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I. The connection formulas are derived by a new method.
The general approach is that of Zwaan's discussion of
Stokes' phenomenon, but no use is made of any assump-
tions about the reality of the coefficients of the di8erential
equation. Instead of this, the proof is based only on the fact
that actual solutions of the differential equation must be
single-valued. Both this manner of proof and the form in
which the results are obtained are suited to the discussion

~of certain problems in which a boundary condition consists
in the requirement that the field at a great distance contain
an out-going wave only. The results serve to establish the
validity of Eckersley's phase-integral method for the
treatment of problems of wave propagation. II. General
arguments used to establish phase-integral methods are
asymptotic in nature, and lead to the expectation that the
methods will be valid only in a certain limit; in the language

of quantum mechanics this is the limit of large quantum
numbers. Much of the methods' usefulness, however, comes
from the fact that they give in practice surprisingly accu-
rate results even for small quantum numbers. In the case of
the energy levels of the anharmonic oscillator, special
arguments have been devised by Kemble and by Birkhoff
to establish the usual phase-integral formula without
assuming large quantum numbers. In this note a special
argument is given. for calculating normalization factors for
the approximate wave functions of the oscillator. It is
shown that the usual asymptotic formula for the normaliza-
tion factor holds for the lowest quantum states, with about
the accuracy with which the phase-integral solution ap-
proximates the shape of the exact wave function at the
point at which the potential energy function has its
minimum.

I. A NEW DERIVATION OF THE
CONNECTION FORMULAS

Introduction

HE phase-integral method for solving ordi-
nary differential equations was first clearly

formulated by Jeffreys, ' and was applied to
quantum-mechanical problems by Brillouin, '
Wentzel, ' and Kramers. ' It is usually referred to
among physicists as the B.W.K. method or the
W.K.B. method.

The differential equation

d'u/ds'+ k'(y (s) +X)u =0 (1)

is solved approximately, on the assumption that
&~As~ is large if As is a. distance in which y(s)
changes significantly. Any point so for which

y(sp)+X=0

is called a turning point. In the neighborhood of
such a point the coefficient y(s)+X changes
significantly for arbitrarily small hs, so that the

*This paper is based in part on work done for the Office
of Scientific Research and Development under contract
OEMsr-262 with the Massachusetts Institute of Tech-
nology.

'H. Jeffreys, Proc. London Math. Soc. L2j 23, 428
(1923).' L. Brillouin, Comptes rendus 183, 24 (1926).' G. Wentzel, Zeits. f. Physik 38, 51.8 (1926).

4 H. A. Kramers, Zeits. f. Physik 39, 828 (1926).

where

u (y+),) &—[Ae'" +—Be '""),

z

w = (y+X) &de.

z0

The derivation has been published a great many
times. The two arbitrary constants in the solu-

tion are A and 8; the constant lower limit of the
integral in Eq. (4) is of course not an independent
arbitrary constant, and has been chosen for
convenience to be a turning point, so.

A given solution u can be approximated closely
in a certain region of the s plane by choosing

approximate solutions to be obtained cannot be
valid near such points. They must have the
character of asymptotic solutions, providing good
approximations to actual solutions in regions
sufficiently far from all turning points. In the
usual applications of the method it is assumed
that the turning points are all simple zeros of
y+), and that any two of them are so far apart
that the asymptotic solutions provide good

approximations to actual solutions throughout
the greater part of the region between them.
It is also assumed that the function y(s) has no
singularities in the finite region of the s plane.

The general approximate solution of Eq. (1)
on these assumptions is
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suitable values of the constants A and B. Since
the differential equation (1) has no 6nite singular-
ities, the solution u(s) is a single-valued function
on the other hand, the right-hand member of
Eq. (3) is multiple-valued. Accordingly, it is not
possible for the same choice of values of A and 8
to give a good approximation to a given solution
I throughout the whole of the part of the plane,
remote from turning points, where an approxi-
mation in the form of Eq. (3) is possible. Differ-
ent values of A and 8 must be used in different
regions in order to approximate the same solu-
tion N. This phenomenon, which is of general
occurrence in the study of common types of
asymptotic approximations, was first noted and
explained by Stokes. '

Connection formulas relating the different
expressions of the type of Eq. (3) which approxi-
mate the same solution I were given by JeAreys. '
The use of such formulas in understanding clearly
the approximate solution of quantum-mechanical
problems was stressed by Kramers. ' Kramers
6rst obtained the formulas by approximating
y(s) by a linear function in the neighborhood
of so, and studying the exact solutions of the
resulting differential equation. A simpler deriva-
tion was given by Zwaan, ' who used the basic
idea by means of which Stokes had explained
the phenomenon: In certain regions of the s plane
one oi the exponential factors in Eq. (3) is very
large and the other is very small. Because the
relation between the right-hand member of Eq.
(3) and the actual solution u is only approximate,
there is rio meaning to the assignment of any
particular value to the coefficient of the small
exponential factor, for points in such a region.
Thus this coefficient can have different values

~ The assumption that y(s) is an integral function, made
here for convenience, is unnecessarily restrictive. It sufhces
to assume that any singularities of y(s) are well removed
from so. The true solution u, unlike the functions in the
right-hand member of Eq. (3), .does not have so as a branch
point.' For example, in many of the asymptotic formulas for
Bessel functions: cf. G. N. %'atson, Treatise on the Theory
of Besser Functions (The Macmillan Company, New York,
1922 and 1944), pp. 201—202, and further mention on
pp. 203, 238, 336.' G. G. Stokes, Mathemati cal and Physica/ Papers (Cam-
bridge University Press, Cambridge), Vol. IV, pp. 77—109
and pp. 283—298; ibid Vol. V, pp. 221—225.

'Reference 1. There is a misprint in one of Jeffreys'
formulas.

9A. Zwaan, Thesis, "Intensitaten im Ca-Funkenspek-
trum, " Utrecht, 1929.

for two regions adjacent to such a "Stokes
region" on opposite sides, but the other coefh-
cient must keep the same value.

More elaborate discussions have been given by
Langer" and by Kernble. "Langer's treatment is
a generalization of that of Kramers; Kemble's is
a critical discussion of Zwaan's method, with
applications to certain further situations not
covered by the usual connection formulas. "

The present treatment uses Stokes' funda-
mental idea in the same simple way as did Zwaan.
In his treatment Zwaan assumed that the coefh-
cient k'(y+X) is real for real values of s. This
assumption is unnecessarily restrictive, and is
untrue in some cases of interest; for example, in
problems of wave propagation it often happens
that the imaginary part of A is not small. The
derivation given here involves no assumption
about reality; instead we use the fact that the
true solution N(s) does not have a branch-
point at so.

Derivation of the Formulas

The only assumption we shall make about the
analytic tunction y(s), is that y(s)+X has a
simple zero at so, ae.d that there are no singu-
larities or other zeros near enough to so to
prevent our going out from this turning point in
an. arbitrary direction far enough to make the
asymptotic expression (3) a good approximation.

Very near to so we can represent y(s)+X by
the first term of Taylor's expansion, and get

= s 5"(«)) '(s —«)' (3)

There are three directions, making angles of 120'
with each other, along which we can move s
away from so in such a way that the expression
(5) is purely real. Once we have started out in
any one of these three directions we can choose

' R. E. Langer, Trans. Am. Math. Soc. 33, 23 (1931);
ibid. 34, 447 (1932); Phys. Rev. 51, 669 (1937)."E. C. Kemble, Phys. Rey. 48, 549 (1935); Funda-
mental Princip/es of Quantum 3fechanics (McGraw-Hill
Book Company, Inc. , New York, 1937), pp. 90-112,
572-578.

"Kemble discusses the radial equation of the Kepler
problem by his method, and also the low quantum states
of the oscillator, as mentioned in the second of these
notes.
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FIG. 1. Loci extending from a turning point.

each successive increment d» such that (y+ll) &d»

is real, and thus define a locus, which in general
is a curved line. We accordingly get three curves,
shown as I, II, III in Fig. 1, such that

w(») = ' (y+X)&d» ispurereal on I, II, III. (6)
ZZ

We define a branch of (y+X) & by requiring this
expression to be positive on I and then con-
tinuing counterclockwise f'rom I. Then

u(») =)' (y+ll) &d» is+on I
—on II,

+ofl III,
and —on f81''s to I,

Along each of these three loci the two functions
which appear in Eq. (3) are equal in magnitude,
and if we are to take Eq. (3) as an approximate
expression f'or e we must know both A and B.
We set ourselves the problem of determining the.
coefFIcients AII Rnd BII which 1Tlust bc used on II
to approximate a function which is approximated
on I by Eq. (3) with given coefficients Ai
and BI.Since the problem is linear and admits of
superposition of solutions, there must be a
relation 1n the fo11Tl

AII ——eAI+581
BII=CAI+dBI,

with coe%cients a, b, c, d independent of the A' s
and B's.

We can also construct three loci running out
froI11»0, oil eRcll Of wlllc11 W(») ls pill ely IIIlaglllRI y.

FIG, 2. Loci fol case in vfl»lch p'(8) 18 real fol ieaI 8
and X and so are rea1.

These are shown in Fig. 1 as 5», 52, 53. With the
choice of branch, and of direction of continuation
used in writing (7) we then have

w(») is + imaginary on Sl, far out on Si,
-ikwpP ~lcm

w(») ls —1II1Rgl11RI'y oil Sn', fRr out oil Sg,
g 47ctp+p g skip

w(») is + imaginary on Ss, far out on S1,
~
—ikt»I++ ~sktv

These loci are commonly called "Stokes lines. "
On or near such a locus only one coefFicient in

(3) needs, in general, to be given in order to
spcclfy the expression which RpproxlIYlates a
given function u asymptotically. This is, of
course, the coef6cient of the exponential which is
large on the locus in question. The coef6cient of
the other exponential has no meaning on or near
the locus, except in the special case where the
coefF»cient of the large exponential vanishes. The
Stokes phenomenon consists in the fact that if
a coefFicient becomes meaningless on a Stokes
line, its value in the region on one side of the
line can differ from that in the region on the

. other side.
Applying this conception of the Stokes phe-

. nomenon to the continuation from I to II across
5», we see that BII must equR1 BI, but AII nccd
not equal Ai unless 81=0.Thus (8) becomes

AJJ =Al+ABIp
BII BI (10)

All now that remains of our problem is to evalu-
ate the constant n.

S1IY111RI'ly, wc get foI the cont1nuat1on from II
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to III across S2'.

Azzz =Azz,
Bzzz =PAzz+Bzz ',

and for the continuation from
across S3.'

Az'= Azzz+7%zz,
&z =&zzz

(11)

III back. to I

acquires a factor e &' '= —i, we must accord-
ingly require

Az' =iBz, Bz' = iAz. (14)

The necessary and sufficient condition for
Eqs. (13) and (14) to be consistent is n =P =y =
Then (10) becomes

An=Az+iBz', Bn=Bz. (15)

Then from (10)-(12) we get

Az' = (1+yl3) Az+ (~+v+ nPy) Bz,
Bz' =PAz+ (1+nP)Bz. (13)

On the other hand we can obtain directly a
relation between Az' and J3z', the coefficients to
be used in (3) after continuation through one
revolution counterclockwise, and the original
coefficients Az and Bz. We simply use the fact
that, since u is single valued, both expressions (3)
must give the same value. Since, by Eq. (7), the
two functions e'~" and e '~" interchange values
by this continuation, and since the factor (y+A) '

This is the fundamental connection formula,
from which the various formu1as required for
specific applications can readily be obtained.

The traditional statement of the connection
formulas is based on the assumptions that X is
real; that y(s) is real for real s; and that the
turning-point under consideration, zo, is real.
In this case the lines I and S2 are straight and
coincide with portions of the real axis. We write
the connection from I to S2 by using that from
I to II and neglecting the term e '~" on S2 un-

less Azz is zero. By using Az=e ' ~', Bz=e' ~', we
get from Eqs. (15) and (3)

ly+~l 'expl k t ly+yl&ds l~2(y+X) 'cos k I (y+))lds —.
4

(16)

(on Sz) (on I)

Since we are interested only in values on the axis, we have used absolute values in the left
member so as to express it in terms of real positive quantities only.

The meaning of Eq. (16) is that if a function u is approximated on S& by the left member, then it
is approximated on I by the right member. The arrow points to the right only, because a small
error in phase in fitting the right member to u would correspond to the appearance of the positive
real exponential with a non-vanishing coefficient on the left, and this would completely ruin the
agreement on S2.

If we use Az=e'& ~' ",Bz=e "" ", we get

( (yZO Z 7r
cose' ly+xl 'expl k II ly+xl'ds l+—(y+x)

' cos k (y+x)&ds+ ——8 .
E. ~. ) ZO 4

(17)

(on $2) (on I)

This result is reliable when
l Hl is not too near n./2. Since any constant multiple of u is a solution

as well as u, the value of 0 cannot be found by examining u on Sg, so that the arrow must point
to the left only. This rule is often written with 8=0, which gives

ZO Z

ly+Xl &expl k I ly+'hl&ds
l

(y+X):cos k, l (y+X)&ds+—
4

(on S,) (on I)

These formulas (16)-(18) are written in such a way that they can be applied to the situation
shown in Fig. 2 if we simply take all quantities as positive unless the minus sign is written explicitly.
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To get formulas which hold when I extends to the left and S2 to the right, we have only to inter-
change the limits on the integrals so that ds will continue to point from left to right.

Equations (16) and (18) are usually called the First and second connection formulas. From the
fundamental result (15) we can readily derive a formula of somewhat similar appearance, which is
valid independently of any assumptions about the reality of X, y(s), or so. For Az=0, Bz=1, Eqs.
(15) a,nd (3) give the result

z 7r
2e' i (y+X) i cos k (y+X)'*ds+-

S0 4

8

~(y+X)-l exp i k)
—(y+X) ids .

&0

(19)

(on and near II) (on and near I)

In application of this. formula it must be re-
membered that the choice of branch is as indi-
cated in (7), so that the term kw in the argument
of the cosine is almost or quite purely negative.

The meaning of (19) is that if a given function
I is closely approximated by.the right member
on and near I, then it is closely approximated
by the left member on and near II. The converse
is not true: if we fit the asymptotic expression
to approximate agreement with I on and near II,
we cannot be sure that the phase is determined
precisely, and a small error in phase would mean
the presence of a term in e'~" on and near I.
Although such a term, with small coefficient,
would not hurt the agreement on and above I,
it would spoil the agreement completely below I,
where e'~" becomes large. Accordingly, we draw
the arrow in (19) pointing from right to left only.

Since, as shown below, Eq. (19) has direct
applications of some interest, it might be con-
venient to call it the third connection formula.
This is not justified in the sense of mathematical
independence, since the fundamental relation
(15) contains just two equations. The conven-
tional presentation of the two formulas, how-

ever, as shown in Eqs. (16) and (18), does not
lend itself readily to the treatment of cases in
which the reality conditions assumed in this
presentation do not hold. Thus from the point
of view of applications the formula of Eq. (19)
is a useful addition to the two standard con-
nection formulas.

An Application

Phase-integral methods have commonly been
applied to three types of boundary-value prob-
lems, all with y(s) rea.l for real s:

(a) Outgoing waves only for s~+ ~, no re-
quirement for s~—. The problem is that of

scattering in one dimension, and can be solved
for any real value of 'A for which y+X&0 for
s—&+ ~ and for s~—. The phase-integral
method gives useful results only when y+'A &0 in
some part (or parts) of the range' —~ (s& ~;
this is the problem of "penetration of a potential
barrier. "

(b) u—+0 for s~+ ~, and either u~0 for
s~ —oo or else a condition of the form u(0)
+zzu'(0) =0, with real zz. The problem can be
solved only for certain real characteristic values
of X. Examples are the problems of energy levels
of the oscillator and of the radial equation of
the central-field problem.

(c) Outgoing wave only for s—&+ ~, and a
condition of the form u(0)+zzu'(0) =0. The prob-
lem can be solved only for certain characteristic
values of ), and these are in general complex,
even for real p.

Applications of phase-integral methods to
problems of types (a) and (b) are well known in

the literature of quantum mechanics. We discuss
here the applications to certain simple problems
of type (c).

The case in which the curve of —y(s), which

plays the role of potential energy in quantum
mechanics, has a maximum and then approaches
zero for s—++ ~, and I(X)&&1, has been discussed

by Gamow" in his treatment of radio-active
disintegration. The equation

y(s)+R(X) =0

has two real zeros, 2'~ and s2', the relations are
shown graphically in Fig. 3. Since X=R(X), the
turning points are very close to s& and s2. For

"G. Gamow, Zeits. f. Physik 51, 204 (1928); Atomic
Nuclei and Radioactivity (Oxford University Press, New
York, 1931 and 1937), first edition, pp. 38—50; pp. 87—101,
second edition.
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'the formula

PZ d t du du*'t—
~

u*——u ~Ck=2ik'I(lb, ) I u*uCk, (23)
~0 C««Ck& ~0

R('h)

Fz)
which follows from Eq. (1).

The use of a phase-integral method for the
solution of problems of type (c) in which I(lw) is
not small has been developed by Eckersley'4 in

papers on the propagation of radio waves. Ac-
cording to Eckersley, the equation from which
the complex characteristic values of X are to be
obtained is

Fzc. 3. Curve of —y(s) plotted against real values of s.

ZP

(y+X) &Ck = (m ——,') n. ,
0

(24)

the usual case, @=0, the phase-integral method
requires that R(lw, ) be calculated from the con-
dition

Zl

k t (y+R(X)) &Ck = (m —~4) s., (21)
0

where k~ is the smaller root of Eq. (20) and m is
an integer. I(lb, ) is then given by

Z1 —1

I('A) = 2k]" (y+R(X)) '*Ck

0

Z2

Xexp —2k ~y+R(X)
~

&Ck . (22)
Zl

Approximate values can be obtained by these
formulas for all integer values of nz which are
small enough so that the exponential factor in
Eq. (22) is extremely small. These results can
be derived by straightforward application of the
boundary conditions and the connection for-
mulas (16) and (18). Because of the fact that the
arrows in Eqs. (16) and (18) point only one way,
however, such a derivation can be made cogent
only at the expense of a certain amount of
complication. The more usual procedure is to
establish Eq. (21) by considering the problem of
type (b) obtained by replacing the outer part
of the potential curve by something like the
dashed curve in Fig. 3—this is approximately
justified, since the "leakage through the barrier"
is very small —and then establish Eq. (22) by
using the approximate expressions for u(k) in

for the case I=0. Here m is a positive integer,
and s0 is a function of X, being a suitably chosen
solution of Eq. (2).

This method has been applied successfully in
a number of cases, but no readily understandable
and convincing argument for its validity has
been published; Eckersley's own approach ap-
pears to be based essentially on mere analogy
with the phase-integral treatment of problems
of type (b). The "third connection formula, "
Eq. (19), provides a means of deriving Eq. (24)
directly from the stated boundary conditions.
If the time-dependence is taken to be given by a
factor e'~', the right-hand member of Eq. (19)
represents the required outgoing wave. To make
the left-hand member vanish for @=0, the argu-
ment of the cosine, being a negative number,
must be set equal to —(m —-,')k, with nz a positive
integer. This gives at once Eq. (24).

It is clear that this application of the con-
nection formula can be permissible only if s0 lies
in the lower half-plane. It falls in general in the
fourth quadrant of the s plane. It.is necessary
also that 2'0 be a well-isolated turning point.
A safe rule for the applicability of Eckersley's
method is probably that s0 be far from all other
turning 'points and also be the only turning
point in the fourth quadrant. In the case of a
function —y(k),

' like that of Fig. 3, there is an
infinite number of solutions obtainable by Eck-

' T. L. Eckersley, Proc. Roy. Soc. A132, 83 (1931);
A136, 499 (1932); A137, 158 (1932); T. L. Eckersley and
G. Millington, Phil. Trans. Roy. Soc. A237, 273 (1938).
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ersley's method, with the turning-points well
separated, and one lying well below the real axis
and in the fourth quadrant; and there may be a
finite number of solutions obtainable by Gamow's
method, with two turning points, well separated,
very near the positive part of the real axis.

There may also be one or more solutions which
are not obtainable by either phase-integral
method, because the turning-points are not well
separated.

For the generalized case with p/0, Eqs. (21),
(22), and (24) must be replaced by

pZ1

J
k (y+R(l~))&ds = (m —-', )n. +tan —'pk(y(0)+RP~)) & (21')

pZ1

IP) = 2kJ (y+RP))-'*ds —2k'(y(0)+R(l~))-'*
0

and

—1 Z2

X/1+k'p'(y(0)+R(X))g ' exp —2k I ~y+R(X) ~'ds, (22')
Zl

pZQ

k (y+li)'*ds= (m —~)s+tan 'pk(y(0)+li)~.
0

(24')

The derivations of Eqs. (21') and (24') are
obvious; Eq. (22') can be derived by applying to
Eq. (23) a modification of the technique illus-
trated in the following note.

For convenience this discussion has been based
throughout on the idea that the time-dependence
is given by a factor of the form e'"'. This seems to
be the preferred convention in studies of radio
wave propagation. In quantum mechanics, how-
ever, the practically universal custom is to
write e '"' for the time factor. When this is done,
I(X) is, of course, negative instead of positive.

II. NORMALIZATION OF APPROXIMATE V/AVE
FUNCTIONS OF THE ANHARMONIC

OSCILLATOR

introduction

The phase-integral methods for solving bound-
ary-value problems are based on the approximate
solution of differential equations of the type of
Eq. (1) in terms of expressions such as that
shown in Eq. (3). The solutions so obtained are
asymptotic in character, and provide good ap-
proximations to actual solutions only in regions
remote from turning points. This means that one
can expect to obtain good answers for boundary-
value problems when the turning points are well

separated from each other and from any finite
points at which boundary conditions are applied.
The meaning of the words "well separated" is
that the phase integral between two well sepa-

rated points is a large number. Accordingly,
phase-integral methods should work well in
quantum mechanical problems when the quantum
number is large, and in problems of classical
mathematical physics when one considers high
modes of vibration.

The really interesting cases, of course, are
almost always those of small quantum numbers
or low modes of vibration. The great usefulness
of phase-integral methods comes mostly from
the fact that in practice they usually give re-
markably good results for these cases also. This
circumstance suggests the possibility that argu-
ments might be found to justify mathematically
the Qse of the methods in cases of small quantum
numbers or low modes of vibration. Such argu-
ments could not be based solely on the general
results of Eqs. (3) and (16)—(19),but would have
to be of a more special nature.

For the case of the lower energy levels of the
anharmonic oscillator two diferent special argu-
ments for the approximate validity of the phase-
integral formula for the energies have been given,
one by Birkho6'5 and the other by Kemble. "
This case is, accordingly, well understood. In the
present note a special argument is used to estab-
lish for low quantum numbers the formula for
the normalization of the approximate wave func-
tions of the oscillator.

'5 G. D. Birkhoff, Bu11. Arn. Math. Soc. 39, 696 (1933).
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Derivation of the Formula for the
Norpialization Constant

The potential-energy" function —y(z) is as-
sumed to have a single minimum and no maxi-
mum. For convenience we suppose the origin of
the z-coordinate and the zero of the energy
scale so chosen that

y'&~0, s&0; y'(0) =0; y'~&0, z&0, (25)
y(o) =o. (26)

Equation (2) has two real roots, one positive and
one negative; we denote the negative turning
point by z&, the positive one by z2.

The characteristic values of 'A are given ap-
proximately by the roots of the equation

Z2

k~~ (y+X)&dz= (n+-', )z, n= 0, 1, 2, (2"I)
.Z1

which expresses the condition of quantization in
the older quantum theory. The arguments of
Birkhoff and Kemble show that the approxima-
tion is good even for the smaller values of n.
Approximate formulas for I are, for values of z
not too near to z~ or z2 ..

u—(—)" Ciy+) i

—
&

(a Zl

Xexp —k l~ ~y+X~ &dz, z&zg, (28)
Z

u —(—)" 2C(y+X) &

nection formula, Eq. (16).The requirement that
the alternative formulas (29) and (30) give the
same values for u provides the usual derivation
of Eq. (27).

The normalization constant C is to be chosen
such that the values given by Eqs. (28)—(31)
agree as well as possible with the values of the
exact wave function u, which is normalized so
that

(u(z)) 'dz = 1. (32)

Z2

The obvious way to do this is to consider the
result of substituting the approximate formulas
(28)—(31) into Eq. (32). Since these formulas fail
completely near the turning points, such an
argument can have meaning only when the
contributions to the integral from the regions'
near the turning points form only a small part
of the total. Thus the argument will be valid
only for large n, and can be carried out with this
in mind. Accordingly, the contributions from the
exponential "tails" described by Eqs. (28) and
(31) are neglected. Also, since the trigonometric
function has numerous nodes, the square of the
cosine can be replaced approximately by the
mean value —,'. This is the usual way'~ of de-
riving the formula

Xcos k (y+X)&dz ——,zi&z&z2, (29)
Z1

u=2C(y+7) &

Z2

Xcos k ' (y+X)~dz ——,z&&z&z2,
g

The approximate value of C will now be ob-
tained from Eq. (32) by a new method, which
makes no use of the formulas (28)—(31) except
in the neighborhood of the point z=0. Equations
(29) and (30) are used to give approximate

30 values of u(0) and u (0). Taking account of
Eqs. (25) and (26) we get from Eq. (29)

pg

Xexp —k I ly+lj
~
&dz, z&z2. (31)

"Z2

Here all fractional powers are to have real
positive values. The combinations (28)—(29) and
(30)—(31) represent applications of the first con-

0
7r

u(0) —(—) "2CX—
& cos k (y+X)'dz , (34)——

Zl 4

u'(0) =(—) "+'2CkX&

r' 7r
Xsin k ' (y+X)&dz ——;(35)

Z1

'6 The notation of wave mechanics is obtained from that ' Cf., e.g., W. Pauli, IIandbgch der Physik (Verlagbuch-
used here by replacing k' by 2m/A', y(s) by —V(s), handlung, Julius Springer, Berlin, or Edwards Bros., Ann
and) bye, Arbor), Vol. 24/1, p. 173.
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and from Eq. (30)
pZ2

u(0) —2C)i-* cos 0 ~' (y+l~) «——, (36)
0

Zm x'

u'(0) —2CH. & sin k (y+li)&dk —— . (37)
0

Since the phase-integral formulas are used only
to give an approximation to the shape of the
function I at the point s =0, which is ordinarily
about as remote from s~ and s~ as any part of
the classical range of vibration, the result will

be established to a fair degree of approximation
even for the small values of n.

We proceed with the derivation. The charac-
teristic function u(k; X) satisfies the equation

(d'/dk')u(k 7)+k'(y+li)u(k )i) =0 (38)

where 1 ls R chRIRcteI lstlc VRllle, Rnd vanishes Rt
& ~. Let ui(k; V) be the solution of

(d'/ds') ui(s; V) +k'(y+ X')ui(k; li') =0 (39)

which vanishes at —~ and reduces to u(k; X)
for X'=X; when X' is not a characteristic value
ui(k; li') does not vanish at + ~. Similarly, let
u2(k; li') satisfy

(d'/dk')u1(k; X')+k'(y+) ')u2(k; 7') =0, (40)

vanish at + ~, and reduce to u(k; X) for li'=X.
Now multiply Eq. (38) by ui(k li') and Eq. (39)
by —u(k; li) and add:

(d/dk) Iui(s; li')u'(k; ),) —ui'(k; V)u(k; X) I

+k'(li —li') ui(k; X')u(k; X) =0. (41)

We now integrate from —~ to 0, and insert
two terms whose sum is zero:

By applying a similar procedure to Eqs. (38) and
(40), we find that

QO BN2
Lu(k;).)]'dk=k ' u2

0 8)'
8N2—S2—8)', o

X'=X.

(44)

All that remains to be done is to evaluate the
right-hand members of Eqs. (43) and (44) by
means of suitable phase-integral a'pproximations,
add, and equate to unity. Since ui(k; X') van-
ishes at —~, it is represented by Eqs. (28) and
(29), with )I replaced by V, and for k=0 by
Eqs. (34) and (35), with li replaced by X'. For u&,

on the other hand, Eqs. (36) and (37) must be
used. The calculations give

0 0

fu(k li) j'dk~2C'J~ (y+li) —'&dk

00 Z1

+(C'/kli) sin2 k
~

(y+li)'*dk ——, (45)
Z].

t n(k; ~) j'dk=2C'~" (y+~)-'*dk

2C', (y+li) —ldk —1.

+(C'/B. ) sin2 k " (y+X)&dk —,(46)
0

The last terms in these two equations come from
applying the operator 8/N, to the factors lb ~& in
Eqs. (34)—(37). By Eq. (27), these last terms are '

equal ln magnitude Rnd opposite ln sign. Ac-
cordingly, Eqs. (32), (45), and (46) yield the
result

In writing the added terms use was made of the
fact that for V =)„ui(k) reduces to u(k). Keeping
this same fact in mind, we see that on trans-
posing Eq. (42), dividing by X —X, and 'taking
the limit X'~) we obtain

8QI BSI
Pu(k; &)1'dk=&- »'

8X 8X Z—O

(43)

oui(0; V) —ui(0; X) ju'(0; li)

—Lui'(0; X') —ui'(0; li) ]u(0; li)

+k'(X —).') t ni(k; V)u(k; X)dk=0. (42)

This ls identical ln RppeR1Rnce %1th the usual
formula, Eq. (33). From the manner of its
derivation, however, it follows that (47) holds
not merely asymptotically, but to the same
degree of accuracy to which the phase-integral
formulas approximate the shape of the function
I in the neighborhood of the point @=0.

Comparison of Exact and. Ayyroximate
Normalized, F1lnctions for the

Harmonic Osci11ator

A nuInellcR1 comparison of exact Rnd Rpproxl-
mate normalized wave functions can most readily
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be made in the case of the harmonic oscillator.
If the formulas by which the approximate values
are computed had, in the general anharmonic
case, asymptotic validity only, good agreement
for the lower quantum states of the harmonic
oscillator would. have to be regarded as in all
probability fortuitous, and without much sig-
nificance for anharmonic cases. Since, however,
special arguments have now been found for the
better-than-asymptotic validity of both the ap-
proximate formula for the characteristic values
and that for the normalization factors, the results
can claim to be roughly representative of the
accuracy to be expected in more general cases.
There are still, of course, special cases in which
the accuracy could be much worse. One is that
in which the point at which y'(s) =0 is much
nearer one turning point than the other, and
hence falls in a region in which the phase-integral
approximation to u is very poor for the lower
quantum states. Another is that in which the
slope of the potential-energy curve is very large
in the neighborhood of one or both turning
points: the complete failure of phase-integral
methods for rectangular potential curves is
notorious. Apart from such abnormal cases,
however, accuracy of the order of that found
below for the harmonic case is to be expected.

For convenience in writing formulas we may
suppose the units of length and of energy so
chosen that for the harmonic oscillator we have

0, n even,
(0) — ( )(n 1)/—22( n!/2o)

&&[((n—1)/2)!] 'vr l, n odd;

g (s) =(2"/n!)'s ~s"e ' /

(52)

-'+",
I I

»1 (53)

Here the expression in curly brackets is a poly-
nomial.

For the normalization factor of the approxi-
mate solutions, Eqs. (47) and (48) give

C=(2~) l, (54)

W= (s 2n 1) '*ds. — —
(2 n+1)~

(58)

independent of n. From Eqs. (27), (34)—(37),
(48), and (49) we then have

na(0) =Qa approx(0)

(—)"/2(2/s)&(2n+1) ', n even,
0, nodd; (55)

Qa (0)=Q a approx(&)

0, n even,
(56)

(—)'" ""(2/~)'(2n+1)' n odd.

From Eqs. (31), (48), (49) we have

Na(s):na approx(s) (2' )
)&(s' —2n —1) &e ~, s)s& ——(2n+1)&, (57)

where

y(s) = —s'. (48) With the notations

Both the exact and phase-integral solutions (cf.
Eq. (27)) now give for the characteristic values we can write

y=(2n+1) '*s=coshf, (59)

X=2n+1, n=0, 1, 2, ~ ~ ~ .
The exact solutions are

W= (n+-', ) I y(y' —1) '* —log(y+ (y' —1)&) I 60= (n+-') I y(y' —1)& —cosh-'y I

or
u (s) = (2an!)-rs-'H. (s)e-"" (50) W=-,'(2n+1) (sinh2$ —2g). (61)

From the properties" of the Hermite polynomials
we get

By means of expansions in descending powers
of s, we can obtain from Eqs. (57)—(60) the
result

n (0) ='
(—)a/~(n!/2a) rr[(n/2) !]—~~—r

n even, (51) approx(s) = (27r) [4e/(2n+ 1)] + s e

0, nodd;

' Courant-Hilbert, Mcthemetische I'hysik (Verlagsbuch-
handlung, Julius Springer, Berlin, or Interscience Pub-
lishers, New York); second edition, Vol. I, pp. 78, 79.

(2n+ 1)(2n —3)1— S 2+
16

s) (2n+1) &. (62)
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The expression in brackets is a power series
which converges for s) (2n+1)'; the convergence
is rapid only for z&2n+1.

The comparison of exact and approximate
values of u(0) and u'(0), as computed from

Eqs. (51), (52), (55), and (56) is shown in
Table I. The agreement is seen to be surprisingly
good even for the smallest values of n, and
improves quickly as n increases. The ratios

u„„„.(0) (2y ' 2 2.4 4 (n —2) (n —2) n n
(n even)

u (0) 'Eir) 1 3 5 5 (n —3) (n 1)—(n 1)(n—+-', )
(63)

and

u'. (0) 1335 (n —2) nn

u'. .„...(0) t2q't2 2 4 4 . (n —1)(n—1)(n+-', ) 1

(n odd)
, E.z)

(64)

both converge to unity in virtue of Wallis'
infinite product formula,

224466
~ ~ ~ ~ ~ ~ ~ ~

2 133557 (65)

The convergence is much more rapid than that
of Wallis' product, not only because of the
fourth root, but especially because the modifica-
tions of final factors in Eqs. (63) and (64) are
such as to remove the errors of order 1/n and
leave only those of order 1/n'.

For sufficiently large values of z we can com-
pare the exact and approximate solutions by
considering the factors outside the curly brackets
in Eqs. (53) and (62). This comparison is shown
in Table II. Here again the agreement is sur-
prisingly good and improves rapidly with in-

creasing n. The ratio

(um approx(&) l
iim(

E u„(s)

=(nl)'*I(2 )'[(n+l)/sj""'I ' (66)

approaches unity as n—+ ~, by Stirling's formula.

The values of z for which the comparison
shown in Table II applies are very large, since
the higher terms of the series in curly brackets
can be neglected only for z&&n'. A comparison
for smaller values of z is best made by purely
numerical calculation from Eqs. (50) and (57).
It is interesting to make the comparison at
fixed values of the integral W. Equation (61) is

easily solved numerically for &, once n and W
are given, and s is then given by Eq. (59).
Values of z for various values of W are giv|:n in

Table III," and the values of I, and N, pp are
shown in Table IV. The percentage difference
between u, pp and u is tabulated in Table V.

Inspection of Table V shows that the accuracy
of the approximation improves with increasing n
only for large values of H/'. For smaller values
of t/I/' the amount of error depends principally on
the value of, 8, not that of n. The approximate
formulas for u are asymptotic formulas which

give the shape of I, as distinct from normaliza-
tion, for large H/'. It is iq.teresting, however, to

TABLE II. ComParison of I (s) and u app«x(s) for
very large values of s.

uo(0) Ss approx(0)
1

u n(0) S n approx(0)
24

TABLE I. ComParison of values of u„(0) and u„,pp„„(0)
and their derivatives.

un(S) /(one~ / )

0.7511
1.0622
1.0622
0,8673
0.6133

Nn approx {S)/(gne ' I~)

0.7244
1.0479
1.0535
0.8622
0.6103

fCapprox

Q

0.9645
0.9866
0.9918
0.9941
0.9952

0 0.7511
1 0
2 0.5811
8 0
4 0.4600

0.7979
0

0.5886
0

0.4607

1.0628

1.0046

1.0015

0
1.0622

0
1.8010

0

0
1.0501

0
1.2978

0

0.9885

0.9976 '9 Values given are rounded oE to three decimal places.
In calculating u to the accuracy desired, more accurate
values of s are required, particularly for large values of 8'.
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TABLE III. Values of s for various values of TV.

gW
ey

0 1.957
1 2.560
2 3.005
3 3.379
4 3.705

1.5

2.229
2.804
3.235
3.599
3.918

2.464
3.018
3.437
3.792
4.106

2.5

2.676
3.212
3.621
3.968
4.276

2.869
3.390
3.790
4.132
4.435

3.217
3.712
4.098
4.429
4.724

3.811
4.269
4.632
4.946
5.228

4.318
4.749
5.095
5.396
5.668

10

4.'?70
5.179
5.511
5.801
6.065

5.738
6.110
6.415
6.686
6.932

TABLE IV. Values of u and u pp ox for various values of 8".

QW

0 0.1106
1 0.1026
2 0.0991
3 0.0964
4 0.0949

0.1132
0.1068
0.1043
0.1012
0.0995

u uapprox
0.0627
0.0585
0.0564
0.0550
0.0542

1.5

uap prox
0.0631
0.0599
0.0582
0.0570
0.0561

0.0361
0.0337
0.0327
0.0319
0.0314

uapprox
0.0360
0.0343
0.0334
0.0328
0.0323

0.02094
0.01965
0.01905
0.01867
0.01837

2.5

uapprox
0.02079
0.01992
0.01940
0.01904
0.01876

0.01225
0.01152
0.01120
0.01096
0.01080

uapprox
0.01211
0.01164
0.01135
0.01115
0.01099

0.00418
0.00403
0.00394
0.00389
0.00382

0 0.00426
1 0.00401
2 0.00391
3 0.00383
4 0.00377

u uapprox
0.0'528
0.0'501
0.0'489
0.0'481
0.0'475

uapprox
0.0'516
0.0'501
0.0'491
0.0'484
0.0'478

0.04670
0.04639
0.04625
0.04615
0.04608

uapprox
0.04653
0.04636
0.04626
0.04617
0.04610

0.0~862
0.0'824
0.0'807
0.05796
0.0'787

10

uapprox
0.0~839
0.0'820
0.0'807
0.0'797
0.0'789

0.0~531
0.0'508
0.07499
0.0~493
0.0~488

uapprox
0.07513
0.0~504
0.0~498
0.0~493
0.0~488

TABLE V. Percent error, 100(u,pp o u)/u.

QW
1

'0 24
1 4.1
2 5.2
3 5.0
4 4.8

1.5

0.'?
2.4
3.2
3.6
3.5

—0.1
1.8
2.3
2.6
2.6

2.5

—0.7
1.5
1.8
2.0
2.1

1
1.0
1.3
1.7
1.8

—1.8
0.4
0.9
1.1
1.5

—2.3—0.1
0.5
0.7
0.6

8

—2.57—0.36
0.14
0.37
0.46

10

—2.74—0.55—0.05
0.19
0.29

—3.33—0.79—0.28—0.04
0.00

—3.55—1.34—0.82—0.59—0.48

note that even for S'=1 the errors are only a
few percent. This illustrates another aspect of the
remarkable accuracy of phase-integral methods,

namely that they give the shape of the function
fairly well, even rather near a turning point.
This is a fact of experience, and no clear-cut
special argument seems to be available to justify
it. In some applications, of course, such as the
derivation of Eqs. (21) and (22) by Gamow's
method, the calculation depends on the assump-
tion that W' is large in other ways besides the
approximation of the function u. Very accurate
approximation of values of u in the neighbor-
hood of a turning point can be obtained by a

modification of the phase-integral treatment
given by Langer. "

As remarked earlier, the sort of accuracy
found hei.e for the case of the harmonic oscil-
lator is also to be expected in more general cases,
provided certain exceptional circumstances —ex-
treme asymmetry of the potential curve and/or
extreme steepness of potential gradient —are not
encountered.

"See reference 10. Numerical application of Langer's
method is most readily accomplished by means of tables
of Airy integrals. Tables for real argument are being
published by the British Association Mathematical Tables
project. For complex argument, use may be made of
Tables of Modified Hanke/ Functions and their Derivatives
(Harvard University Press, Cambridge, 1945).


