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microwave absorption spectrum. Ke have made
an analysis of the infra-red band'7 of H2Se at
4.3p, and find the effective moments of inertia are
in the neighborhood of Ig ——3.14, Ig ——3.89,
I~——7 18X10 4' g cm'.

These values were substituted in the formulae
for the rigid rotor and the positions of the
transitions in the microwave region (0.2 cm and
longer) calculated as shown in Table IIZ. These
positions are only approximate, but indicate that
one line might be detectable in the one-centimeter
region.

'~ D. M. Cameron, W. C. Sears, and H. H. Nielsen, J.
Chem. Phys. '7, 994 (1939).

The dipole moment of H2Se is not known. A
guess of 0.7 X 10 "esu-cm was used in estimating
the order of magnitude of the absorption coeffi-
cient. If the 71,6 —64,3 line can be detected, its
intensity will serve to determine the dipole
moment.

The spectrum of HDSe will be of considerable
interest in relation to those of HDO and HDS.
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The spherical analog of the Milne problem for the half-plane is treated by an approximate
method based on expanding the neutron distribution function in a finite number of spherical
harmonics. The results are improved markedly in going from the first to the second approxima-
tion and more slowly in higher approximations. The neutron distribution is calculated in the
first two approximations. Values of the "extrapolated endpoint" —as predicted by the first
three approximations —are tabulated in Table I as a function of the radius of the sphere.

E consider the following problem: a black
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sphere of radius a, i.e., a sphere which
absorbs completely all neutrons which fall upon
it, is surrounded by an infinite non-capturing
medium which scatters neutrons isotropically

*The contents of this note were published in a Montreal
Report (MT-49) dated April 15, 1944. The Central Records
File Reference giving authority for declassification is
11-5-3, serial No. 47. The spherical harmonic method has
been generalized and applied to a great variety of neutron
diffusion problems by C. Mark (declassified Montreal
report MT-97), B. Carlson (declassified Los Alamos report
LADC No. 108), R. Glauber, and W. Rarita. Another
approximation method based on the Gauss formula for
numerical integration, which is equivalent in certain ways
to the spherical harmonic method (cf. footnotes below),
was developed independently by G. C. Wick, Zeits. f.
Physik 121, 702 (1943), and applied to problems of the
stellar atmosphere by S. Chandrasekhar, Astrophys. J.
100, 76 (1944) and succeeding papers. Because of the war,
Wick's paper did not come to the attention of the author
until the present work was completed.

without changing their velocity. No sources are
present in the outer medium except that a cur-
rent density of amount (F/4n. r') (F is a constant)
is assumed to exist in the direction ( r). We-
wish to determine the neutron density in the
(outer) medium. '

This problem is the complete analog of the
Milne problem for the semi-infinite plane since
the albedo of the black core is zero just as the
albedo of vacuum is zero in the plane case. If the
black core is replaced by vacuum, the albedo is
no longer zero, and the physical conditions are
altered in an essential way. The modified problem
is not treated in this note.

'S. Chandrasekhar, Astrophys. J. 101, 95 (1945) has
worked out the converse of this problem, namely the
determination of the distribution function due to a point
source in a spherical scattering medium surrounded by
vacuum, by Wick's method.
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An exact solution of the present problem, in
contrast to the Milne problem for the plane,
seems impossible. Recourse must therefore be had
to approximate methods. The simplest approxi-
mation is the diffusion approximation which
consists in expanding the neutron distribution
function up to and including the first spherical
harmonic. A natural extension of the diffusion
approximation is the inclusion of a larger number
of sphe'rical harmonics in the expansion of the
neutron distribution function. In the limit, of
course, the approximate solutions go over into the
exact solution. The great virtue of the spherical
harmonic method (as we shall call it) is its rapid
convergence in the early approximations.

2,

The transport equation. governing the distribu-
tion of neutrons in the medium surrounding the
black core is:

where fi(r) =J'i'Pi(li)f(r, Ii)dIi, and lo is an
integer which determines the order of the ap-
proximation. For example, if lo is taken as j., we
say we are dealing with the P&-approximation, if
la=3, the P3-approximation, and so on. It is
natural to choose lo as an odd integer for suc-
cessive approximations since the even approxi-
mations contain singular parts which have no
clear physical significance.

The representation of P(r, p) by a finite number
of Legendre polynomials, as de'fined by Eq. (2),
is inconsistant with the boundary condition (A).
Instead, this boundary condition must be relaxed
and replaced by a series of boundary conditions
appropriate to the order of the approximation
which is being considered. Thus, if we are
working with the Pi-approximation (the difiusion
approximation), one boundary condition is suffi-

cient to. determine all the arbitrary constants,
and it is reasonable to require that the total' cur-
rent entering the (outer) medium from the black
core is zero, namely that:

L 0
(2)

where the origin of coordinates is taken at the
center of the black core, p is the cosine of the
angle between the direction of motion of the
neutron and the radius r (pointing awa, y from the
origin), and P(r, p)dp is the number of neutrons
per unit volume at distance r with direction
cosine between g and p+dp. The quantity $0(r) is
the neutron density, defined as J'i'P(r, p)dp.
Finally, the mean free path is taken as unit of
length, and the neutron velocity is set equal to
unity.

It is easy to show, by integrating Eq. (1)
over dp, that the total Aux $4 r'jar(r) j(j(r)
= —J', ' Iig(r, p) dg) is a constant independent of
r. We choose the constant as 4~ so that j(r) =1/r2.
Equation (1) is to be solved, subject to the
boundary condition

f(a, p) =0 for p)0,
where e is the radius of the.black core.

The spherical harmonic method we propose
consists in expanding P(r, p) in a series of
Legendre polynomials and breaking off the series
after a finite number of terms. Thus we write:

The next approximation, the Pa-approximation,
requires one additional boundary condition be-
sides Eq. (3).There is some arbitrariness involved
in the choice of this added boundary condition
since we could require that Jo' P2(p)f(a, p)dp =0
or Jo' Pii(p)f(a, p)dp=0, etc. It turns out that the
solution for $0(r) is negligibly affected by the
particular choice made and always gives a dis-
tinct improvement over the Pi-approximation. In
an odd approximation, it seems most sensible to
choose a boundary condition on an odd moment. '

~ Dr. Mark has pointed out that the apparent ambiguity
in the choice of the boundary conditions is removed if one
recalls that in the Milne problem for the-half-plane the
exact even "half-moments" have an infinite derivative at
the boun'dary, whereas the exact odd "half-moments"
have a finite derivative, just as they do in any odd P-ap-
proximation. Furthermore, it is possible to obtain unique
boundary conditions at r =a by regarding the black sphere
as black not as vacuum, i.e., by regarding the black sphere
as a second medium which is completely absorbing, solving
the equations, and equating (at r =a) the P&'s to the P&'s
of the outside medium. The latter procedure turns out to
be equivalent to Wick's choice of boundary conditions.
The procedure we adopt gives more accurate results for
the "extrapolated end point. " For example, in the limit
a~ ~ (cf. Table I), we obtain 0.667, 0.705, 0.709 for the
extrapolated end point in the PI-, Pa-, P5-approximations
respectively as compared to 0.577, '0.694, 0.704 with the
"black" or %'ick boundary conditions; the correct value is
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kg�(r) = —1/r'

We therefore choose as the second boundary con- of which the solutions are:
dition in the P3-approximation:

(7a)
1

)t Pp(p)f(a, p)dp=0.
0

(4)

Since Pp(p) is a linear combination of p and p,
Eqs. (3) and (4) are equivalent to (3) and the
condition Jp" PPQ(a, P)dy =0. (This is an added
attraction for the "odd moment" boundary con-
ditions. ) In this manner it is possible, except for
increasing algebraic complications, to arrive at
closer and closer approximations to the neutron
density fp(r).

1
Ilg, i'(r)+(I+1)|Ii+g'(r) I

(2l+1)

+- I(1+1)(I+2)A+~(r)
r(2l+1)

I(/ 1)A ~(r—) }+—iI'i(r) =A(r) fipi. (5)

In Eq. (5) the primes denote differentiation with
respect to r and bog is the Kronecker delta-
function. If we choose lp = 1 (P&-approximation),
then Eq. (5) becomes equivalent to the two
equations:

f~'(r)+2&g(r)/r =0,

-'A'( )+4' ( ) =0

(6a)

(6b)

0.7j.04. However, the neutron density at the boundary {for
the limiting case a~~) is given exactly by the Wick
method. One would then suppose that for finite u, the
present method would give more rapidly converging values
of the extrapolated endpoint whereas the Wick method
would give more rapidly converging values of the neutron
density, at least at the boundary.' The set of Eqs. {5) is a straightforward consequence
of the expansion of Eq. {2); compare, however, the
roundabout treatment of the spherical problem {see ref.
in footnote 1) necessitated by the use of Wick's method.
In the end, the final equations are identical. In general,
the spherical harmonic method has an advantage over
Wick's method in its easy adaptability to problems of
several media and different geometries.

3.

We now carry through the I'& and Ps-approxi-
mations in accordance with the procedure out-
lined above. Let us multiply both sides of
Eq. (1) by P&(p). Integrating over dp and using
we'll-known relations between Legendre poly-
nomials, we get a series of equations

from which
pA(a)+Pi. (a) =0

B=3(1+2/3a)/a.

It is convenient to rewrite Eq. (7b) in the form:

riPp(r) =B(f—a+rpf where rp =a —3/B.

The quantity ro is called the extrapolated end
point and has the value (in the P~-approximation):

rp =2/3(1+2/3a). (»)
We consider next the P3-approximation; setting

lp =3 in Eq. (2), we get from Eq. (5) the following
set of equations:

riPq'(r) +2fq(r) =0', (10a)

rPp'(r) +2rfp'(r) +6$p(r) +3rfq ——0; (10b)

2'~'(r) +3rfp'(r) —2$~(r)
+12$p(r)+Srgp(r) =0; (10c)

3rgp'(r) —g p(r) +7riP p(r) =0. (10d)

These equations are to be solved subject to the
boundary conditions (3) and (4) which may be
rewritten a's:

4gp(a)+8iii g(a)+Sfp(a) =0;

'V&(a) +25@(a)+326(a) =0.

The solutions are:4

imp(r) = —3/r+B —2Ge P"/r;

|k,(r) = —1/r';

(11a)

(11b)

(12a)

(12b)

i' p(r) = 6/5r'+G(1+3/kr+—3/k'r')e P'/r; (12c)

fp(r) = —18//7r4+5G(1+6/kr
+15/k'r'+ 15/k'r') e P"/3kr (12d)

4 The terms having t as coefficient are essentially Hankel
functions {of the first kind) of half-integral order having
{ikr) as argument.

fp(r) = 3/r—+B (B is a constant). (7b)

The total flux has been taken as 4x. Equation
(7b) is, of course, the usual diffusion result and on
the crude assumption, fp(a) =0, would lead to the
value B=3/a. However, one should use the
improved boundary condition (3) which becomes
in the present case:
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where TABLE I. Extrapolated end point r~.

k = (35)&/3

3 2 1 7kb 5 5B=- 1+—+ +
a 3a 2a' 2a ha k'a'

G = 14k be"/3

0.5
1.0
2.0
5.0

0.286
0.400
0.500
0.588
0.667

0.323
0.480
0.608
0.682
0.705

Ps

0.334
0.494
0.620
0.690
0.709

[I/8k'a] [1+15/4a+ 72/7a']

175' 6 p 175' 15 t 35' 15
I

1+ I+—
I

1+ I+ I
1+ I+

I 96k) ka ( 192k) k'u' ( 96k & k'u'

We rewrite Eq. (12a) to exhibit the extrapolated k' which would yield lo distinct roots' k; and
endpoint and the novel feature of the P~ perm-it the determination of P&, P~,
approximation: Knowledge of the P~'s together with the applica-

tion of the (l0+1) boundary conditions:
«A(r) =&[(»—o+ro) —ve "'" '], (13)

where

8 =3/(a —r,), y =2G/k8.

lp

A() =& ( —~+»0) —2 v e-"'"-' (14)

Substitution of Eq. (14) into the series of Eq. (6)
would lead to an algebraic equation of order lp in

It is seen from Eq. (13) that the P&-approxima-
tion gives a different (and necessarily improved)
value for rp. Moreover, a correction of expo-
nential order is added to the asymptotic ex-
pression (r a+ra)—

Each higher P-approximation improves the
extrapolated end point and adds one more term
of exponential order. Thus, we would obtain the
following form for $0(r) in the Pjs~, qy&-ap-

proximation:

I "'+"4(&, I )d~=o (i =o, 1 lo) (15)
0

would then yield. the (la+1) constants ro, yi, 72
~ ~ ~

4,

Since knowledge of the "extrapolated end
point, "

rp, is of special interest for pile design
(e.g. , control rods, upper limit on thermal utiliza-
tion of strongly capturing sphere, etc.) we pre-
sent some numerical results in Table I. Values of
rp are given for several values of a in the P~, P3,
and P~-approximations. Table I exhibits a fairly
general property of the spherical harmonic
method: the great improvement of the P3-approx-
imation over the P~-approximation and the less
rapid improvement registered by still higher
approximations.

~ The roots k; are identical with the ones obtained by an
application of Wick's method; they are independent of the
geometry.


