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Notes on Rotation and Rigid Bodies in Relativity Theory
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Covariant conditions for rigid-body motion are set up. They are equivalent to those pro-
posed by Born and lead to the linear speed-distance lax for the case of rotation about an axis.
This result and also a discussion of the transformation equations in going over to a rotating
frame of reference are used as arguments for the desirability of retaining the concept of rigid
rotation with the linear speed-distance lax, contrary to the opinion expressed by Hill. The
rotation question is also considered from the standpoint of angular velocity, and one is lead
rather naturally to tv' Quid velocity distributions, one of which +as found by Hill. The
expression for the spatial distance between toro points on a rotating disk obtained by Berenda
is derived without the use of the assumption introduced by the latter.

HE question, of whether the geometry on
a. rotating disk. is Euclidean OI not has

interested many write~s. Berenda' has subjected
the problem to a careful analysis. However,
the1c RI'c still R Qumbe1 of quest1ons connected
with the problem of rotation in relativity theory
that require further investigation, and some of
them mill be considered in the present work.

In discussing the rotating disk, one frequently
begins with an inertial frame of reference de.-
scribed by a cylindrical polar coordinate system
with coordinates ro, ~o, so, ~o, and one then goes
over to a rotating frame of reference attached to
the rotating body, with coordinates r, 8, s, E,

giveQ by

ro = r, Op 8+»»t, ——so ——s, t» ——t, (1)

where ~, the angular velocity about the s axis,
ls constant. Starting with the USUR1 expI'css1OQ

for the line element in the non-rotating coordinate
system, one gets in the rotating system:

ds' = —(dr'+r'de'+ds'+2»»r'd8dh)
+(1—(a'r') dP, (2)

with units in which the velocity of bght in empty
space is unity.

Hillm pointed out (as von Lane' had done
earlier) that a body rotating in this way would
have a limit to the radius it could have, for the

~C. %. Berenda, Phys. Rev. 62, 280 (1942).. Other
references vali be found in this paper.' E. L. Hill, Phys. Rev. 69, 488 (1946).

3 M. Von I aues Relly'bvsfNskkeorM (VMweg, Braunschwelgp
1921), Vol. 2, p. 24.

velocity would vary linearly with the radius Rnd

would exceed that of light for r&1/»» For. this
reason, Hill was led to conclude that the speed-
distRIlcc law must be non-11QCRI'.

While one can conceive of a Quid rotating with
an arbitrary speed-distance law, the case of
greatest interest is that of the speed-distance
law for a rigid body. To investigate this, one
must 6rst hRvc some criterion for rigid-body
motion. Such a criterion was 6rst given in rela'-

tivity theory by Born. 4

In classical physics one can characterize the'

motion of a rigid body by the fact that the rate
of strain vanishes. Ih a Cartesian coordinate
system, the velocity components satisfy the re-
lat10Q

av~/axg+avg/ax;=0 (f, k=1, 2, 3). (3)

In a relativistic treatment one looks for a co-
variant equation which reduces to (3) in a
Gahlean system if the velocity is small (CGBlpared

to that of hght). The obvious generahzatlon ls to
introduce, in an arbitrary coordinate system, the
symmetrical tensor

where the velocity 4-vector e 1s given by

Rnd. a scn11-colon deIlotcs cova113nt dlfFcrcnt1R-

tion, and to.take as the condition for rigid-body

4 M, Born, Ann, d. Physik 30, 1 (19(}9).See also %'.
Pauli, Jr., Zmyklop@be der math. 8 jsserIschaften, , Vol. 5,
Part 2, pp. 689-591.
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(6)

However, this condition represents too severe
a restriction. In view of the fact that the vector
N~ satis6es the identity

it follows from (6) on multiphcation by I" that

This expression is just the covariant form of the
acceleration vector

bu"/ds =du"/ds+ I "sII"u~, (9)

so that every particle of the. body moves along a
geodesic, or in gravitation-free space, along a
straight line.

It is therefore necessary to weaken the condi-
tion imposed on the motion. For this purpose
we replace p„, by

ppp =
2 (sp;p+sy;q —Ng;as sp —Q„;~s~s~), — (10)

since we then have the identity

p„.m'—=0.

I.et us now take as the condition for rigid-body
motion.

p"=0. (12)

In a Galilean coordinate system, at a point
where the velocity 3-vector vanishes, this re-
duces to the classical condition (3). Therefore
it is equivalent to the condition proposed by
Born. 4

Since Eq. (12) is a tensor equation it can be
applied in any frame of reference. If we take an
inertial system with Cartesian coordinates then
we can describe rotation about an axis by
setting

o =0(r), r'=x'+y'.

From Eq. (12) one gets the single equation

do/dr =0'r

which has for its solution

a =(o/(1 —aFr')&,

where co is a constant. Going over to the three-
dimensional velocity v by the relations

u= (uP+u22)&=or =v/(1 —v')&,

V=Mf.

This result was obtained by Herglotz~ by means
of a different procedure.

That it is possible to have a covariant law of
rigid-body motion (even if it has only a small
number of solutions) appears to be of importance
in connection with the inner consistency of the
theory of relativity. Since the fundamental con-
cepts of the theory include those of the rigid
frame of reference and the rigid measuring rod,
it would be unsatisfactory if no rigid bodies or
rigid-body motions existed in the theory.

In 1911,von Laue' presented an argument of
a general nature against the existence of a rigid
body in relativity theory. It is based on the fact
that a rigid body is expected to have a 6nite
number of degrees of freedom, while, on the
other hand, one can set up N disturbances near N
separated points of the body, and they will be
non-interacting, i.e., independent, for a suf6-
ciently short interval of time (because of the
6nite propagation time required by relativity
theory) so that there are at least N degrees of
freedom, where N can be increased inde6nitely
for a continuous medium. However, this argu-
ment assumes the possibility of setting up arbi-
trary deformations in the body initially. Since
however the initial deformations can only be
obtained by displacements with velocity com-
ponents governed by Eq. (12) it follows that it
is not possible to have arbitrary initial dis-
turbances, but only those which can be arrived
at by means of motions described by Eq. (12),
i.e., displacements which can be obtained by
integrating this equation, starting from an un-

deformed state.
It might be remarked here that the dif6culty

pointed out by Hill does not appear to provide
a sufficiently strong argument for giving up the
linear speed-distance law. It is true that no rigid
body would have a radius equal to, or exceeding,
1/ra, but there seems to be no reason why an

' G. Herglotz, Ann. d. Physik 3j., 393 I'1910).
M. von Laue, RelutivitNstkeorie (1921), fourth edition,

Vgl. 1, pp, 203-204.
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idealized rigid body with a smaller radius could
not rotate according to the linear law. That it is
desirable to retain the concept of the rigid
rotation can be seen from the following con-
slderatlons:

Let us go back to Eqs. (1) and (2), and let us
look for the most general transformation that
can be introduced in place of Eq. (1) which

(a) will be linear in t and 8, (b) will have axial
and cylindrical symmetry, (c) will be single-
valued, and (d) will give a static line element.
The conditions (a), (b), and (c) lead to the
transformation e uations

components of Q„„are obtained:

Qy2= o'+ go' r, (23)

(24)

(25)

QI4 = —FX, Q24 = —Iiy,

F= ', ( -o'+ oor)/(1+o'r')1
with

If we now set
Q12 = ao =constant,

then from (23) we find for the singularity-free
solution'

(2&)
This givesq

u = a&r, v =d'or/(1+(vmr~) &. (28)
ro=o(r)+f(r)t, 8o ——8+g(r)t+h(r),

(19)
The coinpoiieiits M&4 and N94 aie given by Eq.
(24), with

Applying the condition (d), one 6nds that

f=g'=p'=o,

where a prime denotes a derivative with respect
to r. What is of interest to us here is that unless

g 0 (8 8Q a linear function of t with a constant
coefficient), it will not be possible to have a
static metric. This condition is, of course, just
the linear relation between speed and distance
from the axis.

9'=Q"'u =u". u'=bu"/ds, (3o)

~= 2~'/(1+~'r')' (29)

so that, for small speeds, they are proportional
to the centripetal acceleration components.

Now, it is not satisfactory for the fluid motion
to be determined by Eq. (26) since the latter
is a condition on only one component and is
not covariant. One can improve matters by
1n tl"oduclng

the acceleration vector. In the present case one
2. ANGULAR VELOCITY IN RELATIVITY THEORY fjnds

m=~zVgV. (21)

The obvious relativistic generalization consists
in introducing an antisymmetric tensor

Q„„=,'(au„/Bx"-Bu„/Bxl'—) (22)

in an arbitrary four-dimensional coordinate
system.

In an inertial system with Cartesian coordi-
nates, if we have rotation with the components
u" given by Eqs. (13) and (14), the following

Although it appears that the motion of a
rigid body is best discussed by means of the
criterion of the previous section, it is neverthe-
less interesting to examine the rotation problem
by a consideration of the angular velocity dis-
tribution. This is the general method that was
used by Hill. '

In classical physics the angular velocity is
de6ned as the vector

5; =0 (32)

would give the same solution as above. Another
possibility, not as simple, 'is to take as the
condition for the motion,

(33)

If, instead of the above coordinate system, we
follow Hil12 in introducing a Galilean system
(coordinates x', y', s', t') with a given point as
origin and moving so that the fluid there is
momentarily at rest with respect to it (ui' ——uq'

=u3' =0, u4' = 1), we get for the angular velocity
components

Qig' ——(o+-,'o'r+-', o'r')/(1+o'r') &,

Q 4'—- -,'o' r,

(34)

(35)
' Nathan Rosen, Phys. Rev. '70, 93 (1946).

5'= —-,'o'x, S'= ——',o2y, S'=5'=0, (31)

so that the condition
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so that
P=vjr,

o = g/(1 Pr') l, —

(37)

which is, essentially thc eqUatlon obtRlncd by
Hill.

It is possible to put the condition expressed
by Eq. (36) into covariant form. For this purpose
let us introduce what might be called the "spatial
angular velocity tensor"

40pp Qpy Qp~g Ny+ Qy~Q Stty (40)

which satis6es the identity

It might be noted that the vanishing of Q„„leads
to the absence of all acceleration; that is not
the case with co„„. Corresponding to Eqs. (34)
and (35) one finds as the only non-vanishing
components

I
MI2 = N2] =Q]2 .

Hence, an invariant condition corresponding to
Eq. (36) can be written'

fd M —2M (43)

We see that, depending on whether one works
in. the fixed coordinate system or the system in-
stantaneously moving with the quid, one arrives
naturally at one or the other of two velocity
distributions, di8'ering from that for the rigid
body as discussed in the previous section. Other
dlstrlbutions are also possible, of course. How-
ever, at this time there does not appear to be
any strong reason for giving up the linear speed-
distarice law in favor of any other distribution.

8 In reference 7 the author questioned Hill's procedure
because it made use of a uniformly moving coordinate
system in describing the accelerated motion of the Quid,
so that the acceleration components of the Quid were not
taken into account. However, vm see now that this is not
an objection if the description is given in terms of ~»,
since the acceleration components in this case are not
involved.

pmvided we take the X' axis in the radial direc-
tion and the Z' axis parallel to the Z axis. If
one sets

(36)

and introduces a new variable

3. SPATIAI. DISTANCE IN A ROTATING SYSTEM

where A, 8, and C are to be determined so as
to make

ds' = dx" dy" dz" +d—t". — —(45)

Returning now to the rigid-body rotation as
discussed in Section i, let'us consider a question
treated by Berenda in his investigation of the
nature of the geometry on the rotating disk.
The question was this: given R frame of reference
with the line element of Eq. (2), what is the
correct expression for the distance dl between.
two neighboring points at rest in this reference
framers Berenda' obtained this distance as the
length of a four-vector which had for its space
components the three spatial coordinate difkr-
entials, but also had for its fourth component a
value chosen to make this vector orthogonal to
the world-lines of the two points. The identifica-
tion of "rigid metric rod readings on the disk
with spatial dimensions and geometry derived
from such orthogonality" Berenda considered a
matter of assumption. However since the ex-
pl esslon fol dP dcrIvcd fl oIIi this assumption
determines the spatial geometry of the disk, it
seems desirable to derive it by another procedure
free from such an assumption.

It is well known that in the general relativity
theory the coordinates used in locating events in

space-time need have no simple relations to the
readings of measuring rods and clocks. What
requires stressing here is the fact that even the
value of the interval or line element need have
no simple relation to the readings of scales and
clocks in a given frame of reference. This is
associated with the fact that the readings of
scales and clocks will be influenced by gravita-
tional and inertial forces. Only in a Galilean
frame of reference can intervals be obtained
simply from clock and scale readings, according
to the ideas of special relativity, Hence, con-
sidering the two points of the body in the
neighborhood of some particular values of r, 8, s, t,
lct Us introduce R locRl GalllcRn coordinate
system momentarily at rest relative to the
rotating system by the relations

dx' =dr, dy' =Ad8, ds' =ds,
dt' =Bdt+ Cd8, (44)
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One readily 6nds that

A = r/(1 cy—'r') &, 8 = (1—rv'r') &,

t."=—a)r'/(1 —aPr') &. (46)

This is essentially the same system as the one
used by Hi11.' From the form of Eq. (45) it
follows that

dI =dx +sf +dS

or, on the basis of the transformation equations,

dP =dr'+r'(1 cu—'r') Ide'+dr. ', (48)

which is the result obtained by Berenda and
shows that the spatial geometry on the surface
of R 1otRtlllg disk (8=collBtRIlt) 18 11011-Euclk1eRII.

It is also interesti'ng to note that the time
interval between two events dt' is given by

dt'= (1—oPr') &dh —a)r'(1 —(q'r') —&de. (49)
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Note on Magnetic Energy
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' 'N a recent paper' under this same title E. A.
~ - Guggenheim discusses certain results from a
paper' published by me recently and claims that
they are special cases of more general ones ob-
tained by him on a previous occasion. ' As the
results quoted from my paper are themselves
special cases of quite general ones contained
therein, and his note generally misrepresents the
scope and purpose of my work, perhaps I may be
permitted a reiteration of the main outlines of my
arguments and the opportunity to discuss the
relation they bear to the methods employed by
him.

The following symbols are used:

8 magnetic induction„
H magnetic force intensity,
I; induced magnetization intensity,
I„permanent magnetization intensity,
~; linear electric current, .

N magnetic Qux through i„
p permeability,
4 Lagrangian function,
K Hamiltonian function.

Guggenheim bases his discussion not on

~ E. A. Guggenheim, Phys. Rev. 68, 273 (1945).
~ G. H. Livens, Phil. Mag. 36, 1 (1945). CF. also Proc.

Roy. Soc. A93, 200 (1916), and Phil. Trans. Roy, Soc.
A220, 207 (1919).

1' E. A. Guggenheim, Proc. Roy. Soc. A155, 49 (1936).

Maxwell's theory in its original form but on the
modification given to it by Cohn. ' The essence of
this form of the theory, like that proposed by
Hertz which it follows closely, is that it. in-
corporates the induced polarizations and the
aether, whatever this may be, into a single
transmitting medium whose elastic quality is
summed up in the characteristic constant, the
permeability p, . This hypothesis of a single
medium, excluding as it does the possibility of a
displacement of the polarized medium from one
position of the 6eld to another, proves however. to
be a fatal handicap in a theory which has eventu-
ally to be extended to cover electromagnetic
phenomena in moving media. And it was pre-
cisely for this reason that Larmor and Lorentz
were forced back to the views held by Kelvin and
Maxwell that the only really satisfactory treat-
ment of these affairs interprets them in terms of a
separate universal transmitting medium with its
own stress on which is superposed the polarized
media with their reacting mechanical forces. This
implies that it is absolutely essential to distin-
guish between the parts of the field vectors and
energy which belong to the aether and remain
with it and the parts which belong to the matter

4 E. Cohn, Das elek6'omagnetische Feld (1900). My
knowledge oF this book is derived from this earlier edition.


