or the reverse, depending upon the
type. In either case, the first term in (6) is
symmetrical, the second is anti-symmetrical
about the axis a=0 and correspondingly ¢ is
said to be composed of an even part, ¥, and an
odd part, ¢, respectively. The BC on the hexa-
gonal surfaces are completely satisfied when ¢,
(or ¢_) and the normal derivative of y_ (or ¢¥.)
vanish over the hexagonal surfaces corresponding
to the BC (Table III) that ¢ is antisymmetric
(or symmetric). '

For a symmetrical eigenfunction the exact
boundary conditions on the hexagonal surfaces
may be stated in the form.

which were particularly bad. This is understandable
because the central point has a much smaller distance from
the origin than an average point, and also has a much
higher symmetry which makes the BC degenerate.
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For all m EuAuSl(E,,P)Pltm(ry 5) =0 (7)
and for all #  (9/9§)[Z141S1P1n]=0,

respectively. (When y is anti-symmetric m and =
are interchanged in (7).) For fitting with the
limited number of A4, it was assumed, as an
approximation that the radius, 7,, of the trace
of the equal volume sphere on the hexagonal
surface was a good ‘“‘average’’ radius and that
boundary requirements (7) corresponding to the
higher harmonics in the expansion (6) could be
neglected. The actual numerical procedure was,
using the experimental lattice constant, Fig. 1,
to make a likely choice of E and determine the
disposable constant coefficients, 4, with a com-
patible number of BC, (7), of lowest m and #.

The choice of E is then tested by use of a BC on”

a square surface; and then the procedure is
repeated until the consistent value for £ is found.

The method was tested using the ELT for
each of the solutions carried out. In the limit of
vanishing potential V, the radial functions .S,
are functions akin to the Bessel's functions
Ji3(K, p)/pl. Using these functions, the eigen-
values E are obtained from the above procedure
of fitting the BC, and can then be compared
with their known true values, K2 (K is the ‘‘free
electron” wave vector which depends on k and
on the number of the Brillouin zone.) The results
are given in Table IV.

Discussion of the Method

Table IV lists the error in the computed empty
lattice eigenvalues belonging to k=0,0,0 and
0,0,7/a as a percentage of their true values for
the lowest lying levels (not including the ground
state for which the test is not applicable since
Y =constant is an exact solution). The number
of terms used in the expansion of each of the
eigenfunctions is also listed. This was arbitrarily
limited by including Kubic Harmonics only up to
l=6.

The results of the empty lattice test are most
gratifying. At the upper end of the first Brillouin
zone (k=0,0,7/a), the error in the energy is one
quarter of a percent or less, as compared with
errors up to 40 percent in Slater’s method (see
Fig. 2, reference 5). Even at the upper end of
the second zone, the error does not exceed 1
percent (Slater’s method 35 percent). This im-
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provement has been achieved while taking, in
each individual case, only 2 to 4 terms in the
expansion while Shockley took 8 terms in testing
Slater’s method. Even considering the greater
complication of our Kubic Harmonics as compared
with Legendre polynomials, and of our average
fitting of the BC as compared with Slater’s
fitting at a point, the total labor in our method
is probably no greater than in his. In fact, it
would not involve excessive labor to include a
considerably greater number of terms in our
expansion. This would permit an extension of
the method to higher Brillouin zones.

Since the eigenvalues for the empty lattice are
in.error by one percent or less it seems likely
that the accuracy for filled cubic lattices will be
limited by the accuracy of the potential, V. It
is believed, therefore, that, at least for the wave
vectors here. considered, this is a one-electron
approximation for cubic solids which compares
favorably with methods for treating atoms.

The method is not confined to the investigation
of one-electron states belonging to k=0,0,0 and
0,0,m/a. It appears to be a straightforward
problem to obtain the energy spectrum for other
symmetrical wave vectors without recalculation
of the radial functions. This would involve con-
structing appropriate harmonics corresponding
to the new irreducible representations and apply-
ing the more general periodicity boundary con-
ditions compatible with the new wave vectors.
Once the energy spectra of a number of sym-
metrical wave vectors has been determined the
eigenvalue hypersurfaces can be traced out by
interpolation guided by the BSW compatibility
tables.® Behavior near wave vectors of symmetry

TaBLE IV. Percent error in eigenvalues for the empty
lattice and eigenvalues for sodium belonging to the lowest
lying levels for k=0,0,0 and 0,0,7/a. Fitting for « and
types belonging to k=0,0,r/a by the authors; remainder
by Bowers (see reference 13).

No. of
terms used
in eigen- ELT
function E in Ry error
Type expansion k K for sodium in E
a 3 0,0,0 0 —0.608
v 3 0,0,7/a w/a  —0.036 0.16%
) 4 0,0,w/a w/a —0.0135 0.07%,
e 3 0,0,x/a x/a  +0.0935  0.26%,
% 3 0,0,0 2r/a +0.525 0.8%
8 4 0,0,0 2r/a  +0.563 0.6%
¢ 2 0,0,0 2r/a  +0.600 1.0,
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can be investigated by perturbation methods
with eigenfunctions obtained above; this has
been done by Bowers.?

On the other hand, the harmonics and working
relations are the same for all crystals having the
same space group. Thus, having done the work
for one substance, the problem for a substance
having an identical lattice structure becomes one
only of obtaining new radial functions and solv-
ing elementary sets of simultaneous algebraic
equation. It must be admitted that thus far the
method has been tested only for wave vectors of

BW. Bowers,
(1943).

Doctoral Thesis, Cornell University

BETHE

Fic. 2. This shows the
eigenvalues at k=(0,0,0)
and (0,0,7/a) as computed
for sodium by the present
method. For comparison
the eigenvalues in the
0,0,1 direction of the first
two Brillouin zones for
sodium as computed by
Slater and for the free
electron are shown. Detail
1 and Detail 2 sketch the
BZ in the (0,0,1) direction
which join up with the
computed values (see
BSW compatibility
tables). Note that due to
the degeneracy of the
v type at k=(0,0,7/a)
there is no gap in the
(0,0,1) direction between
the first and second BZ.

2"° BZ ~ FREE
ELECTRON

high symmetry. Accuracy of the method in
general for crystals having a cell shape and
symmetry departing widely from that of a sphere
remains at present in doubt because of the basic
approximation of separability of variables in the
Schrédinger Equation.

RESULTS OF THE METHOD AS APPLIED
TO SODIUM

When the method is to be applied to any
problem other than the empty lattice, the po-
tential ¥V must be appropriately chosen. We
have used the same potential'* energy function

14 W, Prokofjew, Zeits. f. Physik 58, 255 (1929).
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V as W-S? and Slater.? The radial functions, R;,
were obtained by mechanical integrationtt and
checked by numerical integration using I1.B.M.
machines. The agreement was satisfactorily
within the expected limits of error of the differ-
ential analyzer. Radial wave functions were ob-
tained for /=0 to 6, and for energies E=+0.6,
+0.3, +0.1,0, —0.1, —0.3, and —0.6 Rydbergs.
The eigenvalues were obtained by interpolation.

Table IV lists the seven lowest lying eigen-
values for k=0,0,0 and 0,0,7/¢ as computed for
sodium. For comparison Fig. 2 shows in addition
the eigenvalues of the first and second Brillouin
zones along the line 0,0,1 in k space, for the case
of the free electron and that of sodium according
to Slater’s Fig. 3. Detailed sketches in Fig. 2
exhibit (for -sodium) the variation from free
electron eigenvalues near the center and bound-
ary of the Brillouin zones. They also show the
‘“‘sticking together” of the eigenvalue hyper-
surfaces at these points which was pointed out
by BSW, and indicate the extremity eigenvalues
to which the lower hypersurfaces join as deter-
mined by the BSW compatibility tables. The
notations Aj, A, etc., indicate that the given
eigenvalue belongs to the respective representa-
tion of the group of k (notation of BSW).

A very significant result of the present calcu-
lation is that for sodium in the 0,0,1 direction
the electrons are essentially free. If the electrons
were in fact free, the eigenvalue at the corner
(0,0,m/a) of the first Brillouin zone would be
—0.608+ (7/a)?= —0.012 rydberg which is very
close to the eigenvalue for the é-type (—0.0135)
actually found there and is in between the other
two types. However, there is a slight deviation
from freeness very close to this corner since the
lowest lying energy hypersurface joins with the

v type with energy —0.036 rydberg. (The total

width of the first Brillouin zone in the 0,0,1
direction is thus 4 percent less than for free
electrons.) Bowers®® has shown that this devia-
tion extends only a very short distance from the
corner. This essential freeness of the electron up

1t In this connection the authors are indebted to Pro-
fessor S. H. Caldwell of M.I.T. in making available the
use of the mechanical Bush Differential Analyzer; to Mr.
P. O. Crawford who as a graduate assistant (1940) made
the work possible by operating the machine; to Dr. Martin
Schwarzschild who ran an independent check on two of the
functions at the Thomas Watson Computing Bureau at
Columbia University.
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to a point close to the corner of the first Brillouin
zone is in agreement with the calculations of
Bardeen,!® wherein he obtained (near k=0,0,0)
the ratio of electronic mass to effective mass of
1.069 indicating a deviation in eigenvalues of
7 percent from those of the free electron.
Actually, as shown in Fig. 2, the eigenvalues
of the higher Brillouin zones also remain close
to those for the free electron. However, there
can be little doubt that the gap between the §
and v states amounting to 0.022 rydberg is real
because the empty lattice test indicates an uncer-
tainty in calculated energies of only 0.26 percent
of 0.6 Ry, that is, 0.0016 Ry, about 7 percent of
the calculated difference between 6§ and v states.
Figure 2 shows poor agreement with Slater’s
calculations for the 0,0,1 direction. It is sus-
pected that these markedly different results are,
in part, because of his choice of the centers of
hexagons as fitting points. Experience gained in
the present work indicates that these points were
far from average points yielding particularly
poor results in the case of the empty lattice.?
At k=0,0,7/a the lowest lying eigenvalue is
the v type (E,= —0.036 Ry) considerably below
the lowest a type (E.=-40.094 Ry). The type
A; (notation is that of BSW), belonging' to the
wave vectors lying on the line 0,0,1 is compatible
with both the « and v types at the line ex-
tremities. Thus, as we go along the line 0,0,1 in
k' space, the eigenvalues of the first Brillouin
zone start at the a type ground state and end on
this v type at k=0,0,7/a. Since the vy type is
doubly degenerate it is also the lowest eigenvalue
of the second Brillouin zone; if we then proceed
again along the line 0,0,1 this eigenvalue emerges
as a A; type from this v type and ends on the
low lying v type at k=0,0,0. Therefore, due to
the “sticking together' effect of BSW, there is
actually no gap in energy at all in the direction
0,0,1 between the eigenvalues of the first and
second Brillouin zones. This condition of course
does allow a change in density of states near the
corner, and probably also gaps in other direction
of k space, but at the corner of the first Brillouin
zone there is no actual discontinuity.
No experimental verification of sufficient re-
solving power exists to support these results.

16 J, Bardeen, J. Chem. Phys. 6, 367 (1938).
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X-ray absorption measurements of high resolving
power for potassium, which is expected to show
wider departure from free electrons, have been
carried out by Platt.!® The K edge investigated
shows quite close agreement with his theoreti-
cally predicted absorption which was based on
the assumption that the electrons are free. No
evidence existed to show an energy gap. This,
of course, is at best supporting evidence of the
non-existence of a gap in potassium since gaps

16 J, B. Platt, Phys. Rev. 69, 337 (1946).

WALLACE

may exist which could be completely masked by
the eigenvalue dependence upon wave vector
direction.
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The structure of the electronic energy bands and Brillouin zones for graphite is developed
using the “tight binding” approximation. Graphite is found to be a semi-conductor with zero
activation energy, i.e., there are no free electrons at zero temperature, but they are created
at higher temperatures by excitation to a band contiguous to the highest one which is normally
filled. The electrical conductivity is treated with assumptions about the mean free path. It is
found to be about 100 times as great parallel to as across crystal planes. A large and anisotropic
diamagnetic susceptibility is predicted for the conduction electrons; this is greatest for fields
across the layers. The volume optical absorption is accounted for.

1. INTRODUCTION

HE purpose of this paper is to develop a

basis for the explanation of some of the
physical properties of graphite through the band
. theory of solids. We shall be concerned pri-
marily with a discussion of its electrical con-
ductivity, but the treatment given makes pos-
sible the explanation not .only of the electrical
conductivity and its anisotropy but also the
thermal conductivity, diamagnetic susceptibility,
and optical absorption.

The electrical resistivity of single crystals of
graphite is about 4 to 6X107% ohm-cm.! This
corresponds to a conductivity of the order of
that of a poor metal. The temperature coefficient
of the conductivity is negative, as in the case of

* Now at McGill University.
1 Given by E. Ryschewitsch, Zeits. f. Elektrochem. ang.
physik. Chemie 29, 474 (1923), as 3.9-6X 1075 ohm-cm.

a metal. Polycrystalline graphite, on the other
hand, has a much higher resistivity which varies
very strongly according to the type of graphite
used, and has a positive temperature coefficient
of conductivity? to about 1400°C, and negative
thereafter. Since the crystals of commercial
graphites tend to be of the order of 10~% cm, and
it is quite porous (density ~1.6 as against 2.25
for single crystals), it seems reasonable to
attribute the high resistivity of polycrystalline
graphite to the crystal boundaries, on which may
be lodged impurity atoms. The latter would tend
to be driven off on heating, thus accounting for
the observed temperature dependence. We shall
show, however, that the band theory would
seem to make possible the explanation of the
conductivity properties of single crystals.

2 C. A. Hansen, Trans. Am. Electrochem. Soc. 16, 329
(1909) gives 137.5X 1078 at 0°C 82.5X 1075 at 1400°C.



