POSITRONIUM MOLECULE

provement amounting to (—0.00224) reckoned
from the third approximation. Adding the same
value to the third approximation of the tri-
electron the result is E= —1.02984. On the
other hand, adding the contribution (—0.0030)
from cyu in the third approximation to the fourth
approximation with #-independent functions the
result is E= —1.0306. But the contribution of
¢y must be smaller in this approximation than
in the third one. We therefore infer that the
energy of the positronium ion is very near to

= —1.0300, corresponding to an electron
affinity of positronium of

W=0.0300R'2=0.203 ev.

As to the various terms of M, it is easier to
evaluate S (Vag)’d+ than the difference AM.
Putting

Mi=4S{(V)+(Vp)?}d 7
and
My=4)(Va)d r

and considering only terms of the form

1//lm — e—-%stlum

PHYSICAL REVIEW

VOLUME 71,

493

in the eigenfunction one finds
I+ +m—4+m'+4
+r'41
a1y
+
(+V =10+ +1)

where M, N, and L have already been given in
the paper* on H-. In order to have just this
numerical value the volume element is taken to
be d 7= 3r17or12dridredr s = F5u (s —2)dsdudt, cor-
responding to dt=rr.’dridrs, when the eigen-
function is independent of 7;,.

It is easy to find general formulae for all
matrix elements but, because of the complexity
of M3, we shall not give them here but take the

(= =

]~H(l+l’+m+m’+2),

‘values from the paper cited above. The result is

L=11+ 88¢c, 4+ 156¢;
+ 96612+ 3086162 +218612+ 9280102
+ 576¢22 +1992¢,?

My=8+ 50c; + 96¢, My= 8+ 60c; + 96¢2
+128¢c2+ 584cice +144¢,2+ 560cics
—-|-192O€22 +1920622

M=3(M+M;)=8+ 55¢c: + 96¢s
+136612+ 5726102
+1920c,2.

N=4+ 3501 + 4862
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A system of two electrons and two positrons is shown to possess dynamic stability. The
variational calculation performed leads to a binding energy of at least 0.11 ev for this cluster.
The approximate wave function which yields this value depends on the four electron-positron
distances only. Neglect of the two distances between particles of the same kind permits an
essential mathematical simplification which might be of interest in other problems.

INTRODUCTION

/ I ‘HE question of the stability of a compound
of two electrons and two positrons is of
particular interest, since it may be considered

*F. E. Loomis Fellow.

stability of large poly-electrons.!

(1946).

fundamental in a theoretical investigation of the
A first approximation calculation of the

1]J. A. Wheeler, Ann. New York Acad. Sci. 48, 219
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binding energy of the quadri-electron or ‘‘posi-
tronium molecule” (4 + — —) was performed by
Wheeler! who employed the variational method
with a ground-state harmonic oscillator function.
The investigations have been extended to higher
approximations by Ore,? who considered oscil-
lator functions of higher degree of excitation as
well as functions of more “‘hydrogenic’ character.
The results failed to furnish evidence for the
stability of this four-particle system with
respect to dissociation into two separate bi-elec-
trons or “positronium atoms.”

These investigations were not conclusive, and
there were reasons why it seemed worth while to
re-examine the problem in question. The cluster
(++—) forms a stable particle"3 capable of
exerting an attractive -coulomb force on a
distant electron. Furthermore, it is easily found
that the energy arising from the attractive van
der Waals force between two distant bi-electrons
is appreciably larger than that for two hydrogen
atoms. But an attempt to study the stability of
the four-particle system from this point of view
leads to a difficulty of principle, viz., the com-
bination of short range exchange forces with long
range van der Waals forces when all component
particles of the interacting structures are of
equal mass. In point of fact, a precisely similar
difficulty arises when one treats the problem of
the interaction between light nuclei. It was the
attempt to solve this question which led Wheeler
to the invention of a ‘“collision” matrix.* It
would seem that the- problem of interaction
between two bi-electrons is of the type for which
the method of resonating group structure is in
principle adapted.

However, the present treatment of the quadri-
electron may be considered an extension of the
successful treatments of the tri-electron, which
followed the scheme employed by Hylleraas for
the negative hydrogen ion.?

THEORY

In suitable units, which differ from ordinary
atomic units in that as the energy unit is taken
to be R’h=1Rh rather than 2Rk, the wave equa-

2 A. Ore, Phys. Rev. 70, 90 (1946).

3 E. A. Hylleraas, Phys. Rev. 71, 491 (1947).

4J. A. Wheeler, Phys. Rev. 52, 1107 (1937).

8 E. A. Hylleraas, Zeits. f. Physik 60, 624 (1930).
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tion of the four-electron may be written:

(1[Vi2+ V24 V2 4 V2 |+ E/4+ V¥ =0,

e T2 "w

Here 1, 2 refer to the two electrons, and @, b to
the positrons.

“The motion of the center of mass of the cluster
is irrelevant, and the ground state is an S state.
The absence of total linear and angular mo-
mentum with respect to the center of mass
reduces the number of independent variables
from 12 to 6. Obviously these six variables can
be taken to be the six distances appearing in the
expression for the potential energy.

This means a reduction in the number of
variables as compared to a total of nine scalar
components of the three vectors s, t, and u
employed in reference 2. It is readily seen that a
function of s, ¢, and # involves the angle between
ri; and rp in addition to the six interparticle
distances. The ground-state harmonic oscillator
function, on the other hand, contains no such
irrelevant variable. Thus we see why the hy-
drogenic function of reference 2 turned out to be
inferior to the oscillator function.

The usual procedure of minimizing the energy
with respect to the parameter k, corresponding to
the correct wave function ¥ =W¥(kr,)), ¢, j=1, 2,
a, b, leads to

EN/4A=—kL+kM,
where
N=f\I/2d‘r, L=fV\I/2d‘r,

M=%f2,~(vi‘1f)2dr, i=1,2,0,b; W=W(r:).

or E=—L*/NM

For suitable new variables we choose
Si=twtrw, L=rw—rw, S2=%"2a+7w,

lo=V9a—"Vob, U=F12, V=Vgp.

The ground state is non-degenerate and will
have symmetry properties which follow from the
symmetry of the Hamiltonian, that is, symmetry
in both électrons and positrons, as well as, sym-
metry or anti-symmetry with respect to inter-
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F16. 1. Coordinate system for the positronium molecule.

change of the two electrons against the two
positrons. (We are concerned with the space
dependence of the wave function. The inclusion
of the two anti-symmetric spin functions, one
for each kind of particles, would give a total
wave function in accordance with the Pauli
principle.)

Thus if we consider functions of the simple
form

U =y1(s1, S2)¥a(t1, t2)¥s(u)Pa(v)
the symmetry suggests
Yi=y1(s1+52), Ya=v¥a((t1—12)?) gnd 125178

There will in general be no particular dif-
ficulties involved in the calculation of the
integrals L, M, and N when the variational
function is taken to be independent of # and w.
By performfng the substitution 1, 2<>a, b in the
terms which involve # one can see that it is
proper in that case to consider the integrands
independent of . For instance, on account of
this symmetry % may be replaced by v in L. We
need then retain only five variables of integra-
tion, since the integration over the sixth variable,
which may be chosen to be the angle ¢;5 defined
below, contributes merely the same constant
factor to L, M, and N.

In order to get the proper volume element
consider the edge (a¢b) as the main axis of the
tetrahedron (¢b12) (in Fig. 1). Then the three
angles defining the direction of (e¢b) and the
rotation of the system as a whole around this
axis may be left out of the integrations. Also the
relative angle ¢;2 between the triangles (abl)
and (ab2) is unimportant when the integrand is
independent of 712=1u.

After this reduction in the number of inde-
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pendent variables from 9 to 6, and next to 5, we
may take the volume element to be
AT =473 7 1a%A7 147 2,°A7 24 SIN Fp1d Ty Sin Fpod o2
= 4d7 s 1607 107 150 167 2207 207 207 25
=dvi(si2—t:2)ds1dt1: (522 —t:2)dsdts,
the limits of integration being
VISSS2 =0 —v=ih=r; 0=,

If we use in a first approximation the very
simple function

¥ =exp[ —3(s1+s2)],

the integrals become
]
N1=f e~2*(3v3+v2+v)2dv=33/8,
0

Li=44—2B=4.21/8—2-25/12=19/3,
My=24=21/4,

A=f e (3v*4-v24v) (v2+v)dvy,
A :

® dy
B=f e~ (33 4o 4v)2—,
0 ]

Hence, in this approximation,

19232
E=————=—1.8522R'h=—12.54 ev.
33-21-9

A better approximation is obtained when we con-
sider a function representing each electron
strongly bound to one of the two positrons and
only loosely bound to the second. For instance,
let

2¥ =exp[ —3(14+B) *1a+72) —3(1 —B) (7 1+724) ]
‘+exp —%(1 _6)(71a+72b _“%(1 +B)(71b+1’2a)].
¥ =exp[ —§(s1+s2) ] coshB/2(t1—15).

Then 8=1 will correspond to two separate bi-
electrons, whereas for 3=0 we have the above
case of equal binding within all electron-positron
pairs.

Since cosh?8/2(¢1—22) =%(1+4coshB(¢1—15)) the
integrals N, L, and M will now be

N=3(Ni+N;), L=3(Li+L,)
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TABLE I. Numerical relation between the calculated total
binding energy and the square of the parameter g.

3 0 0.25 0.5 0.75 1.0
—~E 1.8522 1.98180 2.01681 2.00288 2.0000
and

M=5(M/+M,y), M'=M—3p.

Here N, L;, and M; are the integrals given
above, while the integrals of index 2 can be
obtained from those of index 1 by replacing
303402 +v by

1—62\sinhﬁv v coshBy
(e

g/ g B
and by further replacement of #2+v by
(v+1)(sinhBy)/B in L,
and by

v((sinhBv)B+coshBy) in M.

Finally we get My’ from M; by replacing »*+v by
v’ +v—36%°.
The result is

33/8—11p82/4+5B34/8
N2=

(1—p2)3
221/8—3[32/4—!—64/8
o (1—p2)?
|21/8—98%/4+56'/8 2 T, 582
o (1—p2)? 1-pl 8
1 7 -+ 1
—_ log ]
432 8p? 485 1—pB2
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Among the integrations leading to these expres-
sions we need only mention the integral involved
in L2

*® sinhBv\?dv 1 1
f e—“( ——=———log( )
0 B v 4B 1-p2

The relation between the calculated total
binding energy of the system and the value of
the parameter 8, which determines the approxi-
mate wave function, can be read from Table I.
The minimum value of E appears to be roughly
—2.017 for B2 about 0.50. The binding energy of
the positronium molecule with respect to dis-
sociation into two positronium atoms is thus in
fact positive, amounting in this approximation to

W=0.017R'h=0.11 ev.

The approximate calculation just presented is
related to the well-known Heitler-London treat-
ment of the hydrogen molecule or rather to
Wang’s modification of this treatment. In view of
the excellent results obtained subsequently by
James and Coolidge for the binding energy of that
molecule we are inclined to believe that con-
siderable improvement is possible in the value
presented above for the positronium molecule.
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