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known to have a positive magnetic moment, H3 has
therefore likewise a positive moment.

A second series of observations to obtain a more accurate
value for yp-was performed by keeping the current in the
electromagnet constant, and observing the induced signals
of the two isotopes for different frequencies. The following
table gives the results for the resonance frequencies va and
vi of H3 and HI, respectively, in megacycles together with
the field Bo in gauss, 'at which the observation was carried
out and the resulting ratio pz/7& of the gyromagnetic
ratios.

TABI.E I. Resonance frequencies vs and va of triton and proton and
the resulting value of yp/y~. The fourth column represents the result
of a repetition for tritium to ascertain that the field stayed constant
during the run.

Bo

9770
9500

v3

44.29
43.08

v1

41.51
40.37

44.28
43.08

1.067
1.067

To summarize we can therefore state that the triton
has a spin of 2, and that its magnetic moment is positive,
and 1.067+0.001 times larger than that of the proton.

*Work done at Stanford University and at the Los Alamos Scientific
Laboratory operated by the University of California under U. S.
Government contract.

I F. Bloch, Phys. Rev. VO, 460 (1946), F. Bloch, W. W. Hanson, and
M. Packard, Phys. Rev. 70, 474 (1946).

2 See Eq. (29) of reference 1.
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NALYSIS' of the experimental results2 obtained with
~ ~

~

~

germanium semiconductors in the temperature range
from —180'C to about 600'C has shown that one can
account for electrical conductivity and thermoelectric
power of these impurity semiconductors by assuming that
lattice vibrations and scattering by singly charged impurity
centers' are responsible for the observed resistivity p, where
p= pr-+pI

pl, =DRT'I'
9 10"~31'e'fn'"

~ ln 1+
27/2/2(k T)3j2 e4

If the number of electrons is nearly independent of
temperature one may apply the well-known criterion for
degeneracy and define a degeneracy temperature

h2 3n 2/3

Td = — =4 2 X 10 IIn213 'K.
8mk x

Since n varies from sample to sample, one finds that de-
generacy temperatures vary from a fraction of a degree K
to about 150'K in the germanium samples studied at
Purdue. Therefore, at low temperatures, the behavior of
these semiconductors should vary widely, depending upon
the number of electrons and the activation energy.

Measurements of such semiconductors down to about
10'K have been reported recently. 4 The observations show
that three kinds of samples exist:

(1) Very pure samples with a resistance increasing so
sharply with decreasing temperature that the material
becomes almost non-conducting (Estermann's "pure"
germanium and silicon samples).

(2) Samples for which the resistivity increases with
decreasing temperature and in some cases seems to reach
a "saturation" value.

(3) Samples with constant resistivity from liquid air
temperature to liquid hydrogen temperature. All of the

samples of type (3) have degeneracy temperatures of about
100'K or higher; calculations using classical statistics,
such as have been used at medium temperatures, are not
justified for such samples at low temperatures.

We have, therefore, carried out calculations assuming
Fermi statistics instead of classical statistics and can sum- ~

marize our results as follows:
(e) Lattice scattering. 5

above Tq, pL, =DRT'~2,
below Tg, pl, =D'RTG(O/T)~D'RT' at 25'K.

These expressions, calculated for germanium samples, show
a smoothly decreasing resistivity with decreasing tem-
perature and, therefore, contribute little to the observed
resistivity at lo w temperatures.

gb) Impurity scattering. By calculating the. scattering
of electrons by randomly distributed, singly-charged
impurity centers, one obtains:

1 32 c'mk'T' ~ g' exp(x —y*)dx=&I=
pg 3 ne'h' ~0 Lexp(x —p")+1/ In I '

4~2k2T2d2g2 m@2
Y= 1+- X= ) p

e4
' 2kT' kT

TABLE I.

where R~1/n is the Hall constant, n the number of con-
duction electrons per cc, m the electronic mass, e the
dielectric constant, d =0.28n '"=one-half the average
distance between impurity centers D determined from
experiments.

In both cases it has been assumed that classical statistics
can be applied. This is justified in most cases since the
number of electrons, as determined from Hall effect
measurements, is small.

Sample

26Z
11 R
26B
27L

Measured by
Estermann

0.0051
0.0040
0.0037
0.0034

Measured at
Purdue

0.0044
0.0034
0.0033
0.0029

Calculated

0.0040
0.0037
0.0034
0.0033

(All of the above values represent constant low temperature resis-
tivities measured in ohm-cm. )

Thus the transition from classical to quantum statistics leads to a
constant residual resistance due to impurity scattering in degenerate
samples in agreement with experiment.
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where p, is the chemical potential. As T approaches 0, F'

can be developed and the integral evaluated, giving
finally

pl ——{3x'n)'~'d'h/e' e.s.u.
=6270 b '~' ohm-cm.

A detailed theory has to be based on a knowledge of
both the Hall constant and the resistivity throughout the
temperature range, but comparison of our calculations with
Estermann's resistivity values indicates good agreement
between. theory and experiment. See Table I.

~ This work has been carried out under contract No. g-36-039-sc-
32020 between the Purdue Research Foundation and the Signal Corps.

~ K. Lark-Horovitz and V. A. Johnson, Phys. Rev. 69, 258, 259
(1946).

~ K. Lark-Horovitz, A. E. Middleton, E. P. Miller, and I.Walerstein,
Phys. Rev. 69, 258 (1946). K, Lark-Horovitz, A. E. Middleton, E. P.
Miller, W. W. Scanlon, and I. Walerstein, Phys. Rev. 69, 259 (1946).

v E. Conwell and V. F. Weisskopf, Phys. Rev. 69, 258 (1946).
4 G. L, Pearson and W. Shockley, Bull. Am. Phys. Soc. 21, 9 (1946).I. Estermann, A. Foner, and J. A. Randall, Bull. Am. Phys. Soc. 22,

31 (1947).
~ G(8/T) is the Gruneisen function; Mott and Jones, ProPerties of

Metals and Alloys, p. 261.
6 It can be seen that pl is of this form at low temperatures by de-

veloping the classical formula for pl and setting kT =(3n/~)42/8m.
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' FOLLOWING the suggestion of Lawson and Long' that
the thermal agitation of a quartz crystal be used to

establish a law temperature thermodynamic scale, a quan-
titative investigation of the problem was undertaken. It
appeared to be simpler to consider the problem from the
circuit point of views than from the detailed analysis of
the crystal mechanism. If the complex impedance of the
low temperature resonant circuit (crystal or ordinary par-
allel resonant combination) is given by R(f)+iX(f), then
the noise voltage appearing across the element, on open
circuit, in the range f to f+df, is given by the Nyquist
formula

d(e )Ay =4kTR{f)df.
In practice the resonant circuit is always paralleled by

the input capacity, indicated by C2 in Fig. 1. Associated
with this capacity are losses represented by the resistance
r2. The noise voltage appearing across this parallel com-
bination can be obtained from the formula3

Zg s Z, 4

(~')Av = (&a')Av + (~~')Av

where e is the fluctuating voltage appearing across the
parallel combination of an impedance Za in series with a
generator e„and an impedance Zq in series with a generator
eq. Imposing the condition that the noise appearing across
the parallel combination of the resonant circuit and the
input capacity be characteristic of the low temperature T
rather than room temperature Tq, one obtains the neces-
sary inequality.

Qp Tb
Cg»—C2—,

Q2 T'
where C~, which is in parallel with C2, is the capacity in the

Cz

FrG. 1. Simplified circuit for measurement of thermal agitation at
low temperature.

where the first term on the right is the term caused by
shot noise in the plate circuit, referred to a generator
placed on the grid, and the second term is the shot noise
due to the grid current I, in the tube. These two terms
result in the inequalities

and

1 T-
Cg((—

2 (3r„/y)a(u Tg'

Qo T~
C1»20Ig——.

G)p T~

(2)

(3)

In these inequalities or& is. the angular frequency at reson-
nance and ~co is the band width of the amplifier. The
minimum value of this band width which will include 99
percent of the energy of the resonant circuit is

200 cop
Aco= o (4)

~ Qo

Equations (1)—(4) lead to estimates of the lowest measur-
able temperature T for any desired accuracy, this ac-
curacy determining the amount by which the left-hand
sides of inequalities (1), (2), and (3) must differ from the
right. If it is assumed that the background noise voltage
cannot be measured or balanced out more accurately than
to one percent, the » symbols must be replaced by &
4 times, in order to measure T to about 2 percent. As-
suming C2 ——30yyf, Q2=10' (a value which seems generous
if one either extrapolates from known Q's of air condensers,
or calculates roughly on the basis of the power factors of
gla'ss and other material which might surround the input
lead), and Ace&1 cycle per second (a practical minimum),
the lowest T is readily calculable.

The lowest temperatures can be attained with elec-
trometer tubes, for which, due to low grid currents, the
right-hand side of (3) is less than the right-hand side of (1)
so that (1) and (2) can be used to determine the minimum

T,. For a favorable tube such as the Western Electric
D-96475, the minimum measurable temperature, under the

low temperature resonant circuit, Qp is the Q of this part
of the circuit, and Q2 is the Q of the capacity C2.

Another condition which must be met is that the low
temperature noise be large compared to the tube noise,
represented in Fig. 1 by e„, and which is given approxi-
mately by' '.

8( ')„=4k?' —+19 31,lz, l')df, .3'


