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where p stands for "proton" and p is the mag-

netic moment. For a "square well" the kinetic

energy of relative motion is

with
T~+ T-=2T.=~&(D+ ~')/(1+~0) (7)

n=( —MW/li') ', a=radius of well. (7')

For a=e'/mc' and D=21 Mev one finds, from

Eq. (7), 2T„=14.4mc' corresponding to T„
=0.0039Mc2, and Eq. (6) gives h(p~+ p„)
=0.0000. The four-vector field gives

h(y, +y.) = ( —0.67+0.05) T„/cV 'c
= —0.62 X0.0039= —0.0024.

This is also very small.
The model is not believed in as a reality. It

The model attributes to the proton one-half the
kinetic and potential energies of the relative
motion of the two particles within the deuteron.
The scalar field gives, including the Pauli part,

A(p„+p ) =(—W„0.28—5T,)/Mc' (6)

has properties in common, however, with Eq.
(18.1) of the first paper' and gives" the inverted
fine structure of nuclear levels in agreement with
experiment.

S. For a "square well" interaction and range
a=e'/mc' the proton and neutron spend 45 per-
cent of the time within r &a. The additivity of
nuclear magnetic moments indicates, therefore,
either the retention of individuality by the proton
and neutron within the range of force, or a
mistaken idea regarding the range of force or a
compensation of changes in the moments.

6. It is not intended to say that the relativistic
corrections are negligible, but it is believed that
the variations in these corrections due to the
sensitivity of the Dirac part of the moments to
assumptions regarding the interaction between
particles have been shown to be so large as to
make estimates of the corrections uncertain to
within practically their whole magnitude.
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fhis note is concerned with pointing out some labor saving devices in the calculation of
transformation coefficients arising in the composition of angular momenta which are needed for
the calculation of angular distributions of disintegration products arising in nuclear resonance
reactions.

~HE angular distribution of disintegration

products in resonance reactions has been

treated theoretically by several authors. ' The
present note is concerned with pointing out a few

labor saving devices in the technique of making

the necessary calculations of transformation coef-

ficients arising in the representation of the

coupling of angular momenta by means of wave

functions. It is realized that these coefficients
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are written out for the general case in Wigner's
book on the applications of Group Theory to
Quantum Mechanics. The formulas applicable to
the general case are rather lengthy, and it is
often desirable to have some other way of
checking the results or of obtaining them.

Resonance reactions involve transitions from
the initial state of the colliding particles vie one
or more states of the compound nucleus to the
final state of the disintegration products. The
nature of the disintegration products, their yield,
and angular distribution depend upon the proper-
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ties of the intermediate states of the compound
nucleus and consequently also on the nature and
stRtc of thc collldlng pRrtlelcs Rs well Rs of thc
disintegration . products. The angular distribu-
tions depend on the combined eRect of products
of matrix elements, each product cogsisting of
two factors corresponding respectively to transi-
tions from an initia1 state to an intermediate one,
and to a subsequent transition to a 6nal state.
Some of the products have to be added to each
other, and the square of the absolute value of the
sum enters the formulas for the differential
collision cross sections. A knowledge of the rela-
tive signs of the tr'ansformation eoef6cients repre-
senting the coupling of angular momenta is
needed in some cases, and the calculations can be
laborious. By applying two general theorems
about properties of transformation coefhcients
of angular momenta, it is possible to shorten
the work. The present note is concerned with an
explanation of how this can be done.

Usually the beam of incident particles is un-

polanzed, i.e., their spins ig and i2 are inde-

pendently and randomly oriented in space. The
initial state is described by a modi6cd plane wave
in which the spin states are a statistical mixture
with equal probabilities and without correlation
of the spin states of the individual particles. If
P ' are angular wave functions of the orbital
motion for angular momentum N and projection
mk along 2', and if the g axis is chosen in the
direction of the incident plane wave, then only
the components with vs=0 will occur in the
lnltlal stRte.

Thc angUlar wave functions 4~~ of thc
compound nucleus having angular momentum

jk, projection 3A, are linear combinations of
with l+ ii+ i2 ——j. and m+m i

+m2=M. The transition probabilities from ini-
tial to intermediate state require the knowledge
of the transformation coefficients ($0'pmi"$~2'&,

Ver'). The evaluation of these quantities is the
principal concern of this note.

First of, all one can compound the individual
spiDs il+i~ ——8 and use the compound spin states

instead of /~i"P ~'~. The transformation
coefficient that aie needed afe (tgo P„, 4'irf) in-
stead of (P, 'P~, '&il~, *'&, +ir&'). This may be done
on account of the following theorem.

(I) A statistical mixture without correlation

Rnd with cqURI probabllltlcs of states having
definite projections of two uncoupled spins along
Rn Rxls ls Rlso R statlstleRl mixture ln thc same
sense of states corresponding to compounded
spins with dehnite projections along the same

This theorem is a special ease of a theorem
pioved by J.v. Neumann. ' lt can be proved very
simply without direct reference to the more
general discussion of v. Neumann. The proof
may, for instance, be given as follows:3 Let I;, v;
be two complete, orthogonal sets of characteristic
functions for a physical system. In the present.
case the I;, v; correspond, respectively, to de-
coupled and coupled spin states. A statistical
mixture of the u; can be represented by

where the e; are statistical variables subject to
the condition,

&~;*ei)= b;i/E.

The sign () indicates a statistical average over
the statistical mixture, and 8 is the Kronecker 8,
while X is the total number of states. One can
express the u; in terms of the v; by means of a
unitary transformation

Q; =Zg5sg~s

The statistical mixture in terms of the v; is,
therefore

The statistical mixture of the states u is thus
also a statistical mixture of the states v.

Next, to evaluate (P~'P„', 4'ir') it is not neces-
sary to calculate the complete set of normalized
wave functions %~' for the composition of the
angular momentum 1+a=j. To see this, use is
made of the following theorem (proof in Ap-
pendix).

2 J.v. Neumann, Methemctischa Crlndlagen der Qmrnten-
mechcnik (Springer, Berlin, j.932), p. 183.

3 It will be understood from now on that the m'ords
"statistical mixture" stand for "statistical mixture anth
equal probabilities and without correlation. "



404 G. B RE I T AN D B. T. DARLING

(II) Two angular momenta 1, s are com-
pounded to give a resultant j. Let P(j, m;; mi)
be the probability of 1 having a projectiori m~

along the z axis for a state in which the absolute
value of the resultant is j, and its projection on
the z axis is m;. The theorem states that

Zm, P(j, m;; mi) = (2j+1)/(2l+1)

independently of the value of m&.

Thus if we can obtain the relative values of
(Po'f, ', +if'), we need only determine a common
proportionality factor by normalizing the sum
of the squares to (2j+1)/(21+1).

The relative values of Qo'P„', 4'sr') can be
obtained simply from the symbolic &, g method'
for combining angular momentum wave func-
tions by calculating only those terms containing
$i'qi'(m =0).The $, q method for the composition
of angular momenta 1+s=j works as follows:
One expands the expression

( $192+$2'gl)

angular momentum before disintegration is l = 1,
and it will be assumed besides that the angular
momentum of the compound state is j= 2 which
can be obtained by compounding the spins
i»=-,', i2=-,' to a resultant s=-,'+-,'=2 and com-
pounding s=2 with l=1 to a resultant j=2.
One has l+s —j=1, l —s+j=1, s —1+j=3, and
the symbolic f is

( kl'92+ 58l1) ( bkl+a'gl) ( b$2+a'g2)

klgl(a'g2+b$2) ( bt2+a'g2) + ' ' '
~

In the symbolic P the product Pili represents with-
in a factor g„')i=i, „=o. The product (as2+bf2)
X (—b$2+aq2)' gives the coefficients with which
the functions P.' occur in the 4'ir' by means of
the following replacements:

$&pi = uo =orbital motion function with I = 1, p =0

ds' (iI'v )a=2 i d2 $2 t dl (4') f2 92&

do= (6) $2 'g2 ~ d—1= (4) $2'g2, d—2='92

~'+ "') ( ~'+ "') To obtain a (@if');=2 one needs the coefficients of

in powers of the & and s. One then replaces b', —(4)&ab', (6)&a'b' —(4)&a'b, a'

and

) 21 p-&
Si'+"ni' " by O',

hl+Ii, l

] 2s q-~
g s+v~ s—v by P s

(s+~j

M=2, 1, 0, —1, —2,

and one rearranges the part of P containing Pili
into the form

Except for a normalizing factor the desired +~&
is then the coefficient of

4 =&ohb4d2+ ~z( (4)'ab')di—
—k( —(4)'a'b)d-i —a'd2j+

+is
~ ~

a& Mb&+—(
I,j+m)

in the expansion of P.
FxampIe. The procedure will now be illustrated

by means of an example. Protons (ii ———',) are
incident on Li' (i2 ———,) and give rise to a nuclear
disintegration with the emission of two alpha-
particles. It is probable that the relative orbital

4 H. Weyl, Gruppentheorie und Quantenmechanik (S.
Hirzel, Leipzig, 1928), pp. 154, 159, 193, 261; H. A.
Krarners, Proc. Amst. Akad. Sci. 33, 953 (1930);E.Wigner,
Gruppentheorie und ihre Anmendung auf die Quanten-

'

mechanik der Atomspektren (Friedr. Vierveg R Sohn, Braun-
schweig, 1931), Chaps. XV, XVII; B.L. van der Waerden,
Die Gruppentheoretische Methode in der Quantenmechanik
(Springer, Berlin, 1932), Section 18,

The (uodir, +ir&) are within a proportionality
factor the coefficients 1, —,', ——,', —1 occurring in
the square brackets. On.e has thus

(u0d~, +~') 0

To determine ¹ one applies Theorem II and
finds

N'
¹ 2j+1

N'+ + +¹= =5/3 N= (3)'*.
4 4 21+1

The desired transformation coefFicients are with-
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in a sign which is immaterial here

(P y (2) @ j') + (2)$ + 1(2)$ P 1(2)$ (2)4
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APPENDIX

Proof of Theorem II

The notation and the general system of Wigner's book4 are employed here. If

+M =~pCp, M lr 4'lvV—M Ir-
i

is an irreducible state of the angular momentum j =I+s, then the matrix

is diagonal, and
X„„=Z~,„(P„'P„',4m')(%u', P„'P,') =X,'8„„

X,' = (2j+1)/(2l+1).

Let D'" (R)„„bethe irreducible representation induced by the rotation group on P„', and similarly
for D"(R)„„on f„', and D"'(R)~ ~ on 4'~'. The operator Ps represents the effect of the rotation
and is such that

&st.'= &'D'"(R)'u4u'

and similarly for P„', @~'. Then,

& R~~ p'p ~(M, v, p", v", M', M",p", v"')Dp"y' Dv" v (gp" Qv" y
~M' /~M'M ~M"M())e m (8)e/. i. ).t. g .T. 2'3 Tl (g) Tl (2')*

(Q~rrv p& r pv r )D&rrr ~ D rrr

where R is not explicitly indicated and * means the conjugate complex. Now,

hence
~vDv" v Dv'"v ~v"v"'y ~MDM'M DM"M ~M'M"y

Xp'Ir +EX''ir ~M, v, g", p"'Dp''y' (4p''Vv +M )(+M r 4'v'"Vv )Dvr"'v

=Z&rr &rrrD~(R)&r&rr ~X&rr&rrrD~(R)

for all R. According to Schur's lemma the matrix (X„„)must be a multiple of the unit matrix,

Furthermore,
Z„X„„=2j+1= (21+1)X

so that
X,' = (2j+1)/(21+1).

It is only needed to make the further observation that Q„'f~ „', @u') = C„,m „', and tha, t

&~~ C,, ~,'~'=X„=X =(2j+1)/(2I+1)

to see that Theorem II holds.


