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The Noriiial Reflection of Shock Waves
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The problem of the normal re8ection of a shock wave is solved by an approximate analytical
integration of the hydrodynamical equations. The solution given. here leads to nearly the same
numerical results as an exact method, based on a graphical integration of the hydrodynamical
equations, mhitch has been described by Chandrasekhar. A method of computing the complete
pressure-time curve at the re6ector is given and applied to re6ection in a class of Auids obeying
the Tait adiabatic equation of state. It is found that in compressible Ruids (gases) the pressure
on the reQector is prolonged and that the impulse delivered to it exceeds the value predicted
by the acoustic theory. In slightly compressible media (liquids and solids), on the other hand,
the blow is shorter and the impulse delivered to the reQector is less than one would expect from
the acoustic approximation. The method given here is also applicable to the re8ection of
gravity waves on the surface of a liquid.

INTRODUCTION

)P HEN asttoctt wave is reitected from a solid,
the pressure on the reffector at 6rst rises

to a high peak and then decays to the value
previously existing. For weak shocks, or sound
waves, which strike a rigid reffector, this initial
peak is of such a height that the pressure ratio
(i',) across the rejected shock front and the
pressure ratio Q';) across the incident shock front
ale equal,

so that the overpressure at the reffector is twice
the overpressure in the incident, shock. In the
limiting case of very strong and normally incident
shocks, on the other hand,

i.=L(&v-&)t(~- &)li.'

For a Huid whose adiabatic constant, 7, is 1.4,
i „/f; is 8. The rise in pressure at the first moment
of reffection and the ffow patterns simultaneously
present have been studied at all angles of inci-
dence and the theory is able to describe in an
approximate way both the regular and the
irregular, or Mach, reHection. One is, however,
rarely interested in the initial, or peak, pressure
alone unless the period of the reffector is very
short compared to the duration of the incident
wave. Similarly in the collision of equal and
opposite shocks, which is hydrodynamically
equivalent to reffection from a rigid wall, it is not

just the 6rst instant of the collision but rather the
subsequent history of the interaction which is
interesting. It is the complete course of the
reffection of one shock, or of the interaction of
two shocks, which we wish to discuss here.

QUALITATIVE DESCRIPTION OF RESULTS

For the case of normal incidence alone has the
problem been solved. The possibility of using a
very simple numerical method based on the
Riemann form of the equations of motion was
indicated by Chandrasekhar' who considered re-
Hection in air. Here we replace the numerical
method by an analytical one and extend the work
to other media besides air. All media covered by
our calculations are subject to the Tait equation
of state for isentropic changes.

(P+s)v'=k.

Here p is overpressure; v is speci6c volume; g, y,
and k, which are characteristic of the medium,
Rl e constRnts for lsentl oplc processes but Rl e
functions of the entropy. When Eq. (1) is applied
to ideal gases, y is the adiabatic constant lying
between 1 and 1.67. The same equation is also
applicable to matter in the condensed state, if x
is now interpreted as the internal pressure and y
is an empirical constant, not simply related to the
speci6c heats: e.g. , for water, m =3000 atmos. ,

y=7.15; for freshly detonated explosives which

~ S. Chandrasekhar, a report ot i&mited circulation issued*Now at Argonne National Laboratory, Chicago, by the Ballistics Research Laboratory, Aberdeen. , Mary-
Illinois. land.
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FIG. 1. Pressure-time curves at reflector. The curve at
the left corresponds to reflection in air of an incident pulse
whose peak overpressure is 0.5 atmos. The other curve
describes re8ection in water of an incident pulse whose
peak overpressure is 1800 atmos. The ordinate is over-
pressure in atmos. and the unit of time is the duration of
the incident pulse. O Computed by Chandrasekhar's
method; —analytic approximation; ——acoustic approxi-
mation.

~ T. von Karman, "Flow in Compressible Fluids, " to be
found in a collection of papers entitled E/Nid Mechanics
and Statistic/ Methods in Engineering (University of
Pennsylvania Press, Philadelphia, 1941), page 25.

have not yet expanded, y=3. It has also been
pointed out that an analogy may be set up be-
tween the equations of gas dynamics and of
gravity waves on the surface of a Huid and this
analogy corresponds to the case of y=2; our
results are in fact applicable to gravity waves if
pressure is interpreted as h', where h is the height
of the gravity wave.

Although the numerical method used by
Chandrasekhar is rigorous, the analytical method
employed here contains certain approximations
and the two methods were, therefore, compared
for an incident linear shock (i.e., the pressure falls
linearly with time behind the peak) of 1.5 atmos.
in air (the particular example computed by him)
and an incident linear shock of 1800 atmos. in
water. The pressure time curves at the wall are
shown in Fig. i. The two methods agree well and
differ considerably from the acoustic approxi-
matKln.

The results of our calculations can be most
conveniently expressed in terms of JorPdt, the
time integral of the pressure at the mall, where T
is the total time required for reHection. This
integral is the momentum delivered to the wall or
the difference in momenta between the incident

and reHected pulses, i.e.,

p„mpdx =j p:tt dx+~ pdt
0

where p and u are density and material velocity,
respectively, and where the subscripts i and r
refer to incident and reBected pulses. The space
integration is extended over the whole lengths of
the incident and reHected shocks. In Fig. 2 the

0 l 2 5 4 5 6 7 y
GAS

FIG. 2. Impulse given to reflector as function of y.
Ordinate is actual impulse given to rigid wall divided by
approximate acoustic impulse. Abscissa is constant (y)
appearing in the equation of state. f is shock intensity.
&=1.0 corresponds to limiting case of sound wave.

impulse Jo pCt is normalized by dividing by the
acoustic impulse, i.e., 2Jp,dt,

'

where p; is the
value the over-pressure would have at the posi-
tion of the wall if the incident wave moved
forward without change of shape and with the

. velocity of sound corresponding to zero over-
pressure. The intensity of the incident shock is
also normalized in Fig. 2: it is specified by
1 = (p+s)/s. In Fig. 2 the normalized impulse is
plotted as a function of y; the most interesting
physical result of our calculation —the difference
of behavior shown by compressible and incom-
pressible media —is then brought out: in the case
of gases (1 && y ~& 1.67) the impulse is greater than
the prediction of acoustic theory; but in the case
of liquids and solids the impulse is less than the
acoustic approximation. Non-linear theory hap-
pens to agree with the acoustic estimate in the
neighborhood of y =2; y =2 also corresponds to
the analogy between gravity waves and gas How.
The reason for this difference between gaseous
and condensed matter is that the duration of the
blow exceeds the acoustic approximation in the
gaseous case, whereas the situation is reversed for
solids and liquids, as one can see by the following
qualitative consideration of the reHection process.
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After the instant of impact the head, H, o'f the
shock wave reverses direction and begins to
travel toward its tail, T (Fig. 3). As soon as the
direction of H has been reversed by the wall, the
total disturbance may be regarded approximately
as a (non-linear) composition of two waves of
finite amplitude. One of these moves toward the
wall and is bounded by T and W. The other
inoves away from the wa11 and is bounded by W'

and H. These two waves penetrate each other
until T reaches the wall and thereby marks the
end of the rcQection. It is clear that the tail T
moves toward the wall at speed, a, the velocity of
sound correspondlI1g to p =0, until lt II1ccts H. It
is not so easy to guess the speed of H with respect
to the wall, but it also turns out to be nearly a for
the shock strengths of interest here. The reason

is, roughly speaking, that the high pressure
behind H pmduces a supersonic velocity not with

respect to the wall but with respect to Quid

rapidly moving toward the ma/L. The net effect is
that H and T approach each other appmximately
with velocity u. Hence if the initial thickness of
the pulse is I, the time until H Rnd T meet is
I/2u. After passing through the head the tail
then moves with the velocity c—e, where c is the
local velocity of sound and u is the material
velocity of the Quid in the region 3f. Hence the
total time of reflection is L,/2@+L /2(c —u)A, where

(c—u)A„ is the average velocity of the tail in 3f.
On the other hand the duration according to the
acoustic approximation is I /a. Hence if u/c is so
large that (c—u)~, &a, as in air, the pressure' on
the wall lasts for R longer time than acoustic
theory indicates; but if u/c is so small that
(c—u)A, &u, as in water, then we have the oppo-
site situation. These qualitative considerations
are supported by. the detailed calculations to
which wc Qow tulQ.

ANALYTICAL METHOB

Consider R plRQC Shock, 8» 1Inplnglng OQ R 1 lgld
wall, F",at normal incidence. Let the plane of the
wall be x =0 and let the x axis be directed toward
the oncoming shock. The time, t, is measured
from the moment at which 5 strikes W. Since the
problem is one-dimensional, there are only two
independent variables, x and t, and it is con-
vcnlent to spcRk 1Q tcl Ins of thc x, $ plane shown
in Fig. 4. Here D is the world line of the reQected
shock fmnt, and the world line of a typical
element, initially at x~, is shown with a dis-
continuity where it crosses D. Mo and M are the
regions between D and the x axis and t axis, re-
spectively. The following boundary conditions
Rle given on the Rxcs Rnd oQ D:

1. Distribution of pressure, p;, and velocity, I&, on the
x axis, Th18 18 the distribution of plessure and ve1oc1ty 1n

the incident wave.
2. m=0 on the E axis since the wa11 is rigid.
3. Shock, equations across the discontinuity, 8, ex-

pressing the conservation of {a}mass, {b}momentum,
{c) energy.

Subject to these boundary conditions three di8'er-

ential equations which again'express the con-
servation'of rnRsss, momentuIQ» Rnd cnclgy must
be satisfied in Mo and 3II. In these di8erential
equations appear three unknown functions, e.g. ,
pressure, velocity, and entmpy, and the problem
is to 6nd these functions in the regions Mo and M
and in addition to 6nd the equation of the curve
D. Employing the usual approximation, however„
we assume that the How in 3fo and M is isentropic.
In addition the stronger appmximation is made
that the entropy change across D can be neg-
lected. The entmpy change acmss D is actually
only third order in the volume change; but R

stmnger argument is that results of the calcula-
tion made under this assumption agree very well

with the results of the rigorous numerical method
in which the change of entropy is properly taken
into account. Under these assumptions the
entmpy becomes a constant of the motion and

may be ignored. There are then only two unknown

functions, say, p and u, and the exact conserva-
tion of energy condition is replaced by the
appmximate conservation of entropy condition.

The three conservation conditions in M and Mo
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may then be written

Bp (Bu Bug—= —p]
—+u—f,

ax E at ax)

P+ir =kp& (an approximation), (5)

X=X(tj

where p is density. There are two unknown func-
tions and two differential equations. On the other
hand the three conservation conditions across the
shock front are

P f o
'—

$ =Np+Vp
Sp —V

(6)

~-iso+ L(P—f o) (»—&) 3' (7)

(p, +s.)sp = {p+ir)v~ (an approximation), (8)

where s is the shock velocity (or slope of D) and
v=1/p is the specific volume. The variables in.

these equations are of course to be evaluated on
D; subscripts refer to the two sides (M and Mo)
of D.

By Riemann's method' Eqs. (3)—(5) are re-
written

(10)

where 2' and Q are the Riemann functions which
are defined in this paper as

where

I' = 2c/(y 1)+I,, — (11)

Q=2c/(y-1) -u, (12)

c (dP/d p) & =velocity of sound. (13)

=Qo, (15)
'See, for example, H. Lamb, Hydrodynamics (Cam-

bridge University Press, 1932), sixth edition, page 481.

It is convenient to rewrite the shock equations (6)
and (7) with the aid of (8) and (13) in terms of
these five variables: c, I, cp, Np, and s. They
become to the first order in %o—1

s =uo+sc+soco,

Fro. 4. Reflection in x, E space, OD and ZP are world
lines of reflected shock and tail of incident shock, re-
spectively, and ab is a characteristic on which Q is constant.

where the following abbreviations have been
1ntroduced

s = (v+1)/2(v —1).
ep=1 —e.

It has been pointed out that Q is nearly constant'
across a rather strong shock front in air, even
without neglect of the entropy change.

INITIAL CONDITIONS

We come now to the formulation of the bound-
ary conditions on the x axis or; in other words, to
a description of the incident shock wave. For
simplicity it is assumed that at t 0 the incident
wave is progressive and that the velocity distri-
bution in it is linear; the pressure distribution is
then fixed. Equations (9) and (10) show how the
progressive condition may' be expressed. Ac-
cording to these equations a general one-dimen-
sional hydrodynamical disturbance may be
decomposed (non-linearly) into two waves, de-
scribed by I' and Q which travel in opposite
directions with the velocities c+I and c—I, re-
spectively. The.condition for a progressive wave
is that either I' or Q be constant; and in this case
it must be P since the pulse is traveling toward
—~. The required boundary conditions on the
x axis are then

uo(x, 0)= 3+Bx 0~&@&~—1,
uo(x, 0) -0 x)1, B)0,
~,(x, 0) = 2/(~ —1). (17)

Here 8 is the peak velocity. The units of length
and time are so chosen that the initial length of
the incident pulse is unity and so that c= 1 when
P=0. Equation (17) together with (5) and (13)
determine the pressure as the following function
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of the velocity

p+Ir Ir/1 —(y —1)u/2j'&«& —I&. (18)

The pressure computed from (18) and (16) is very
nearly linear for shocks in which (p+Ir)/Ir &1.6.
In othcl words R pulse of thc type considered here
is essentially linear in both pressure and velocity.

A remark may be made about the progressive
assumption at this point. Although a continuous
wRvc Gf .6nlte amplitude CRIl propagate without
increase of length, the same is no longer true as
soon Rs lt hRs evolved into R shock. Aftel lt has
become a shock, refIection of the continuous por-.

tion of thc pulse floID thc dlscoQtlnUlty begins; Rs

a result the disturbance propagates backwards as
well as forwards, and hence the progressive as-
sumption cannot be rigorously satis6ed by a shock
any time after it. is formed. Nevertheless it is
often R good approxllTlatlon, Rnd Rs we hRvc aust
seen, the pulse considered here is essentially linear
ln both prcssux'c Rnd velocity.

Although one could specify the pressure dis-
tribution in the incident pulse instead of the
velocity distribution in it, wc have not done so
because it is analytically more convenient to
lcgard thc velocity Rs given. Since, however, cx"
perimental data generally concern pressure, it is
necessary to have a way of determining the maxi-
mum velocity 8 from the measured peak pres-
sure. J3 can be calculated from the following
formula which follows from (7)

where i'=(p +Ir)/s and p„ is measured peak
pl csslll e 111 'tile lnc1dent wave. Tllls Eq. (19)
is not consistent. with (18) since (19) is a shock
equation while (18) is based on the progressive
assumption ~ RQd Rs we have 3ust sccQ, they Rrc
Qot compatible. The procedure followed here is
this: t' is regarded as computed from the meas-
ured peak pressure. From (19) B is found. From
(16) u is found. Equations (16) and (17) then
colTlpletcly dctcl lxline the wave. Thc numerical
discrepancy between (18) and (19) is actually
insigni6cant for shocks of the intensity considered
here (i' ~& 1.6).

SOLUTION IN ufo

The diHerential equations can be solved readily
in Mo if the disturbance in Mo remains pro-

grcssive. That it does remain nearly progressive
may be veri6ed by comparing the, result of the
I'lgol"GUs Rlemann nulTlcllcR1 lntcgratlon with the
analytic progressive solution. Therefore we
RSSUIDC

Let
Po(x, t) =2/(7 —1). (20)

{21)

Then by (20), (21), {10)—(12) it follows that

ca ——1 —(y —1)uo/2,

Qo ——2co/(y —1)—uo. (27)

With these expressions the problem is solved
in 350.

To detcI'ID1QC the solution ln M Gnc has to
overcome a dif6culty characteristic of shock
problems; namely, although the boundary con-
ditions on D are known, the equation of the line
D is unknown and has to be determined simul-

taneously with the solution of the differential
equations in M. The shock equations (1'4) and

Thc solll'tloll of (22) ls

tb +x =Ic(6), (23)

where & ls R function to bc detclmiIlcd by thc
boundary. conditions. When these conditions are
(16) and (17) then

~ = ((v+1)(—»+B)+23/LB(v+1)~+2 j
x &1—5, (24)
g p

Yhc discontinuity ln tlM dcllvRtlves of 6 Rlong
tile lllle x+f = 1 (Flg. 4) llas its oflgln 111 tllc
discontinuity Rt the tR11 of thc lncldent pulse
(Eq. (16)).The straight line ZF is the world line
of the tail of the incident shock and F represents
its intersection with the head of the refIected
shock. Here we are interested only in the part
OBIi of the region M: and so only the 6rst
representation of 6 in (24) will be carried. The
qllan'titles uo, co, and Qo ale liow lcadliy folllld.

ug ——2B(x+1—1)/(2+B(y+1)t) x &1 t, (25)—
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(15) contain five variables: up, cp, u, c, and s, of
which up and cp are known from (25) and (26).
Still one more condition is necessary to fix I, c,
and s, and this additional information is bound
up in the solution of the differential equations. In
order to separate the determination of the shock
line from the solution of the differential equations
we make the following approximation

where
x=nt+ptp,

n=(3v —5)B/4+1,

(32)

(33)

'=r(5v 3—)B'/4+2Bl(3 v—)/4 (34)

is little less accurate to use only the first two
terms of the expansion of (31) in powers of t, i.e. ,

where
P(g(t), t) =P(0, 0),

x=g(t) Z(x, t) =Z(0, 0), (35)

Equation (32) 6xes the boundary line D. The
boundary conditions on it are

is the equation of D. The best arguments for the
condition (28) are that the decay of P along D,
computed by the rigorous numerical method, is
small and that the pressure-time curve, obtained
on the basis of (28), agrees very closely with the
corresponding curve computed according to the
numerical method (as shown in Fig. 1). The
function 2' actually decreases along D as t in-
creases and this decrease causes the shock to
decay. Therefore the physical meaning of the
approximation (28) is that decay of the rejected
shock is negligible during the period of reHection.
Aside from its numerical success this assumption
has in its favor two facts which make it plausible:
first, the time of reHection is short; and second,
since the shock travels faster with respect to JIO
than with respect to the wall, the wall behaves as
a sustaining piston behind the shock.

The equations (14), (15), (25), (26), and (28)
lead to the following differential equation for the
shock line D

dx f+hx+j t

dt 1/B+(v+1)t/2

f= 1/B+(3v 5)/4—
b=(3 —v)/2,

j=2+B(v+1)'/8.

The solution of this equation is

(30)

x=L2/(v —1)B+(5v—3)/4(v —1)~

&&[1—(1+(v+1)Bt/2)" "'"+"'
+(2/(v —1))[1+B(v+1)'/16]t. (31)

It is more convenient and numerical comparison
with the complete equation again shows that it

Q(» t) =Qo(» t) (36)

Qp is given by (27) and (32). If the value of Qp so
obtained is put in (36) one gets

(37)Q(x, t) =gp+git+gptP,
where

gp
——2(1/v —1+B), (38)

qi ———4B[1+(5v—3)B/8j, (39)

g, = —B(3v—1)Qi/4. (4o)

In (37) higher order termswere again found small
enough to neglect. Finally

P(x, t) =P(0, 0) =Q(0, 0) =gp. (41)

2X=(c—u), +(c—u) p, (42)

where the points a and b are shown in Fig. 4. One
then finds

(c—u) p=cp=(v —1)Qp/2=(v —1)Q /2,

and by (41)

(c-u).=(v-3)~./4+(v+1)Q. /4
=(v —3)ap/4+(v+1)Q. /4.

Hence
&=(v —3)ap/8+(3v —1)Q./8.

Then the equation of the characteristic passing

(43)

The boundary conditions are most convenient in
the forms (41) and (37).

The boundary D and the boundary conditions
on it have now been found so that the differential
equations in M can be solved. Numerical inte-
gration shows that in M the characteristics of Q
are almost straight. Now the actual slope of a Q
characteristic is c—N. Let the slope be assumed
constant and equal to —X which is defined as
follows
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through (0, tb) is

x =x(tb —t), (44)

u 0,
c=(y-1)Q/2, (47)

where X is given by the preceding equation.
To find Qb as a function of tb it is convenient to

regard t, as the independent variable. The rela-
tion between Qb and tb is then given by the
parametric equations:

Qb gO+gi4+gbt (45)

tb = t,+x(t,)/X(t, ), (46)

according to (37) and (44), where

x(t.) = at.yPt. ',
&(t.) = (v —3)ao/8+ (3v —1)Q.(t.)/8

according to (32) and (43). The time t, is the
retarded value of the time t~ in the sense that
tb —t, is the time required for a given value of Q
to propagate itself from the shock front to the
wall. If the shock and Q both traveled with the
velocity of sound (unity), then one would have
exactly t =0.5t~. This relation is nearly satis6ed
in any case.

CALCULATION OF PRESSURE ON REFLECTOR

In order to calculate P(0, tb) from tb it is suffi-
cient to find Q(0, tb); because at the wall, where

p+x = m.cb"I('i (48)

It is convenient to combine (47) and (48)

p+~=xL(& 1)Q—/21"'" "
Since Q(0, tb) is already known by (45) and (46),
this equation completes the determination of
P(0, tb) as a function of tb.

The complete method for computing the pres-
sure-time curve at the wall then runs as follows.
The incident shock is specified by its pressure-
ratio, f. The maximum material velocity, 8, is
first found from Eq. (19). The following con-
stants, qb, gi, qb, n, and p, which are functions of
8 and y only, are then found from (38)—(40),
(33), and (34). These constants then determine
the auxiliary functions x(t,); Q(t,), and X(t,)
which are defined in Eqs. (32), (37), and (43). In
terms of these functions the parametric equations
of the pressure-time curve are (46) and (49). The
duration of the pressure on the wall is determined
by putting Q =2/(y —1) in (37) and then
using (46).

and from c the pressure follows according to the
equation


