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A new theory of propagation of one-dimensional shock waves is described. The partial
differential equations of hydrodynamics and the Hugoniot relation between pressure and
particle velocity are used to provide three relations between the four partial derivatives of
pressure and particle velocity, with respect to time and distance from the source, at the shock
front. An approximate fourth relation is set up by imposing a similarity restraint on the shape
of the energy-time curve of the shock wave and by utilizing the second law of thermodynamics
to determine, at an arbitrary distance, the distribution of the initial energy input between
dissipated energy residual in the fluid already traversed by the shock wave and energy available
for further propagation. The four relations are used to formulate a pair of ordinary differential
equations for peak pressure and shock wave energy as functions of distance from the source.
The theory takes proper account of the finite entropy increment of the fluid produced by the
passage of the shock and permits the use of the exact Hugoniot curve of the fluid in the nu-
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merical integration of the basic equations.

INTRODUCTION

N discussing earlier work by Poisson,! Stokes?
appears to have first suggested the possibility
of the propagation at greater than acoustic
velocity of discontinuous pressure waves. Earn-
shaw® and Riemann* have discussed the laws of
propagation of waves of finite amplitude and the
building up of the discontinuity. The conditions
for a wave of permanent type have been investi-
gated by Rankine® and Hugoniot® who have
provided statements of the conditions for the
continuity of mass, momentum, and energy
across the moving discontinuity. Rayleigh” has
shown how to solve the hydrodynamic equations
for plane shock waves when the pressure and
density are connected by the adiabatic law.

An exact solution for the cases of spherical
and cylindrical shock waves cannot be given, due
to the spherical and cylindrical divergence terms
of the equation of motion. A straight forward
attack on the mathematical problem may be
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based upon the numerical integration of the
partial differential equations of hydrodynamics.
However, the labor involved in this approach is
so great as to limit it to special applications.
The need for a more flexible and rapid theoretical
method, based if necessary on well-defined
approximations, is therefore clear. Such a method
has been previously developed for shock waves
in water from spherical charges of explosive.?
Underwater explosion waves are simpler to treat
than blast waves in air, since the relatively small
entropy increment produced at the shock front
permits the use of the approximation of adiabatic
flow. Failure of this approximation in air has
until now prevented the formulation of an
adequate theory of blast waves in air.

A theory of underwater shock waves has
recently been presented by Osborne and Taylor.?
Their theory is based upon the acoustic approxi-
mation and is therefore strictly valid only for
small excess pressures at large distances from
the source.

In the present communication, we describe a
a theory of the propagation of one-dimensional
—that is, plane, cylindrical, and spherical—
shock waves which is valid both in air and water.
The theory takes account of the finite entropy
increment in the fluid resulting from the passage
of the shock wave. It also permits the use of the

8], G. Kirkwood and H. A. Bethe (1941).
( ? F.)M. Osborne and A. H, Taylor, Phys. Rev. 70, 322
1946).
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PROPAGATION OF SHOCK WAVES

exact Hugoniot curve for the fluid and in this
respect is superior to previous treatments of the
shock wave in air which have been based upon
ideal gas adiabatics with constant heat capacity,®
an approximation which fails badly near the
explosive source.

THE PROPAGATION EQUATIONS

In discussing the propagation of one-dimen-
sional shock waves, it is convenient to write the
equations of hydrodynamics in the form,

pre u  au 1 9p

— =, (1)
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ot/ g

where u is the particle velocity, p the pressure
in excess of the pressure po of the undisturbed
fluid, p the density, po the density of the undis-
turbed fluid, ¢ the time, and # the Euler coordi-
nate at time ¢ of an element of fluid with La-
grange coordinate R. The Euler sound velocity
¢ is equal to [(9p/dp) s . The coefficient a takes
on the values,

a=0 for a plane wave,
a=1 for a cylindrical wave,
a=2 for a spherical wave.

Equations (1) are supplemented by the equation
of state of the fluid and the entropy transport
equation 4.5/0t=0, the latter of which we shall
not explicitly use. Equations (1) are of a hybrid
form in that we use the Lagrange coordinates R
and ¢ as independent variables but retain the
Euler equation of continuity. Equations (1) are
to be solved subject to initial conditions specified
on a curve in the R, {-plane and to the Rankine®-
Hugoniot® conditions at the shock front,

p=p0uU1
o(U—~u)=poU, (2)
AH=(p/2)(1/po+1/p),

10 G, I. Taylor, Proc. Roy. Soc. A186, 273 (1946).
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where AH is the specific enthalpy increment
experienced by the fluid in traversing the shock
front and U is the velocity of the shock front.
Equations (2) constitute supernumerary bound-
ary conditions which are compatible with the
differential equations and specified initial condi-
tions only if the shock front follows an implicitly
prescribed curve Ry(¢) in the R, f-plane.

We denote a derivative in which the shock
front is stationary by

d a9 19
R 3
dR 9R U o
If the operator d/dR is applied to the first of
Egs. (2) and if Egs. (1) are specialized for the
shock front, =R, three relations are obtained
between the four partial derivatives dp/dt,
dp/OR, du/dt, du/dR.

pou 1 0p oau
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du p dU
g=pU—=1———.
dap U dp

All of the coefficients in Egs. (4) can be expressed
as functions of pressure alone by means of the
Hugoniot conditions, Eqgs. (2), and the equation
of state of the fluid. If Eqgs. (4) can be supple-
mented by a fourth relation between the partial
derivatives, it would be possible to solve for
each of the four derivatives as a function of p
and R, and with the aid of Eqgs. (3) to formulate
an ordinary differential equation,

dp ap 1 ap
+——=F(p, R), 5
dR 0R U ot ®. R) ®)

for the peak pressure p of the shock wave as a
function of the distance R, and in addition to
obtain the initial slope, —1/6, of the Euler
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pressure-time curve of the wave,

1 10p ap 9p

(6)

8 p ot ppodR

The physical basis for the supplementary
relation to be established lies in the fact that the
non-acoustical decay of waves of finite amplitude
is closely associated with the entropy increment
experienced by the fluid in passing through the
shock front and the accompanying dissipation
of energy. As a shock wave passes through a
fluid, it leaves in its path a residual internal
energy increment in each element of fluid deter-
mined by the entropy increment produced in it
by the passage of the shock front. As a result,
the energy propagated ahead by the shock wave
decreases with the distance it has traveled from
the source. ,

The adiabatic work w, per unit area of initial
generating surface done on the fluid exterior to
the surface is given by

R
Wolo® = f poroELp(ro) Jdro

ao

+ f vl (o +po)dt, (7)
to(R)

where %’ and p’ denote particle velocity and
excess pressure behind the shock front (the
unprimed quantities being reserved henceforth
for quantities at the shock front), fo(R) is the
time of arrival of the shock front at R, E(p) is
the specific energy increment of the fluid at
pressure po and for an entropy increment corre-
sponding to shock front pressure p, and a, is the
Lagrange coordinate of the generating surface
of the shock wave. Now,

0

Dor ay'dt
to(R)

E 7 po
=p0AV+Pof (—-—-—1)7’0"@7’0, (8)
a NP

where p is the final density of the fluid and AV
is the volume swept out by the generating surface
per unit area of initial generating surface. Com-
bining Egs. (7) and (8) and introducing %(p)
=E-+poA(1/p), the specific enthalpy increment
of an element of fluid traversed by a shock wave
of peak pressure p after return to pressure po
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along its new adiabatic, one obtains
R
Wolo® = PoA V—I-f poro*h[ p(ro) Jdro
+ f rew'p'dt.  (9)
to(R)

The time integral may be assumed to vanish at
R= =, If one subtracts from Eq. (9) the expres-
sion obtained from that equation at R= o, there
results the relation,
D(R) = (10)

to(R)

reu'p'dt,
where

DR)= [ ool (D)
R

The energy of the shock wave at the point R is

by definition the work done on the fluid exterior

to R. Thus, the shock wave energy at R per unit

area of initial generating surface is given by the

quantity e, *D(R).

Our dissipation assumption breaks down if the
first shock wave can be overtaken by second
shocks built up in its rear. This will not be the
case if the pressure-time curve is initially mono-
tone, decreasing with asymptotic value po. If
the excess pressure p’ has a negative phase, a
second shock will develop in the negative part
of the pressure-time curve but cannot overtake
the initial positive shock. In this case, our theory
will apply to the positive phase if the time
integrals of Eqs. (7) to (10) are extended not to
infinity but to the time at which the excess
pressure in the positive phase vanishes. The
general theory of shock waves is not sufficiently
developed to permit one to say that there is
proof for these statements, but they can never-
theless be accepted with some assurance as
plausible.

The energy-time integral can be expressed in

reduced form,
D(R) = R*puuv,

1 (6 logp’u’r“) 10p 10u au
- t=to(R)

ot o u dt R
© P 12)
@ t—to(R)
v=f f(R, 7)d7, 7=—",
0 M

f(R, 7)=rep'u’/Rpu.
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The function f(R, 7) is the energy-time integrand,
normalized by its peak value R*pu at the shock
front, expressed as a function of R and a reduced
time 7 which normalizes its initial slope to —1
if u does not vanish. We also assume f to be a
monotone decreasing function of 7. Elimination
of u between the first two of Eqgs. (12) yields the
desired fourth relation supplementing Eqs. (4)
between the partial derivatives at the shock
front. This set is exact, involving integrals of
Egs. (1) for the knowledge of the reduced energy-
time function f(R, 7). However, if f(ao, 7) is
initially a monotone decreasing function of 7,
f(R, 7) will remain so, and in fact will at large R
become asymptotically a quadratic function of
7 corresponding to the linear form of the pressure-
time curve that has been shown? to be stable at
large distances. This means that » is a very
slowly varying function of R, for which suffi-
ciently accurate estimates for many purposes
can be made without explicit integration of the
hydrodynamic equations. The assignment of a
value independent of R to v is equivalent to
imposing a similarity restraint on the energy-
time curve. This type of approximation is equiva-
lent in principle to that underlying the Rayleigh-
Ritz method, although we do not include a
variational procedure to carry the result to any
desired degree of approximation.

The initial pressure-time and energy-time
curves of an explosion wave are rapidly decreas-
ing. An expansion of the logarithm of the func-
tion in a Taylor series in the time, the well-known
peak approximation, is appropriate for an initial
estimate of ». This corresponds to an exponential

f),
f(r)=e,

and results in the value, v=1. For the asymptotic
quadratic energy-time curve, corresponding to a
linear pressure-time curve of the positive phase
of the wave,

<2,
T>2,

J(r)=1—1/2)%,
f(r) =0,

which leads to the value, v=2. As a convenient
empirical interpolation formula between the two
extreme values, we have employed the relation,

v=1—1exp—[p'po] (13)
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in a series of calculations!! of the peak pressure
distance curves of shock waves from explosive
sources.

Elimination of u between the first two of Eqgs.
(12) and combination with Eq. (4) yields a set of
four equations which may be solved for the four
partial derivatives, and an ordinary differential
equation for the peak pressure p as a function of
the distance R may be formulated with the aid
of Eq. (5). A second ordinary differential equa-
tion relating D to R may be obtained by differ-
entiation of Eq. (11). The resulting expressions
may be written in the form,

D ReLo)
dR b

14
i Rep (14)
—=—y

dR D

() ()Y

L(p) = poh(p),

M(p)=——
®) peU%2(14+9)—G
N(p)=4(po/p)+2(1~po/p)G
2(1+9) -G
G=1 U/pc)? 1 p U
= _(pO PC): g= —Udp

The functions L(p), M(p), and N(p) can be
evaluated as functions of the pressure by means
of the equation of state of the fluid and the
Hugoniot relations, Egs. (2). It may be remarked
that Egs. (14) are independent of any assumption
regarding the equation of state of the fluid and
that they take proper account of the finite
entropy increment of the fluid produced by the
passage of the shock.

The functions L(p), M(p), and N(p) are most
conveniently expressed as functions of the pres-
sure in tabular form, and they may be evaluated
by numerical methods from a tabular presenta-
tion of the exact Hugoniot curves for the fluid.
Equations (14) can then be integrated numeri-
cally by the use of standard methods.'?

1 J, G. Kirkwood and S. R. Brinkley, Jr. (1945).

12 See, for example, J. B. Scarborough, Numerical Mathe-
mtm'cazél3 xfl}nalysis (Johns Hopkins Press, Baltimore, 1930),
pp. 218 ff.
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THE ASYMPTOTIC PROPAGATION EQUATIONS

It is of interest to examine the asymptotic
form of the solutions of Egs. (14) for small
excess pressure p. If the exterior medium is
air, the ideal adiabatic equation of - state,
p=po (p/po)*—17], may be employed in the limit
of small excess pressure, where v is the ratio of
the heat capacities of py and at the temperature
of the undisturbed fluid. Employing the acoustic
approximation in the evaluation of the limiting
shock wave velocity, it is easy to show that

+1 2
Lim(p—0)L(p) = —— 2,
1272 po?

1
Lim(p—0) M(p) == £
8v% po®

0

(15)

Lim(p—0)N(p) =1,
Lim(p—0)r=1%,
and the asymptotic equations are

v+1 Rep?
i
v+1 Rep*
1242 Dpe?

aD
dR
dp  ap

dR 2R

(16)

Equations (16) have the solutions,

Rp=Pi(logR/Ry)7,
D=[(y+1)/6v*p1P*Rp,

for the spherical wave, a=2,

A/Rp=Pi[2(n/R—~/Ry) T
D=[(v+1)/6v*p¢*1P1*+/Rp,

for the cylindrical wave, a=1, and

p=Pi(R—Ry)™,
D=[(y+1)/6v*p*1Ps*p,

for the plane wave, a=0, where P; and R; are
constants. Equations (15) to (17) are valid when
the exterior medium is water if, in these expres-
sions, the pressure po is replaced by the char-
acteristic pressure B of the Tait® equation of

(17a)

(17b)

(17¢)

13 R, E. Gibson, J. Am. Chem. Soc. 56, 4 (1934); 57, 284

(1935). See also A. Wohl, Zeits. f. physik. Chemie 99, 234
(1921), and H. Carl, <bid. 101, 238 (1922).
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state, which may be written for use along an
adiabatic in the form p=B[(p/p0)*—1], and v
is interpreted not as the heat capacity ratio but
as the exponent of p/po in the Tait equation.
The asymptotic form for the peak pressure of
the shock wave with spherical symmetry is in
agreement with the results of the theories of
Kirkwood and Bethe® and with the limiting
theory of Osborne and Taylor.® The pressure,
in this case, decays non-acoustically as the
slowly varying factor (logR/R;)*.

THE IMPULSE

The impulse I delivered by the shock wave at
a point of fixed Euler coordinate 7 is

I= p'dt

to(R)

(18)

along a path of constant 7. If the excess pressure
p' has a negative phase, the positive impulse is
obtained if the time integral is extended not to
infinity but to the time at which the excess
pressure vanishes. The pressure-time integral can
be expressed in reduced form in a manner
analogous to the reduction of Eq. (10).

I=v*po,

1 (6 logp’ )
0 at ” t=to(R),

t—1o(R)

w= [ @inar, o-——
0 .

(19)

The initial slope, —1/6, of the Euler pressure-
time curve is expressed in terms of the Lagrange
partial derivatives at the shock front by Eq. (6),
and these partial derivatives were obtained as
functions of peak pressure by the solution of
Egs. (4) and (12). The following expression is
obtained for 6:

R IRENEL T

For an exponential pressure-time curve, con-
sistent with the peak approximation and the
exponential energy-time curve, the reduced
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pressure-time integral »* is equal to 1. For the
asymptotic linear pressure-time curve, consistent
with the asymptotic quadratic energy-time
curve, we have »*=% for the positive phase of
the wave. As an empirical interpolation formula
between the two values, we have employed the
relation,!

v!=1—%exp—[p/po (21)

We have found that Eq. (21) leads to satisfactory
agreement between calculated and experimental
values of the positive impulse when used in
conjunction with Eq. (13) for the reduced
energy-time integral. A more detailed analysis of
the relation between » and »* does not seem
justified in view of the empirical nature of
Eq. (13).

INITIAL CONDITIONS FOR SHOCK WAVES FROM
EXPLOSIVE SOURCES

The two constants of integration may be
determined from the thermodynamic properties
of the explosive and those of its products, either
in the Chapman-Fouget detonation state or in
the instantaneous detonation state corresponding
to adiabatic isometric conversion of the entire
explosive charge to its decomposition products.
Since the instantaneous detonation state may be
expected to give the better average representa-
tion of the behavior of the detonation products
in the generation of a shock wave in an exterior
medium, we shall employ it in the discussion of
the initial conditions for the shock wave.

If at the initial instant of time, a charge of
explosive has been converted to products at a
uniform pressure p,, a shock wave will advance
into the exterior medium and a rarefaction wave
will recede into the detonation products. The
initial excess pressure p;, and particle velocity
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11, continuous at the boundary, are related by

o*(p1) +u1=0, u=p/pU(P),
p+po dp
@)= [

)
p¥c*

(22)

where ¢* is the Riemann* function in the explo-
sion products and U, the shock velocity in the
exterior medium, is determined as a function of
the pressure by the Hugoniot conditions, Egs. (2).
The asterisked quantities refer to the explosion
products. The first of Egs. (22) expresses the fact
that the Riemann r-function? initially vanishes
in the receding rarefaction wave. In order to
solve Eqgs. (22), it is necessary to use the Hugo-
niot tables for the exterior medium, the energy
of explosion, and the heat capacities and equi-
librium constants for the substances making up
the explosion products; and to evaluate ¢* it is
necessary to use an equation of state for those
products.

In the development of the propagation equa-
tions, the rate of energy delivery has been
approximated by an exponential function of
time. For shock waves in air, it may be assumed
that the integral of this exponential function is
equal to the total energy of explosion, since
experimental evidence suggests that there is little
residual energy available for second shocks. For
shock waves in water, experimental evidence
suggests that approximately one-half of the
energy of explosion is delivered to the first
shock. The initial value of the quantity D is
readily estimated from these considerations, and
the disadvantages of the approximate nature of
this procedure are minimized by the circum-
stance that except in the immediate vicinity of
the explosive charge, the shock wave parameters
are not very sensitive to the initial energy.



