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The problem of the normal reflection of a shock wave is solved by an approximate analytical
integration of the hydrodynamical equations. The solution given here leads to nearly the same
numerical results as an exact method, based on a graphical integration of the hydrodynamical
equations, which has been described by Chandrasekhar. A method of computing the complete
pressure-time curve at the reflector is given and applied to reflection in a class of fluids obeying
the Tait adiabatic equation of state. It is found that in compressible fluids (gases) the pressure
on the reflector is prolonged and that the impulse delivered to it exceeds the value predicted
by the acoustic theory. In slightly compressible media (liquids and solids), on the other hand,
the blow is shorter and the impulse delivered to the reflector is less than one would expect from
the acoustic approximation. The method given here is also applicable to the reflection of

gravity waves on the surface of a liquid.

INTRODUCTION

HEN a shock wave is reflected from a solid,

the pressure on the reflector at first rises

to a high peak and then decays to the value

previously existing. For weak shocks, or sound

waves, which strike a rigid reflector, this initial

peak is of such a height that the pressure ratio

(¢») across the reflected shock front and the

pressure ratio (¢;) across the incident shock front
are equal,

§T=§'b

so that the overpressure at the reflector is twice
the overpressure in the incident shock. In the
limiting case of very strong and normally incident
shocks, on the other hand,

S=LCBy—1)/(v—1 T

For a fluid whose adiabatic constant, v, is 1.4,
¢r/¢iis 8. The rise in pressure at the first moment
of reflection and the flow patterns simultaneously
present have been studied at all angles of inci-
dence and the theory is able to describe in an
approximate way both the regular and the
irregular, or Mach, reflection. One is, however,
rarely interested in the initial, or peak, pressure
alone unless the period of the reflector is very
short compared to the duration of the incident
wave. Similarly in the collision of equal and
opposite shocks, which is hydrodynamically
equivalent to reflection from a rigid wall, it is not

*Now at Argonne National Laboratory, Chicago,
Illinois.
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just the first instant of ‘the collision but rather the
subsequent history of the interaction which is
interesting. It is the complete course of the
reflection of one shock, or of the interaction of
two shocks, which we wish to discuss here.

QUALITATIVE DESCRIPTION OF RESULTS

For the case of normal incidence alone has the
problem been solved. The possibility of using a
very simple numerical method based on the
Riemann form of the equations of motion was
indicated by Chandrasekhar! who considered re-
flection in air. Here we replace the numerical
method by an analytical one and extend the work
to other media besides air. All media covered by
our calculations are subject to the Tait equation
of state for isentropic changes.

(p+mvr=k. 1)

Here p is overpressure; v is specific volume; =, v,
and k, which are characteristic of the medium,
are constants for isentropic processes but are
functions of the entropy. When Eq. (1) is applied
to ideal gases, v is the adiabatic constant lying
between 1 and 1.67. The same equation is also
applicable to matter in the condensed state, if =
is now interpreted as the internal pressure and y
is an empirical constant, not simply related to the
specific heats: e.g., for water, #=3000 atmos.,
v=17.15; for freshly detonated explosives which

1S, Chandrasekhar, a report ot limited circulation issued
by the Ballistics Research Laboratory, Aberdeen, Mary-
land.
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have not yet expanded, y=3. It has also been
pointed out that an analogy may be set up be-
tween the equations of gas dynamics and of
gravity waves on the surface of a fluid and this
analogy corresponds to the case of y=2; our
results are in fact applicable to gravity waves if
pressure is interpreted as A2, where % is the height
of the gravity wave.?

Although the numerical method used by
Chandrasekhar is rigorous, the analytical method
employed here contains certain approximations
and the two methods were, therefore, compared
for an incident linear shock (i.e., the pressure falls
linearly with time behind the peak) of 1.5 atmos.
in air (the particular example computed by him)
and an incident linear shock of 1800 atmos. in
water. The pressure time curves at the wall are
shown in Fig. 1. The two methods agree well and
differ considerably from the acoustic approxi-

" mation.
The results of our calculations can be most

conveniently expressed in terms of Jy7pdt, the

time integral of the pressure at the wall, where T°
is the total time required for reflection. This
integral is the momentum delivered to the wall or
the difference in momenta between the incident
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FIG. 1. Pressure-time curves at reflector. The curve at
the left corresponds to reflection in air of an incident pulse
whose peak overpressure is 0.5 atmos. The other curve
describes reflection in water of an incident pulse whose
peak overpressure is 1800 atmos. The ordinate is over-
pressure in atmos. and the unit of time is the duration of
the incident pulse. ©® Computed by Chandrasekhar’s
method ; — analytic approximation; — — acoustic approxi-
mation.

2T. von Karman, “Flow in Compressible Fluids,” to be
found in a collection of papers entitled Fluid Mechanics
and Statistical Methods in Engineering (University of
Pennsylvania Press, Philadelphia, 1941), page 25.

and reflected pulses, i.e.,

f prthdx = f padx+ f Tpdt, (2)
0

where p and # are density and material velocity,
respectively, and where the subscripts ¢ and 7
refer to incident and reflected pulses. The space
integration is extended over the whole lengths of
the incident and reflected shocks. In Fig. 2 the
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Fic. 2. Impulse given to reflector as function of ¥
Ordinate is actual impulse given to rigid wall divided by
approximate acoustic impulse. Abscissa is constant (v)
appearing in the equation of state. ¢ is shock intensity.
¢=1.0 corresponds to limiting case of sound wave.
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impulse JyTpdt is normalized by dividing by the
acoustic impulse, i.e., 2/pidt, where p; is the
value the over-pressure would have at the posi-
tion of the wall if the incident wave moved
forward without change of shape and with the
velocity of sound corresponding to zero over-
pressure. The intensity of the incident shock is
also normalized in Fig. 2: it is specified by
¢=(p+x)/x. In Fig. 2 the normalized impulse is
plotted as a function of v; the most interesting
physical result of our calculation—the difference
of behavior shown by compressible and incom-
pressible media—is then brought out: in the case
of gases (1< y<1.67) the impulse is greater than
the prediction of acoustic theory; but in the case
of liquids and solids the impulse is less than the
acoustic approximation. Non-linear theory hap-
pens to agree with the acoustic estimate in the
neighborhood of y=2; y=2 also corresponds to"
the analogy between gravity waves and gas flow.
The reason for this difference between gaseous
and condensed matter is that the duration of the
blow exceeds the acoustic approximation in the
gaseous case, whereas the situation is reversed for
solids and liquids, as one can see by the following
qualitative consideration of the reflection process.
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F1c. 3. Reflection in x space.

After the instant of impact the head, H, of the
shock wave reverses direction and begins to
travel toward its tail, 7 (Fig. 3). As soon as the
direction of H has been reversed by the wall, the
total disturbance may be regarded approximately
as a (non-linear) composition of two waves of
finite amplitude. One of these moves toward the
wall and is bounded by T and W. The other
moves away from the wall and is bounded by W
and H. These two waves penetrate each other
until T reaches the wall and thereby marks the
end of the reflection. It is clear that the tail T
moves toward the wall at speed, @, the velocity of
sound corresponding to p =0, until it meets H. It
is not so easy to guess the speed of H with respect
to the wall, but it also turns out to be nearly ¢ for
the shock strengths of interest here. The reason
is, roughly speaking, that the high pressure
behind H produces a supersonic velocity not with
respect to the wall but with respect to fluid
rapidly moving toward the walil. The net effect is
that H and T approach each other approximately
with velocity a. Hence if the initial thickness of
the pulse is L, the time until  and T meet is
L/2a. After passing through the head the tail
then moves with the velocity ¢ —u, where ¢ is the
local velocity of sound and % is the material
velocity of the fluid in the region M. Hence the
total time of reflection is L/2a+ L/2{c —u)an where
{c—u)y is the average velocity of the tail in M.
On the other hand the duration according to the
acoustic approximation is L/a. Hence if #/c is so
large that (c—u)w<a, as in air, the pressure on
the wall lasts for a longer time than acoustic
theory indicates; but if #/c is so small that
(c—u)n>a, as in water, then we have the oppo-

site situation. These qualitative considerations

are supported by the detailed calculations to
which we now turn.

ANALYTICAL METHOD

Consider a plane shock, .S, impinging on a rigid
wall, W, at normal incidence. Let the plane of the
wall be x =0 and let the x axis be directed toward
the oncoming shock. The time, ¢, is measured
from the moment at which .S strikes W. Since the
problem is one-dimensional, there are only two
independent variables, x and ¢, and it is con-
venient to speak in terms of the x, ¢ plane shown
in Fig. 4. Here D is the world line of the reflected
shock front, and the world line of a typical
element, initially at xo, is shown with a dis-
continuity where it crosses D. My and M are the
regions between D and the x axis and ¢ axis, re-
spectively. The following boundary conditions
are given on the axes and on D:

1, Distribution of pressure, p;, and velocity, #;, on the
% axis, This is the distribution of pressure and velocity in
the incident wave.

2. #=0 on the ¢ axis since the wall is rigid.

3. Shock equations across the discontinuity, D, ex-
pressing the conservation of (a) mass, (b) momentum,
(c) energy.

Subject to these boundary conditions three differ-
ential equations which again express the con-
servation-of mass, momentum, and energy must
be satisfied in My and M. In these differential
equations appear three unknown functions, €.g.,
pressure, velocity, and entropy, and the problem
is to find these functions in the regions Moand M
and in addition to find the equation of the curve
D. Employing the usual approximation, however,
we assume that the flow in Moand M is isentropic.
In addition the stronger approximation is made
that the entropy change across D can be neg-
lected. The entropy change across D is actually
only third order in the volume change; but a
stronger argument is that results of the calcula-
tion made under this assumption agree very well
with the results of the rigorous numerical method
in which the change of entropy is properly taken
into account. Under these assumptions the
entropy becomes a constant of the motion and
may beignored. There are then only two unknown
functions, say, p and %, and the exact conserva-
tion of energy condition is replaced by the
approximate conservation of entropy condition.

The three conservation conditions in M and M,



REFLECTION OF SHOCK WAVES 45

may then be written

a dp
—(pu) +—=0, 3
o0x ot
ap ou  ou
—=—p( =), @
ox at ax
p+m=Fkp” (an approximation), (5)

where p is density. There are two unknown-func-
tions and two differential equations. On the other
hand the three conservation conditions across the
shock front are

—poTt

S=Mo+vo[z; Pv], (6)
0—

u=uo+[(p—po) (vo—2v) L, (7

(po+m)ve? = (p+m)v? (an approximation), (8)

where s is the shock velocity (or slope of D) and
v=1/p is the specific volume. The variables in
these equations are of course to be evaluated on
D subscripts refer to the two sides (M and M)
of D.

By Riemann’s method® Egs. (3)-(5) are re-
written

aP P

—=—(ct+u)—, )
at x

ig= (c—u)g, (10)
at X

where P and. Q are the Riemann functions which
are defined in this paper as

P=2/(y—1)+u, (11)
Q=2/(v—1)—u, (12)

where
c=(dp/dp)t=velocity of sound. (13)

It is convenient to rewrite the shock equations (6)
and (7) with the aid of (8) and (13) in terms of
these five variables: ¢, #, co, %o, and s. They
become to the first order in ¢/co—1

s =1uo-+ecteucy, (14)
Q=0Qo, (15)

3See, for example, H. Lamb, Hydrodynamics (Cam-
bridge University Press, 1932), sixth edition, page 481.
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F1G. 4. Reflection in «, ¢ space. OD and EF are world
lines of reflected shock and tail of incident shock, re-
spectively, and @b is a characteristic on which Q is constant.

where the following abbreviations have been
introduced
e=(y+1)/2(y—1),

60=1—6.

It has been pointed out that Q is nearly constant!
across a rather strong shock front in air, even
without neglect of the entropy change.

INITIAL CONDITIONS

We come now to the formulation of the bound-
ary conditions on the x axis or, in other words, to
a description of the incident shock wave. For
simplicity it is assumed that at {=0 the incident
wave is progressive and that the velocity distri-
bution in it is linear; the pressure distribution is
then fixed. Equations (9) and (10) show how the
progressive condition may be expressed. Ac-
cording to these equations a general one-dimen-
sional hydrodynamical disturbance may be
decomposed (non-linearly) into two waves, de-
scribed by P and Q which travel in opposite
directions with the velocities c+# and ¢—wu, re-
spectively. The condition for a progressive wave
is that either P or Q be constant; and in this case
it must be P since the pulse is traveling toward
— . The required boundary conditions on the
x axis are then

#o(x, 0) = —B+Bx 0<x<1, (16)
uo(x, 0) =0 x>1, B>0,
Po(x, 0)=2/(y—1). (17)

Here B is the peak velocity. The units of length
and time are so chosen that the initial length of
the incident pulse is unity and so that ¢=1 when
p=0. Equation (17) together with (5) and (13)
determine the pressure as the following function
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of the velocity
ptm=n[1—(y—1)u/2]m/a=,

The pressure computed from (18) and (16) is very
nearly linear for shocks in which (p+)/7<1.6.
In other words a pulse of the type considered here
is essentially linear in both pressure and velocity.

A remark may be made about the progressive
assumption at this point. Although a continuous
wave of finite amplitude can propagate without
increase of length, the same is no longer true as
soon as it has evolved into a shock. After it has
become a shock, reflection of the continuous por-
tion of the pulse from the discontinuity begins; as
aresult the disturbance propagates backwards as
well as forwards, and hence the progressive as-
sumption cannot be rigorously satisfied by a shock
any time after it is formed. Nevertheless it is
often a good approximation, and as we have just
seen, the pulse considered hereis essentially linear
in both pressure and velocity.

Although one could specify the pressure dis-
tribution in the incident pulse instead of the
velocity distribution in it, we have not done so
because it is analytically more convenient to
regard the velocity as given. Since, however, ex-
perimental data generally concern pressure, it is
necessary to have a way of determining the maxi-
mum velocity B from the measured peak pres-
sure. B can be calculated from the following
formula which follows from (7)

B=[-1)A—-¢g1) /v (19)

where {=(pn—+m)/7 and p, is measured peak
pressure in the incident wave. This Eq. (19)
is not consistent with (18) since (19) is a shock
equation while (18) is based on the progressive
assumption; and as we have just seen, they are
not compatible. The procedure followed here is
this: { is regarded as computed from the meas-
ured peak pressure. From (19) B is found. From
(16) u is found. Equations (16) and (17) then
completely determine the wave. The numerical
discrepancy between (18) and (19) is actually
insignificant for shocks of the intensity considered
here (¢<1.6).

(18)

SOLUTION IN M,

The differential equations can be solved readily
in M, if the disturbance in M, remains pro-

gressive. That it does remain nearly progressive
may be verified by comparing the result of the
rigorous Riemann numerical integration with the
analytic progressive solution. Therefore we

assume
Po(x, t)=2/(y—1). (20)
Let
A=co—u,. (21)
Then by (20), (21), (10)—(12) it follows that
0A dA
—=A— (22)
ot ox
The solution of (22) is
IAtx=w(A), (23)

where w is a function to be determined by the
boundary conditions. When these conditions are
(16) and (17) then

A=[(y+1)(—=Bx+B)+2]/[B(y+1)t+2]
x<1—t,
x>1—t.

(24)
=1

The discontinuity in the derivatives of A along
the line x+¢=1 (Fig. 4) has its origin in the
discontinuity at the tail of the incident pulse
(Eq. (16)). The straight line EF is the world line
of the tail of the incident shock and F represents
its intersection with the head of the reflected
shock. Here we are interested only in the part
OEF of the region M: and so only the first
representation of A in (24) will be carried. The
quantities ug, ¢, and Qo are now readily found.

uo=2B(x+t—1)/2+B(vy+1)) x<1—t, (25)
co=1—(y—1Duo/2, (26)
Qo=2¢co/(y—1) —uo. (27

With these expressions the problem is solved
in M 0.

SOLUTION IN M

To determine the solution in M one has to
overcome a difficulty characteristic of shock
problems; namely, although the boundary con-
ditions on D are known, the equation of the line
D is unknown and has to be determined simul-
taneously with the solution of the differential
equations in M. The shock equations (14) and
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(15) contain five variables: %o, co, %, ¢, and s, of
which %y and ¢y are known from (25) and (26).
Still one more condition is necessary to fix «, c,
and s, and this additional information is bound
up in the solution of the differential equations. In
order to separate the determination of the shock
line from the solution of the differential equations
we make the following approximation

P(g(®), 1) =P(0,0), (28)
where

x=g(t) (29)

is the equation of D. The best arguments for the
_condition (28) are that the decay of P along D,
computed by the rigorous numerical method, is
small and that the pressure-time curve, obtained
on the basis of (28), agrees very closely with the
corresponding curve computed according to the
numerical method (as shown in Fig. 1). The
function P actually decreases along D as ¢ in-
creases and this decrease causes the shock to
decay. Therefore the physical meaning of the
approximation (28) is that decay of the reflected
shock is negligible during the period of reflection.
Aside from its numerical success this assumption
has in its favor two facts which make it plausible:
first, the time of reflection is short; and second,
since the shock travels faster with respect to M,
than with respect to the wall, the wall behaves as
a sustaining piston behind the shock.
The equations (14), (15), (25), (26), and (28)
lead to the following differential equation for the
shock line D

dx  frhetit

& 1/Bt et 1)if2
F=1/B+@v—5)/4,
h=G-/2,
Jj=2+B(y+1)*/8.

(30)

The solution of this equation is
x=[2/(y—1)B+(5y—3)/4(v—1)]
X[1= (14 (y+1)Bt/2) 61040
+(2/(y=1))[1+B(v+1)?/16]¢. (31)

It is more convenient and numerical comparison
with the complete equation again shows that it

is little less accurate to use only the first two
terms of the expansion of (31) in powers of ¢, i.e.,

x=at+p8, (32)

where
a=(3y—5)B/4+1, (33)
B=[(5v—3)B*/4+2BJ(3—v)/4.  (34)

Equation (32) fixes the boundary line D. The
boundary conditions on it are

P(x,£)=P(0, 0), (35)
Qx, ) =Qolx, 1). (36)

Qo is given by (27) and (32). If the value of Qg so
obtained is put in (36) one gets

Q(x, t) =qo+qit+qat?, 37

where
go=2(1/y—1+B), (38)
¢1=—4B[1+4(5vy—3)B/8], (39)
q2=—B3y—1)q1/4. (40)

In (37) higher order terms were again found small
enough to neglect. Finally

P(x,H)=P(0,0)=Q(0, 0)=qo.  (41)

The boundary conditions are most convenient in
the forms (41) and (37).

The boundary D and the boundary conditions
on it have now been found so that the differential
equations in M can be solved. Numerical inte-
gration shows that in M the characteristics of Q
are almost straight. Now the actual slope of a Q
characteristic is ¢—u. Let the slope be assumed
constant and equal to —\ which is defined as
follows '

2 =(c—u)at(c—u),

where the points ¢ and b are shown in Fig. 4. One
then finds

(c—ulp=co=(y—1)Qs/2=(v—1)Qu/2,
and by (41)

(C_u)u= (7—3)Pa/4+(7+1)Qa/4
= (v—3)q0/4+(v+1)Qu/4.

(42)

Hence

A=(v—3)q0/8+(3v—1)Qa/8. (43)

Then the equation of the characteristic passing
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through (0, %) is

x=Ntp—1), (44)

where A is given by the preceding equation.

To find Qs as a function of 4 it is convenient to
regard #, as the independent variable. The rela-
tion between Q, and f is then given by the
parametric equations:

Qb=90+913a+92ta2,
bh=ta+x(ta) /N ta),
according to (37) and (44), where

x(ta) = ate+ B2,
A(ta) = (v —3)q0/8+ (3v —1)Qa(ta) /8,

according to (32) and (43). The time ¢, is the
retarded value of the time #, in the sense that
y—1tq s the time required for a given value of Q
to propagate itself from the shock front to the
wall. If the shock and Q both traveled with the
velocity of sound (unity), then one would have
exactly 2,=0.5t,. This relation is nearly satisfied
in any case.

(45)
(46)

CALCULATION OF PRESSURE ON REFLECTOR

In order to calculate (0, &) from #, it is suffi-
cient to find Q(0, ) ; because at the wall, where

u=0,
c=(v—1)Q/2, (47)

and from ¢ the pressure follows according to the
equation

ptmr=mctrr—D, (48)
It is convenient to combine (47) and (48)
ptr=rl(y—1)Q/2TD.  (49)

Since Q(0, %) is already known by (45) and (46),
this equation completes the determination of
(0, t) as a function of #.

The complete method for computing the pres-
sure-time curve at the wall then runs as follows. -
The incident shock is specified by its pressure-
ratio, {. The maximum material velocity, B, is
first found from Eq. (19). The following con-
stants, qo, ¢1, g2, @, and B, which are functions of
B and v only, are then found from (38)-(40),
(33), and (34). These constants then determine
the auxiliary functions x(f.), Q(fa), and A(t.)
which are defined in Egs. (32), (37), and (43). In
terms of these functions the parametric equations
of the pressure-time curve are (46) and (49). The
duration of the pressure on the wall is determined
by putting Q=2/(y—1) in (37) and then
using (46).



