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Theory of the Refraction and the Diffraction of Neutrons by Crystals
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The equations for the elastic scattering of neutrons by a single crystal, governing simple
refraction, reflection, and Laue-Bragg scattering, are derived under the assumption that the
scattering and absorption cross sections are independent of spin. A brief summary of the
results is given in the final section of the paper.

1. INTRODUCTION

HE experiments on the scattering of neu-
trons by single crystals carried out at the

Argonne Laboratories by Fermi and Zinn and at
the Clinton Laboratories by Borst and Wollan
have given conclusive evidence that ari appre-
ciable part of the scattered intensity is coherent.
In fact, a substantial part of the scattering takes
place in accordance with the Laue-Bragg equa-
tions. The purpose of the present paper is to
investigate the theoretical background for the
scattering somewhat more fully than has been
done previously' and to summarize the results in
a form that may be of use in the course of the
development of the experimental work.

The scattering of slow neutrons by crystals has
been of considerable interest since the earliest
days of neutron physics, Following Fermi's
development of a simplified or semi-empirical
method of treating the interaction between
neutron and nucleus, Wick' showed that one
should expect highly crystalline media to scatter
slow neutrons in a way that is very different
from that expected for gases or completely

' This document is based on ivork performed under Con-
tract No. W-35-058-eng-71 for the -Manhattan Project.
Part of the information covered in this document appeared
in Report CP-2419, and a more complete survey will appear
in volume IIIB, Division IV of the Manhattan Project
Technical Series, as part of the contribution of the Clinton
Laboratories. Some of the results derived in this report,
particularly those for the index of refraction, were derived
earlier by Fermi for simple cases. Fermi's measurements of
the total reflection. of thermal neutrons by graphite and
subsequent measurements of Bragg scattering by Zinn
and Horst furnished the incentive for much of the work
described here. Professor W. E. Lamb has informed us
that he investigated theoretical aspects of the problem of
neutron refraction as early as 1940.' E. Fermi, Ricerca Scientifica, 7, Part 2, 13 (1936).' G. C. Wick, Phys. Zeits. 38, 403 (1937).

amorphous materials because of the interference
eBects which occur. Kick's work has formed the
basis for much of the theoretical work. in this
field. Following a very similar line of reasoning,
Teller' pointed out that one should expect
ortho- and parahydrogen to possess markedly
different scattering cross sections because of
interference, provided the large cross section for
the scatteririg of slow neutrons by protons could
be ascribed to a virtual singlet level of the type

'used in the Breit-Wigner formalism of resonance
scattering. The subsequent experimental veri-
fications of the quantitative predictions of Teller
and Schwinger4 on the basis of Teller's original
suggestion demonstrated that one can expect to
obtain a reasonable description of the scattering
of slow neutrons by polyatomic systems with the
use of wave mechanics and the Breit-Wigner
formalism.

In the period following %'ick's work, numerous
investigators extended his treatment of the scat-
tering of neutrons by crystals. Most prominent
among these are the work of Pomerantschuk, '
Van Vleck, ' Halpern, Hamermesh and Johnson, '
Seeger and Teller, ' and Weinstock. "Pomerant-
schuk examined more carefully than Wick the
inHuence of low temperatures upon the scattering
cross section. Van Vleck investigated the scatter-

4 J. Schwinger and E. Teller, Phys. Rev. 51, 775 {1937);
J. Schwinger and E. Teller, Phys. Rev. 52, 286 (1937).

~ J. Halpern, I. Estermann, and O. Stern, Phys. Rev.
52, 142 (1937);L. W. Alvarez and K. S. Pitzer, Phys. Rev.
55, 596 (1939).'I. Pomerantschuk, Phys. Zeits. Sowjetunion 13, 65
(1938).

~ J.H. Van Vleck, Phys. Rev. 55, 924 (1939).
'O. Halpern, M.. Hamermesh, and M. H. Johnson,

Phys. Rev. 59, 981 (1941).' R. J. Seeger and E. Teller, Phys. Rev. 62, 37 (1942).
~o R. Weinstock, Phys. Rev. 65, 1 (1944).
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ing of neutrons by paramagnetic media. Halpern,
Hamermesh, and Johnson considered the elastic
or Laue-Bragg scattering of neutrons by a simple
lattice. Seeger and Teller treated in a qualitative
fashion the'consequences of the selection rules
which govern inelastic collisions of neutrons with
a lattice in the approximation in which one
thermal quantum is emitted or absorbed in the
process. Finally, 'Weinstock presented a more
complete treatment of the theory of inelastic
collisions and applied his results to a computation
of the influence of temperature on the scattering
cross section of a polycrystalline medium as a
function of temperature. His work was carried
out in the approximation in which each crystal
scatters a negligible portion of the intensity of a
monochromatic beam of neutrons which. im-

pinges upon it. Use of the foregoing theoretical
work will be made in the following presentation.

It should be emphasized that a number of
experiments which were carried out prior to
those at Argonne and Clinton gave strong indica-
tions that polycrystalline media scatter differ-
ently from non-crystalline ones. In this con-
nection should be mentioned the work of Beyer
and Whitaker" on the scattering of neutrons by
salts, that of Anderson" and co-workers on the
penetration of very slow neutrons through thick
layers of graphite, and the experiments of Rain-
water and Havens" on the variation with neutron
velocity of the scattering cross section of solids.

The present paper will treat the theory of
refraction and diffraction from several points of
view and will derive equations both for the
complex index of refraction and for the reflec-
tivity when the Laue-Bragg conditions are
satisfied. For simplicity it.will be assumed that
the scattering cross sections are independent of
spin orientation. This condition is satisfied when
the scattering nuclei have zero spin, as is true
for the isotopes of even atomic mass above N".
There is considerable evidence that the equations
based on this assumption are reasonably accurate
for many nuclei having a finite spin. For ex-

' H. G. Beyer and W. D. Whitaker, Phys. Rev. 5'7, 976
(1940), See also the more recent work by F. C. Nix and
G. F. Clement, Phys. Rev. 68, 159 (1945).

"Anderson, Fermi, and Wood, CP-718, CP-781 (Man-
hattan District Reports)."Rainwater and Havens, CP-1962 (Manhattan District
Reports).

ample, the alkali halides exhibit good Bragg
reflection.

2. EQUATIONS FOR A SCATTERING MEDIUM

According to conventional collision theory, '4

the wave function describing an incident plane
wave of particles and the waves scattered by a
spherically symmetric center of force is

0'= e"'+e"f(f&)lr

at large distances from the center, where k is the
wave number vector of the incident beam of
particles; r is the positional vector; and

f(8) = P (2n+1) (e"&&"& —1)P„(cosg). (2)
2ik

The center of force is assumed to be at the origin
of coordinates. In Eq. (2), P„ is a Legendre
polynomial of order n; »(n) is the shift in phase of
the radial wave function associated with I'„
relative to the phase in the absence of the force
field. This phase shift is real if the center does
not absorb; however, it is complex in the more
general case in which the center may absorb the
particles as well as scatter them. " In order to
treat the case in which»(n) is complex we shall
write it in the form

»(n) = », (n) +f»(n)

in which both», (n) and», (n) are real.
An analysis of the amplitude of the scattered

wave in (1) shows that the scattering cross
section cr, of the center is given by

2Ã
0, =—g„(2n+1)e—'&'&"&

X (cosh2»;(n) —cos2», (n) j. (4)

Similarly an examination of the net flux of
current through a sphere surrounding the center
shows that the absorption cross section is

2'
0,=—P„(2n+1)e '&'&"& sinh2», (n). (5)

k2

' See for example N. F. Mott and H. S.W. Massey, The
Theory oj Atomic Collisions (Oxford University Press,
1933).

'~We are indebted to Professor Schwinger for an in-
formative discussion of complex phase shifts.
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The total cross section, 0&=0.,+o. , is given by
the relation

0& Im——(4~f(0)/0) 9=0 (6)

in which Im implies "imaginary part of." In the
present case

2.7r
0.

~
———g„(2m+1)(1 —cso2q, (m)e '«'&"&) (7)

k2

In ordinary problems of nuclear scattering the
phase shifts are small, corresponding to the fact
that'cross sections are usually small compared to
s/k' (about 2.6X10 "cm' or 2.6&&10' barns for
thermal neutrons). In this approximation Eqs.
(4), (5), and (7) become:

3. WAVE FUNCTIONS IN A CRYSTAL"

We are now in a position to examine neutron
wave functions in a crystal. W'e shall attempt to
find a function of the form

(15)

in which x has the periodicity of the lattice, r is
the positional vector, and k', is the wave number
vector. For simplicity we may assume that the
crystal is a simple cubic lattice although the
results which we shall obtain are easy to gener-
alize to a more complicated case. Ke shall also
assume that the energy 8 of the wave function
is related to the wave number k outside the
crystal through the relation

4m
0.=—Q„(2m+1)g, (n) (1—2g, (e));

k'

4x
,=—g„(2n+1)(q,'(I) +g,'(e));

k'

(8)

(9)

(10)

Z =5'k'/2m.

Since the wave function possesses a 1/r singu-
larity of the type (12) at the position of each
nucleus in the lattice, and since the potential of
the neutron can be taken to be zero in the region
of space between nuclei, it follows that the equa-
tion satisfied by the wave functions within the
lattice is

hP+O'P= —4sa g P„e"'8(r r„). (17)—
We readily see from these equations that g;(0)
is very small compared with q, (0), except when
o-, is much larger than 0,. The ratio of the two
components is

The right-hand side of this equation is a sum of
delta-functions over the positions r„of the
various nuclei, appropriately modified by a phase
factor in accordance with the form of' (15),
because the Laplacian applied to 1/r gives
—4s 8(r). The corresponding form of the equation
for the function x(r) is

g;/q, =ho, /(4s-o, ) l.

The components of phase become comparable
only when 0., is of the order of 10' barns for
ordinary values of a, .

If we expand the wave function (1) in the
vicinity of r =0, we find that in the approxima-
tion in which f(8) =g/k the leading terms ar

V'x+2fk' gradx —(k"—k') x
= —4sa g g 5(r —r ). (18)

P= g/br+1+.
Since x is a periodic function, it can be expanded

(11) in a Fourier series

Thus near the origin P in general has the form I CKs~x r (19)

where
y =a,/r+-ao+.

ka y/ao = g.

ku g

In view of Eqs. (8)—(10), this means that

(12)

(13)

(14)

The summation is to be carried out over all
vectors K of the reciprocal lattice, that is, over
all vectors the components of which are integer
multiples of 2s /a, where a is the lattice constant.

~6 The mathematical approach presented in this section
was proposed to us by Professor Wigner. The results ob-
tained with this method were first obtained by the some-
what less rigorous method described in Section 5.
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If we introduce (19) into (18) and expand the
sum of the delta-functions into a Fourier series,
we obtain

exp[i(k'+K) r]
(k'+ K) ' —k'

(21)

The series converges very slowly; in fact its con-
vergence behavior is the same as for the series
expansion of the function of 1/r. It is convenient
for subsequent use to place (21) in the form

4n.a i ( exp[i(k'+p) r]
I Zxt(v —K) dr(v).

(k'+v)' —k'
(22)

It now remains to relate a & to the physically
interesting quantities o, and o, (see Eq. (14)). In
order to use Eq. (14) we must first determine ao
from (22). To do this, we subtract from (22) the
quantity

r exp(oto r)
=4m.a i~ dr(p)

(2ir) 'p'

p exp[i(k'yp) r]
=4ira, )~ dr(p) (23)

(2~)'(k'+v)'
and obtain

cx(—K' —2k' K —k"+k') = —4n.a i/v, (20)

where v =a' is the volume of the unit cell of the
lattice. Thus when we solve for cK and substitute
into (19) and (15)

or

ao 4m 1

c y 8 k —k
(26)

)
(27)

4 (4) 4)
in which no is the number of atoms per unit
volume.

It is interesting to note that k' will be complex
in the general case'in which 0-, does not vanish.
Thus in this case the functions (15) have the
form of attenuated waves.

If o is zero, Eq. (27) becomes

k"—k' = &no(4v o,)& (28)

The index of refraction n of the crystalline
medium, defined by the relation

relation between k', k, and the observed cross
sections of the nucleus involved.

In the remainder of this section we shal'1

restrict our attention to the case in which k" and
k' are very nearly equal, as will be true whenever
the phase shifts are small, and in which (k'+K)'
and k' are nearly equal only when K =0. This is
the case in which the Laue-Bragg conditions for
diffraction are not satisfied so that the crystal
behaves like a simple optical medium. W'e shall
consider Bragg reflection in detail in the next
section. Under these conditions the first term in
the sum in (25) is much larger than the other
terms appearing behind the integral sign. As a
result the equation can be written

6 g 4x'8

~
Z.(Z) exp[o(k'+~) r]

r v

k'=nk

is given by the equation

(29)

~ (24) no(4~ro;) ~ fo'no(4v o,) ~

n' —1=a ~ (3o)

This expression converges for r =0, and its
limiting value is

4~ra i f 8(y —K)
„il &r(V) Z

v & x (k'+p)' —k'

(25)
(2 )'(k'+s)'-

If (14) is used to replace the ratio a i/ao, this
equation may be employed to determine the

It is to be noted that there is an arbitrariness
in. sign before the square root in Eqs. (14), (28),
and (30).This sign cannot be determined merely
from knowledge of the scattering cross sections,
but requires additional information. According
to the Breit-Wigner formalism of resonance
levels, the sign which appears before the root
depends upon the distribution of resonance levels
of the compound nucleus relative to the zero
energy represented by the energy of the incident
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neutron plus that of the nucleus. Resonance
levels which have higher energy contribute to the
positive sign, those with lower energies to the
negative sign, just as in the corresponding optical
case.

In cases in which the nuclear scattering cross
section is of the order of 10 '4 cm', as is commonly
the case, n' —1 is of the order of 10 ' for thermal
neutrons (k 5X10' cm '). Thus the index of
refraction differs from unity by a very small
amount, in close analogy with the situation for
x-rays.

The wave functions of the form (15) may also
be derived with the use of the cellular approxima-
tion, which has proved very useful in the treat-
ment of electron waves. in solids, in the case in
which the phase shift is real (i.e. , 0,=0). A
straightforward application of this procedure
shows that as long as the phase shift is sma11, the
form of x within any given cell of the lattice is
accurately'7 represented by the function

xo =1+no/kor (31)

in which ko is the value of k for which k is zero,
that is, according to (28),

kp' ——amo(4s 0,)&,

an'd go is the phase shift for k =ko, that is,

go = a(ko'~, /4~)'

xp = 1 ro/r, — (32)

This form of x is valid for values of k' outside
the first zone, provided k' is not too close to the
surfaces of the Brillouin zones. The same type of
calculation shows that the effective neutron
mass inside the crystal is the actual mass. This
conclusion is, of course, apparent from Eq. (27)
in the approximation in which 0. vanishes since
the coefficients of k' and k" are equal.

Equation (31) may also be represented in the
form

to the other quantities by the equations

koro = —go, ko' = 4m noro, ro &——(0,/4s) '. (33)

Since (0,/4m)& is of the order of 10 " for most
nuclei, it follows from the last of the relations
(33) that the second term on the right-hand side
of (32) is negligible when r corresponds to dis-
tances midway between atoms. In other words
the function xo is almost constant everywhere
except in the immediate vicinity of the nucleus
when the scattering cross section is of the order of
y0—"cm'.

When ro is used in place of (0,) &, the equation
for the refractive index n is

n' 1=——ko'/k' = 4~n—or, /k" (34)

In the event that there is more than one atom
per unit cell, the more general form of Eq. (17) is

V'P+k'rP= —4vr Q exp(~k' r)a &(j)
7L f

&(5(r—r, —r„). (35)

Here the vector r„ is summed over the cells of the
lattice whereas r, represents the positional coor-
dinate of the jth atom in the unit cell and is
summed over the atoms in this cell. a ~(j) is the
coeKcient of 1/~r —r,

~
in the expansion of the

wave function about the point r;. We shall let
ao(j) designate the corresponding value of the
constant term in the expansion. about r,. The
relation between ao(j) and a &(j) analogous to
(14) is

kg (j) k2~ 7' fk2g jq 2 2 k20

ap(j) 4s. & 47r i 4s.

=k(U) (3.6)

in which o.,& and 0. & are the scattering and ab-
sorption cross sections for the jth nucleus.

The equation for cx in the expansion of (19),
analogous to (20) is readily. found to be

in which ro is the "extrapolation distance" of the ~xt lrm (ir&+.K)~]
wave function near the origin, which is related

4snp P—;a,(j) exp( —iK r,), (37)
'~ In the approximation in which the cells of the crystal

lattice are replaced by spheres, as is possible in reasonably
close-packed lattices, the wave function xp will have the
forQ1

xp = (1/kpr) sinkp(r —rp).

in which no is the number of unit cells per unit
volume of the crystal. Similarly the family of
equations, analogous to (25), relating the ao(j)
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and a &(j) are

-Px, , (t — ),(j) exp[oK (r, —r,)]
ao(o) =4m.no J~ dr(p)

(k'+lit) ' —k'

J

a g(o)

mo(2or)o(k' +to)-'
(38)

The vector p has the same meaning as in (25).
As previously, only the first term in the sum

(38) is large when k" and k' are very nearly
equal (and (k'+K)' is not nearly equal to k' for
any X different from zero). Thus in this case Eq.
(38) may be written

ao(o) =4vrno P;u, (j ) /(k" k'—) (39)

Since the right-hand side of this is independent of
i, it follows that

tzo(o) =n—&(o)/k(o) = C (40)

which replaces Eq. (27). The new form of P is

P; $(j) exp[fK (r —r,)]
$=4mmoC exp(fk' r) Qx

(k'+ K) ' —k'

=4ormoC exp(ik' r)xo (r). (41a)

Equation (41) may also be derived with the
use of the cellular approximation in the case in
which the 0,' are zero. In this case one surrounds
each nucleus with a polyhedral cell and deter-
mines the wave functions within the cell by
means of the usual boundary conditions. As
previously, it is found that the wave function has
the form (32) in each sub-cell of the unit cell of
the lattice; that is, the function x is constant
everywhere except in the immediate vicinity of
the nuclei.

The fact that x is constant at regions not too
close to the immediate vicinity of the nuclei has
very important consequences when the solid is
treated like an optical medium. In the conven-
tional treatment of the refracting properties of a
continuous optical medium, the relations between
incident, transmitted, and reHected rays are
determined by fitting boundary conditions at the
surface of the solid, which in the simplest cases
is taken to be a plane. Since y is constant at

in which C is a constant independent of i. Using
this relation, we And that (39) may be placed in
the form

k"—k' = 47rno Q; &(i)

in which 0 is the angle of incidence of the incident
beam, that is, the angle made with a normal to
the surface. If ri is greater than unity this remains
less than 1; however, if n is less than unity, the
reflectivity is unity for values of 0 greater than
those for which

sine &n.

Since n is very near to unity in the cases in which
we are principally interested here, we may write
ti = (or/2) —p, n = 1 —p and use the relation
cos8=sinq —p. The reHectivity then becomes

1 —[1—(2~/o')3' '

1+[1—(2~/o ') 3'
(42)

Perfect reHectivity occurs for values of y less
than (2p)&. For typical nuclear cross sections,
one finds that the angle at which the reHectivity
becomes total is of the order of 10 minutes of arc.
This type of reHectivity was first sought for and
found by Fermi and Zinn.

As in the conventional optical case, the com-
ponent of k' in the direction normal to the
crystal surface and inside the solid becomes
imaginary when sine&n, if n is less than unity.
That is, in the region of total reHection the

distances of the order of 10—' cm from the nuclei
in the present problem, it follows that the neutron
wave functions may be taken to have the form
exp(ik' r) at a mathematical surface of the solid
which lies at the periphery of the outermost layer
of atoms of the crystal. If this su~face is reason-
ably Hat in the sense that large areas of the
crystal surface are composed of the same con-
tinuous crystallographic plane, the conventional
results relating index of refraction, reHection, and
transmission of a continuous optical medium,
derived for the planar case, can be employed.
For example, in the case in which the index of
refraction is real, the reHectivity is given by the
relation

(n' sin'—0) o cose—'
R=

(n' —sin'0) '+cose
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transmitted wave is dampened exponentially.
The depth of penetration d for which the am-
plitude falls to I/e times its value at the surface is

k(n2 —sin28)& k(2p)& 2s (2p)&

in which X is the wave-length. Ke find that d is
of the order of 10') for typical values of p, , that
is, of the order of 100A. This distance is suf-
ficiently small that experimental determinations
of the existence of total reflection will be seriously
influenced by the presence on the surface of a
contaminating layer of the order of 100 atom
distances in thickness. For example, the oxide
layer on most metals will have an important
influence on the reflectivity.

The recent experiments of Fermi, " Zinn,
Marshall, Horst, "and Kollan, and the somewhat
earlier work of Goldberger carried out in coope-
ration with Zinn, seem to show that most nuclei
scatter with negative phase shift, corresponding
to index of refraction less than unity. (Man-
ganese appears to be the only exception dis-
covered to date. ) This result seems to imply that
for most nuclei the influence of stable neutron
levels having negative energy on the dispersion
properties of nuclei for thermal neutrons is
greater than that of the virtual levels which lie
above the thermal region. If further work jus-
tifies this conclusion we need not be too sur-
prised: Practically all transparent media have
an index of refraction greater than unity in the
visible portion of the optical spectrum; it would
hardly seem more startling to find a similar
uniform principle operating for thermal neutrons
in cases in which the scattering nucleus does not
possess a virtual level lying close to the thermal
region.

4. LAUE-BRAGG REFLECTION

Ke are now in a position to discuss the
analog of ordinary x-ray diffraction. From the
mathematical viewpoint, this type of diffraction
occurs when k" and (k'+ K)' become equal for a
value of X different from zero. Ke shall designate

8 E. Fermi, W. H. Zinn, and L. Marshall, Abstracts E2,
E4, and ES, Chicago Meeting, American Physical Society,
June, 1946.

"As yet unpublished work.

this value of K by K' for the purposes of the fol-
lowing discussion. When this condition is satis-
fied, two terms in the sum under the integral sign
in Eq. (38) are large instead of only one, namely
that for which K is equal to 0 and to K'. Thus
the equation relating k and k' which replaces
(39) is

(E a-i(j)
ao(i) =4~no(

P;a i(j) exp( iK—' r;)q

+exp�(iK'.

r;)
'

~. (43)
(k'+ K') ' —k' )

If we write

Ci =4~no P, a i(j)/(k' —k );
Q;a i(j) exp( —iK' r;)

C2=4mnp, (45)
(k'+ K') ' —k'

Eq. (43) may be placed in the form

ao(i) =a i(i)/P(i) = Ci+exp(iK' r;) C2. (46)

When the value of a i(j) derived from (46) is
substituted into (44) and (45), the following two
simultaneous equations result:

I
k"—k']Ci=4sngLci P P(j)

P C2 P; t(j) e p (iK' r~) ],
(47)L(k'+K')' —k']C2=4snoLCi Q; $(j)

&&exp( iK' r—;)+C, Z; p(j)].

The determinantal compatibility equation asso-
ciated with (47) gives the relation between k~

and k".Ke may expect the' roots of this equation
to exhibit all of the characteristic features, of the
theory of Brillouin zones in the case in which the
&(i) are real. That is k' will be single valued and
real for all real values of k' except at the zone
surfaces for which k" and (k'+K')' are equal.
Here k' will be real and double-valued. Con-
versely, in the neighborhood of the zone surface
there will be two real values of k" associated
with each value of k'. These values of k" will
be complex when the g(i) are complex. In other
words, there are two sets of functions f associated
with each value of k' when the Laue-Bragg con-
dition is satisfied. From (19), (37), and (46) we



REFRACTION OF NEUTRONS 30i

find that these functions have the form

Ci Z $(j) expL'K (r —r )j
4snp exp(ik' ~ r)

x (k'+ K) ' —k'

P; $(j) expLi(K —K') ~ (r —r;)]+g Cg exp(ik' r)
K (k'+ K) ' —k'

(48)

in which Ci and C2 are the solutions of Eqs. (47).
Ke see that these functions may be regarded as
the superposition of two waves traveling in the
direction k' and k'+K', respectively. The rela-
tive amplitude with which each solution appears
in the final form of the wave function within the
crystal is to be determined by the boundary con-
ditions. These in turn depend upon the physical
arrangement in a given experiment. For example,
if a neutron beam is diffracted in such a way that
it enters and emerges through the same surface
(the case of Bragg reHection), the solution within
the crystal must join the incident and emergent
solutions at the surface of incidence. In addition,
it must satisfy the condition that there be no
incident wave on the rear face of the specimen.

Fortunately, we may note that Eqs. (47)
are identical with those which occur in the
dynamical theory of x-ray diffraction" if C& and
C2 are interpreted as being equivalent to the
amplitudes Do" and DK', respectively, of the
displacement vectors which are polarized in a
direction normal to the plane containing k and
k', and if the quantities

no g; $(j) and no g; $(j) exp(iK' r;).
occurring as coefficients of C~ and C~ in the right-
hand side of (47) are regarded as being the
equivalent of k' times the Fourier components
of the complex polarizability of the medium.
Moreover, it is conventional to have Do and DK
satisfy exactly the same boundary conditions as
the corresponding amplitude constants in our
problem do. Thus we may use all of the results
of the dynamical theory of x-ray diffraction for
the case of the normally polarized wave, after

~0 W. H. Zachariasen, X-Ray Digraction ze Crystals
(Wiley and Sons, New York). See Sec. 9, Chapter 3 in
particular. We are deeply indebted to Professor Zachariasen
for numerous valuable discussions of the material in this
paper and for the use of an advanced copy of, the manu-
script of his book.

suitably readjusting the constants which appear
in the equations.

It is readily seen that Eq. (48) may be placed
in the form

$=4snoLC& exp(ik' r)xq. (r)

y C, exp(i(k'+ K') r)x,.+x, (r) 7, (48a)

in which Xk and XI, +K are identical functions of
the variables k' and k'+K', respectively. yk. in

(48a) is, in turn, defined by the same series as the
corresponding function xq, appearing in (41a)',

. which we have seen to be nearly constant every-
where except in the immediate vicinity of the
nuclei. It follows that as long as r is not in the
immediate vicinity of the nuclei (48a) may be
written in the approximate form

f=Ai exp(ik' r)+A2 expLi(k'+K') r$, (48b)

where A i/A 2 ——Ci/C2.
Now in satisfying conditions of continuity for

incoming and transmitted waves in the dynamical
theory of xray diffraction, it is commonly
assumed that the wave inside the crystal has the
form (48b). This assumption is highly accurate
in the present case near the mathematical
boundary of the crystal where boundary condi-
tions are satisfied, as long as this boundary is not
too close to the nuclei. In fact the assumption is
much more justifiable in the present case than in
the case of x-ray diffraction, for in the latter
problem the series analogous to (48) has very
different convergence properties. In the dy-
namical theory of x-ray diffraction, it is also
common to assume that the surface boundary is
a perfect plane. As in the treatment of refractiori
in the preceding section, this assumption will
evidently be accurate only if large areas of the
crystal surface are composed of the same plane
of atoms in the usual crystallographic sense.

The analogy between x-ray diffraction and
neutron diffraction, in the ideal case we are
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considering, extends even more deeply than might,
be supposed at first sight, as we shall see more
clearly in the next section.

Ke shall examine the equations for neutron
diffraction further after discussing another
method by which the problem may be treated.

5. APPLICATION OF THE METHOD OF THE
PSEUDO-POTENTIAL

The results derived in the preceding sections
can be obtained in a very straightforward
manner with the use of the pseudo-potential,
first employed by Fermi. ' In this method the
actual interaction potential between neutron and
nucleus is replaced with a simple function that
will lead to the same phase shifts, as the actual
potential for a range of energy of interest. This
range will be taken to be that near thermal
energies in the present problem.

To begin with, we shall consider the case in
which the pseudo-potential is taken to have the
form of a simple square well of depth uk'/2m and
breadth a. In the general case in which the
nucleus absorbs neutrons, u will be complex. The
relation between u and the phase shift q outside
the potential well is found by requiring that the
wave function and its derivative be continuous
at the boundary of the square well. The corre-
sponding condition is"

sin(ua) '* sin(ka+ q)

u cos(ua) & k cos(ka+g)

If (ua)&, ka, and q are all small compared with

unity, both sides of this equation may be ex-
panded. The resulting equation is

approximation the pseudo-potential V, asso-
ciated with the jth nucleus can be written in the
form

k ( 0 ' (0 'g ~ sko ''i
+ l~(r-r, ).

2~m 4 4~ &4~) 4~ )
(52)

It should be noted again that the conditions
under which (52) is valid are that q, a, and the
wave-length, ), satisfy the inequality relation

g/k«a«X. (53)

d (Ri RR" R'—
(
—

~

=1-—=1+u(r) —,
dr ER') R" (54)

in which u(r) is —2m/k' times the pseudo-
potential. Since R/R'=r for small phase shifts,
it follows that at the outer boundary of the
potential (r = a)

(R) p 1
=a+ ~ u(r)r'dr =a+ t u(r)dr. —

~R') „=.

These conditions stand in contrast with those
for the methods employed in the previous sec-
tions. In these cases it was only necessary that
X be large compared with g/k.

It is easy to show that the relation (52) is
valid even if the original well is not taken to be
square, provided the phase shift is sufficiently
small. To prove this we note that the left hand
side of Eq. (49) is the value of R/R' at the outer
edge of the potential barrier, regardless of the
form it is assumed to have, where R is r times
the radial part of the s wave function, and R'
is its derivative. Now R/R' satisfies the equation

or
g =ka'u/3

u =3gjka'.

(50)

(51)

Equating this to the right-hand side of (49) we
obtain

We note from .(51) that the product ua', which
is proportional to the volume integral of the
pseudo-potential is a constant in the present
approximation if the cross sections are constant.
Hence as long as the pseudo-potential is multi-

plied by functions which vary very slowly over
the potential well, as when the neutron wave-

length is long compared with a, the square well

may be replaced by a delta-function. In this

1
()d'

a 4~~
(55)

hf+O'P = —a$, (56)

Thus the pseudo-potential can be taken to have
the form (52) wherever the conditions (53) are
satisfied.

To summarize, we may take the Schroedinger
equation inside the crystal to have the form
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where

&& 8(r —r„), (57)

The first equation leads to (41) when the relation
(59) is employed, whereas the second reduces to
Eq. (37) when Eq. (40) is used to express a i(j)
in (37) in terms of $(j).

(b) Near Bragg Reflection

n =Px aK exp(pK r), (58)

in which the a~ are constants and the vectors E
extend over the reciprocal lattice of the crystal. —

It is readily found from (57) that

aK=4prnp p; p(j) exp( —pK r;), (59)

where no is the density of unit cells, r; is summed
over the atoms in the unity cell, and $(j) is
defined by Eq. (36).

As previously, we may now solve Eq. (56)
with a function of the form

in which r„ is summed over all atoms in the
lattice. It is clear that Eq. (35) is much more
general since the only condition on its applica-
bility is that X be large compared with q/k for all
nuclei. Actually, as we shall see below, the
results obtained with the use of Eq. (56) and the
type of perturbation theory that was employed
in connection with Eq. (17) for the index of
refraction and the Laue-Bragg diffraction are the
same as those found in the previous sections,
This indicates that the results obtained with the
use of the pseudo-potential are more gerieral than
the equations from which they are derived.

We shall now resolve n appearing in (57) into
a Fourier series of the form

When (k'+K')' is near to k" for a particular
value K' of K, the constants co and cK become
comparable. There are then two equations
analagous to the first of (62), namely

apcp+a ircir = [k"—k']cp,

aK cp+apcK = [(k'+K')' —kP]cx .
(63)

These equations are identical in form with (47)
so that the allowed values of k' are identical in
the two cases. Moreover, it is readily found that
when the value (46) for a i(j) is substituted into
Eq. (37) for cx, the result is identical with the
equation for cK obtained from (61), namely

[(k'+K)' —k']cx=aKcp+aK Kcx. (64)

Hence the method based on the pseudo-
potential yields the results we obtained previ-
ously.

.A close comparison between Eqs. (63) and the
corresponding equations for x-ray diffraction"
shows that the function n/4prk' can be regarded
as the equivalent of the complex electrical polar-
izability of the medium in which the x-rays are
diffracted. In a region of wave-length not too close
to an absorption band, the polarizability p(r) for
a monatomic substance is given by the equation

/=exp(pk' r)(Px cK exp(pK r)), (60)
p(r) = (e'Z/nic'k') pg(r), (65)

in which the cK are constants, and k' is an un-
known vector. When (59) and (60) are sub-
stituted in Eq. (56) and the coefficients of each
term e&K & are equated, we obtain the following
family of equations.

Qx ax I cK = [(k'+K)' —k']cK. (61)

Again there are two interesting cases to treat.

apcp ——[k"—k']cp,

axcp ——[(k'+ K) ' —k']cK.
(62)

(a) No Bragg Reflection

In this case co is larger than all other values of
cK a,nd Eqs. (61) may be written

in which p, (r) is the electron charge distribution,
which is normalized to unity for a single atom;
Z is the atomic number; m is the electronic
mass; and c is the velocity of light. This is to be
contrasted with n/4mk' which in a non-absorbing
monatomic substance is

(66)

where p(r) is the density of scattering centers.
Since Ze'/mc' is of the same order of magnitude
as (p, /4pr)'* in regions not too close to resonance
peaks, it follows that we may expect nearly
quantitative agreement for the two cases.
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This close analogy is not as valid in the
vicinity of absorbing regions as it is the case of
pure scattering. Absorption cross sections of the
order of 10—"cm' or larger are very common in
the case of x-rays, particularly when the material
contains heavy elements. Similar large absorption
cross sections occur for thermal neutrons only in
crystals containing cadmium, gadolinium, or one
of the other elements possessing a resonance peak
in the thermal region.

6. APPLICATION OF EQUATIONS FOR
LAUE-BRAGG SCATTERING

We shall now apply the results of diffraction
theory to a few typical problems of interest in
connection with neutron diff'raction, restricting
our attention to cases in which absorption is
negligible, unless the contrary is stated.

(1) Depth of Penetration

In the conventional treatments of the dif-
fraction of x-rays, it is customary to distinguish
two cases, namely that of a "thin" crystal and
that of a "thick" crystal. Only a small portion of
the incident wave is diffracted before passing
through the crystal in the first case, whereas &he

wave is diffracted a number of times in the
second case. The conditions on the thickness tp

determining whether or not the crystal is to be
regarded as thin or thick are, respectively, that
the quantity A defined by the equation

~ =«I«I/»(I 7 I I VXI)' (67)

be much smaller or much larger than unity (cf.
Zachariasen, Eq. (3.140)). Here K is the re-
ciprocal vector for the diffracting plane; yp is the
cosine of the angle b|.'tween the direction of the
incident wave and the normal to the surface
through which the wave enters the crystal; yK
is the cosine of the angle the diffracted ray makes
with the same normal; and the other quantities
are as defined previously. The two cosines are
equal in magnitude in the case in which the
incident wave undergoes Bragg-reflection from
crystallographic planes that are parallel to the
surface plane of -the specimen.

Thus the reciprocal of the coefficient of tp in

Eq. (67) provides a measure of the depth to
which a wave penetrates before being attenuated
to the maximum degree. This distance, which we

shall designate as dK is

&K=(»/I «I)(l vol I vKI)' (68)

In the case of a monatomic substance this is

«= (&/2«o) (4~/~. )'(I vo I I ml)'.

This is cIosely comparable with the correspond-
ing distance for x-rays for" all ordinary values of
o.„as we might expect from what has been said
previously. For example, if we take

k=3.5.10 cm ', np=3X10" cm ',

we find

o,/4or=10 '4cm'

(I vol I
vKI)'=0 2

d=3.7X10 4cm.

As a more specific example let us consider the
case of thermal neutrons diftracted by the (100)
faces of magnesium oxide, which possesses the
sodium-chloride lattice. We shall take the neu-
tron eriergy to be 3koT/2 (ko is Boltzmann's
constant, and T will be chosen as 300'K) for
which the neutron wave number k is 4.57X10
cm '. The most reliable values for the cross sec-
tions appear to be o, (Mg) =4.0X10 " cm' and
o;(0) =4.0X10 '4 cm'. If we assume that both
nuclei scatter with the same phase a&op = 7 6 X 10
cm '. Since (Idol Iyxl)~=0. 653, we obtain

drop=7-84X10 4 cm.

It is to be noted that in this case uipp would
vanish to a first approximation if the phases of
the scattering nuclei were opposite since the
cross sections are almost identical. In fact the
cancellation would occur for all orders of reflec-
tion from the (100) planes since

X (cos3%or+3 cosNor) . (70)

(o,(11')i & (o,(0) l &-

amoo = 8orno E4)&4)
X (1+cosXor). (69)

If the (100) reRections vanish, it is still possible
to obtain rellections from the (111) planes since

("(~g)&
' (~.(0)&

'
a»&=4~no al i
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This close correspondence between the pene-
tration distance for the two types of radiation
shows us that the upper limit on the size of mosaic
blocks for which primary extinction is negligible
for a strong x-ray refiection is about the same
for neutrons.

Xs = (~ I
ax

I
Xs/2k' sin'8s) vg(Xs), (71)

in which X~ satisfies the equation

lI,s/2n. =1/ks=2 sin8&/IKI. (72)

Ng represents the net neutron fiux per unit time
across the entire area of the rejected beam. If
the distribution spectrum of the incident beam
is expressed in terms of wave number instead of
wave-length, Eq. (71) is replaced by

where
Ns ——~IaKI ii,.(k)/2k sin'8s,

ip(k)dk = ii, (li)dpi.

(73)

(74)

If the incident neutron beam has a net inten-
sity X~ neutrons per second and is derived from

(2) The Intensity of Reflection from a Crystal

Let us now consider the intensity of a reRected
neutron beam under the somewhat idealized con-
ditions we are discussing in the present treat-
ment. To begin with, 'let us assume that a poly-
chromatic beam impinges upon a perfect crystal
and makes an angle with the plane of the crystal.
We shall assume that this plane coincides with
the planes responsible for diffraction so that the
situation is that typical of Bragg refiection. In
addition we shall assume that the number of
neutrons per second in the beam having wave-
length lying in the range from ) to ) +d) is given
by ~dX. The incident beam will possess a small
angular divergence so that the wave-length
which is diffracted with maximum effectiveness
will differ for each ray of which the beam is
composed. We shill assume that the angular
divergence is sufficiently small that the distribu-
tion function v& does not vary appreciably over
the range of wave-lengths which are diffracted
most efficiently.

According to Zachariasen (cf. Eqs. (3.152) and
(3.156)) the integrated intensity Ns which is
reflected from the crystallographic plane asso-
ciated with K for a thick crystal is

in which ko is Boltzmann's constant, T is the
neutron temperature; and the other quantities
are as designated in previous sections. Using
Eq. (73) we find

n-IaxI ) k'k' q'
I exp( —k'k'/2mkoT)

k' sin'8s E2mkpT)

~IaKI
g
—s/Ic0 T

k' sin'8& &koT)

(76)

in which e is the neutron energy. If we set
e = 2koT, we find that (76), which measures the
efl'ective reflectivity of the crystal, is of the order
of 10 5 for a typical monatomic scatterer. Ac-
tually the reflectivity will be this small only for
a very perfect crystal. We may expect values
between 10 and 100 times larger for a moderately
imperfect crystal containing mosaic blocks which
are tilted relative to one another.

It is interesting to compute Xs/¹ for MgO.
We shall consider second-order diffraction from
the 100 planes and first-order diffraction from
111 planes. Here k=4.57X10' cm '. IaiapI
=

I
alii

I

= 7.61X 10u cm ', 8B100 40~45'i 8B11i
=16'26'; and we find (Ãs/1Vq)MD=1. 35X10 ~,

(Xs/¹),ii ——7.10X10-'.

(3) Influence of Mosaic Structure

In a single crystal x-ray spectrometer, the
mosaic structure seriously interferes with the
resolving power in cases in which the highest
detail is required, for example when it is desired
to resolve the natural breadth of emission lines.
The corresponding problem is probably not as
grave for a neutron spectrometer, at least from

present standards. For example, if we require
an energy resolution hB in the energy range near
E the allowed angular spread of the beam must
be less than

a8 = (aE/E) (1/2 cot8), (77)

in which 8 is the angle at which observations are
made. When 8 is about 5X10 ', which is a

a thermal source by collimation, the distribution
function v~ is given by

2¹p k'k' q'
exp( —k2k2/2mkpT), (75)

k 02mkpT)
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s& = 1.15
~

aK
~
/k' sin20s. (78)

This width is of the order of a second of arc for
a typical case. In the case of magnesium oxide we
find that when k =4.57&10' cm ', or =0.875" for
second-order reflection from the (100) planes,
and &a = 1.59" for first-order reflection from (111)
planes. The net reflectivity for a polychromatic
beam is given by Eqs. (71) and (73).

The angular distribution of mosaic blocks
relative to perfect orientation will, in the simplest
case, be given by a distribution function of the

. form

f=exp) 6,'/s'1/—(2gr) q, (79)

in which 6, is the angular deviation from the
mean, and g measures the breadth of the dis-
tribution. q is very small, of the order of a few
seconds of arc or less, in a few natural crystals.
However, in most crystals g is much wider, of
the order of a minute of arc or more.

In the case of a thick crystal (i.e. , a calcite
crystal 1 cm thick) we may expect to obtain unit
reflectivity oyer a range of angle equal to p
instead of over the range co given by Eq. (78)
if we assume that absorption is not large for the
thickness of the specimen. Thus in the cases of
interest to us, the reflectivity is equal to (76)
times z/co. The reflectivity then may be of the

typical small value that would be of interest in
the diffraction of thermal neutrons from a crystal
such as calcite, we find that an energy resolution
of 5)&10 ', which would be of high quality com-

.. pared to present standards of resolution, can be
achieved with an angular divergence of about
10 4 radian or about 0.4 second of arc. Thus
both the degree of divergence of the neutron
beam and the degree of variation of the orien-
tation of mosaic blocks could be considerably
larger for the case of neutrons than for x-rays
for "good" results.

The quantitative importance of mosaic struc-
ture in determining the reflectivity of a crystal
can be estimated approximately in the following
fashion. If the crystal were perfect and were thick
compared to dz. given by Eq. (69), its reflec-
tivity would be unity for monochromatic waves
incident at the Bragg angle for a range of angular
deviation &o given by (cf. Zachariasen (3.151)
and (3.155))

order of 10 4 or larger instead of the value given
by Eq. (76).

In the corresponding problem for x-rays, the
absorption of the incident beam is usually so
great that the simple reasoning of the previous
paragraph cannot be employed. It is readily
shown that when the absorption is great the
quantity multiplying (76) is (cf. Zachariasen
(4.40))

s.(0,/4s. )'*/k0. ,

provided (Zachariasen (4.34))

2x2 np 1 0.,
(2%-) & k' sin2es 0

in which g is expressed in radians. The condition
(81) is generally not met for neutrons in the
cases of interest. For example, g is of the order
of 3X10 ', whereas the expression on the left-
hand side is of the order of 10 '. The approxima-
tion (81) becomes valid if 0., is about 10 times
0,. However (80) is then near unity.

g
—2W' (82)

7. ADDITIONAL INFLUENCE OF DISORDERING
UPON THE INTENSITY OF BRAGG

REFLECTION

We have seen in the previous section that the
angular disorientation of the mosaic blocks of
which real single crystals are composed increases
the reflectivity of a specimen for polychromatic
radiation by increasing the range of angles of
incidence for which a monochromatic com-
ponent can be reflected. Most other types of
crystalline disorder decrease the reflectivity.
Two disorders of this type which should be
mentioned are the disordering arising from the
ther'mal (a,nd zero point) oscillations of the atoms
and the disordering which can occur when the
atoms are polyisotopic.

The influence of atomic oscillation has been
discussed in detail by W'einstock" for a mon-

atomic lattice in the case in which primary ex-
tinction is negligible, that is, in the case in which
each mosaic is so small that only a small fraction
of the monochromatic radiation which satisfies
the Bragg condition is scattered. In this case the
reflectivity is reduced from the value for a
crystal in which the atoms are at rest by a factor
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where

with

(83)

Q;f, exp[i(k —k') r;], , (84)

in which r; is the position of the jth atom in the
lattice, and f; is proportional to +(o,')'*. If the
element is monoisotopic, the factor f; is inde-
pendent of j and may be removed from the
summation. The square of the absolute value of
the resulting summation may then be approxi-
mated by a sum of delta-functions with constant
multipliers which are centered about the points
for which k —k'= K, where as before the K are
the reciprocal vectors. On the other hand if two
or more isotopes are present, and if the values of
f, for these isotopes are dilferent, the value of
(84) in a given direction for which k —k =K is

Zf=&f (85)

where X is the number of atoms, and f is the
average value of f; This averag. e is taken in such
a way that each isotope is weighted with its
abundance and due recognition is taken of the
sign before (o.,') &. Thus even when the values of

Here K is the vector in the reciprocal lattice
associated with the reHecting plane; 0 is the
Debye characteristic temperature; kp is Boltz-

. mann's constant; and M is the mass of the atoms
of which the lattice is composed. It is readily
seen that W is of the order of m/M for thermal
neutrons when T is near 0 and 0 is near room
temperature, as is the case for the crystals with
comparatively large elastic constants that would
normally be used in a neutron spectrometer. nz is
the neutron mass. Thus the factor (82) is usually
very close to unity and will not inHuence the
conclusions drawn previously in an appreciable
way.

We shall discuss the inHuence of isotopes for a
monatomic lattice since the results can readily
be generalized. Let us consider a small crystal
upon which is incident a wave possessing the
wave number vector k. The quantity which de-
termines the intensity of reHection in the direc-
tion for which the wave number vector is k' is

0.,&' are nearly identical for the isotopes the re-
Hectivity may be decreased, provided the major
isotopes are present in comparable abundance and
have opposite phases. Conversely the isotopic
mixture will be unimportant if all isotopes have
nearly equal cross sections and the same phases.

It is readily shown that- the distribution of
the scattered radiation is described by a set of
delta-functions peaked at positions for which
k —k'=K upon which is superimposed a diffuse
isotopic component of scattered radiation. The
diFfuse component is isotopic only when the
isotopes are distributed at random among the
various lattice sites. To demonstrate this, we set

f~ =f+~f

where g, 8f, =0. We may then write (84) in the
form

fg;exp[~(k —k') r,]
+P, bf; exp[i(k —k') r,]. (87)

The 6rst sum is sharply peaked at k —k'=K,
as when the 8f, are zero. Hence any diffuse
scattering must be described by the second
term. The square of the absolute value of this
term is

P Sf;Sf,* exp[i(k —k') (r;—r„)]
Jl 9

which may also be written in the form

g bf,hf;», * exp[i(k —k') r,], (88)
j& 8

where r, =r;—r,+,. The summation for 6xed s
may be separated from that over j, that is the
summation may be written as

Q. exp[~(k-k') r,]Q; 8f,&f, .* (89).
When the isotopes are randomly distributed, the
sum over j vanishes if s is not zero since for each
particular value of bf; that occurs f;», will range
over all values at random and the resultant is
zero. When s vanishes the second sum is a 6nite
constant which is, of course, independent of s
and may be removed entirely to the left of the
summation over s. In this case r, =0 so that the
expression for the scattered radiation is inde-
pendent of (k —k'). Thus in addition to the
Laue-Bragg scattering there is an isotropically
distributed diffuse component.
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If the isotopes were correlated, P, hf;8f;+,*
would be a function of s which is different from
zero when s/0 and diffuse, but anisotropic scat-
tering would occur. This scattering would re-
semble closely the type of diffuse x-ray scattering
observed for liquids. There is, of course, no
reason for expecting a correlation between the
positions of isotopes in the heavier solids.

SUMMARY

i. The equations for the elastic scattering of
neutrons by a single crystal are examined in
detail in the approximation in which inelastic
scattering is neglected. This procedure is equiva-
lent to treating the case of a perfectly ordered
crystal of rigidly fixed atoms by methods
analogous to those employed in the dynamical
theory of x-ray scattering. Three methods of
deriving the results are employed: The first,
which is the most rigorous method takes account
of the singularity, produced on the wave function
in the region near but just outside the nucleus
in the general case in which the nucleus both
scatters and absorbs. This method is accurate as
long as the square of the wave-length is large
compared with the cross sections. The second
method is based on the use of the cellular ap-
proximation that has found wide use in the
treatment of electron wave functions in solids.
It is applied only when the absorption cross
section vanishes, but is then as accurate as the
first method. The third method is based on the
use of a pseudo-potential, which replaces the
actual potential between neutron and nucleus
in the Schroedinger equation. This method,
which was first used by Fermi, can be justified
only when the wave-length is large compared
with the diameter of the pseudo-potential well,
which must in turn be large compared with the
"displacement distance. "

2. It is shown that the index of refraction n
and the extinction coefficient n~ are given by the
following equations when the wave-length and
direction of incidence of the neutrons are not
such that the Bragg conditions are satisfied:

2pr fo, ' fo, ''l P) ~

=1y, g~—
I

——u
I

—
( f,

up(4~ ~4~) )
0'a

nc=np +;—.
2k

These are generalizations of a similar set of
equations derived by Fermi. Here no is the
number of unit cells per unit volume of the
crystal; k is the wave number, which is equal to
2pr/X, where ) is the wave-length; o,&' is the scat-
tering cross section of the jth atom in the unit
cell; and 0.,& is the corresponding absorption
cross section. The signs which appear before the
radicals in the first equation are related to the
sign of the shift in phase of the wave scattered
by the corresponding atom. These equations
may be used for highly disordered materials in
the case in which the wave-length is so large
that the material is homogeneous over a distance
comparable to the wave-length. In this case tip

is to be taken as the number of chemical mole-
cules per unit volume, and the summations
extend over the constituents of the chemical
molecule. It is interesting to note that the second
equation can be written in the form

n~ =X/21.„
in which I, is the mean free path for absorption
in the material.

3. A crystal will refIect neutrons which strike
it at grazing incidence provided the index of
refraction is less than unity. This is to be ex-
pected from the general laws of optics and has
been pointed out previously by Fermi in con-
nection with is derivation of the equations dis-
cussed in paragraph 2. The .refIectivity for a
monochromatic beam of neutron is given by the
equation

1 —(1—2p/pp')' '
R=

-1+(1+2~/o ') *'-

in which p is the angle that the beam makes
with the reHecting surface and p, =1—n. Ab-
sorption infIuences the reflectivity only when
there is a resonance level in the thermal ~egion.

The depth of penetration of the ray rejected
at grazing incidence is given by the equation

d =X/2pr(2p) '*.

This distance is of the order of magnitude 100)
for a typical case.

The experiments carried out by Fermi, Zinn,
Marshall, Horst, and %'ollan seem to show that
the index of refraction is usually less than unity.



REFRACTION OF NEUTRONS 309

It is pointed out that this observation may be
no more surprising than the fact that most
transparent optical media have an index greater
than unity in the visible portion of the spectrum.

4. It is found that there is a very close cor-
relation between the diffraction of neutrons and
of x-rays which are polarized in the direction
normal to the plane of incidence. This correlation
is almost quantitative in the non-absorbing cases
because the cross section for Thomson scattering,
which is related to the classical electron radius,
is almost equal to the typical cross section for
nuclear scattering. The absorption cross section
for neutrons is comparable to the corresponding
typical cross section for x-rays only in the special
case in which one of the nuclei present possesses
a'resonance level in the thermal region of the
energy spectrum, that is, when elements like
cadmium or gadolinium are present. Only in
cases of this type does the absorption of neutrons
affect the properties of a material for diffracting
neutrons.

5. The depth of penetration of a diffracted
wave which satisfies the Laue-Bragg condition is
determined for a perfect crystal. The result is

d =2k/~aK~ smgs

in which 0~ is the Bragg angle and

(0', ' (O'J) 2) ' ka(, '
ax=no/4 &( ——k'/ —

) ) +i&4))
&& exp (—iK.r,).

Here all quantities are as in paragraph 2 above,
and K is the reciprocal vector of the lattice that
is to be associated with the crystallographic
plane from which the incident beam is reflected
in the Bragg sense.

a& plays much the same role in neutron dif-
fraction as the x-ray structure factor does in
x-ray diffraction.

In the case of a non-absorbing monatomic sub-
stance this equation simplifies to

sin8s (4s) &

Xn, (g, J

This distance is of the order of 10 4 in typical
cases, just as in the case of strongly reflected
x-ray beams.

6. The reflectivity R of a perfect single crystal
for a stream of thermal neutrons is given by the
equation

R=
( )e '"'r

k2 sin28s &koT)

Here ko is Boltzmann's constant, and e is .the
energy of the neutrons which undergo Bragg
reflection for the geometrical arrangement em-
ployed. This reflectivity is of the order of 0.001
percent when the angle of incidence is adjusted
so that the neutrons at the peak of the thermal
distribution function in the incident beam are
diffracted.

7. It is pointed out that the reflectivity will
be much larger than the equations given in

paragraph 6 indicate if the crystal possesses well-

developed disorientation of the type in which
the mosaic blocks are tilted relative to one
another. If the mean spread in angular disorien-
tation is q, the expression for the reflectivity
given in the p'receding paragraph should be mul-

tiplied by a factor q/co where co is the rocking
angle for which high reflectivity is obtained
when a highly collimated monochromatic beam is
incident on a perfect crystal near the Bragg angle.
+ is of the order of several seconds of arc. This
multiplicative factor is to be used only when

g/a&)) 1. Thus we see that by selecting a crystal
with the proper mosaic structure, it is possible
to enhance the reflectivity by a factor of one or
two decades.

8. If it is desired to maintain a resolving
power that is considered "good" from present
standards, that is, an energy resolution of the
order of 5)&10 ' ev for 1 ev neutrons, the mean
angular disorientation caused by the mosaic
structure must be no more than a few minutes
of arc. The angular aperture of the entrance and
exit slits of the system should also be no larger
than this if the same resolving power is specified.

9. The decrease in intensity of Bragg reflection
arising from the thermal oscillations is discussed
on the basis of linstock's calculations. It is
shown that this decrease is not important for
crystals which possess high elastic constants, as
those used in a neutron spectrometer probably
would.
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10. It is shown that the reHectivity may be
decreased if the atoms in the crystal are polyiso-
topic and if the isotopes for a given element are
present in comparable abundance, possess nearly
equal scattering cross sections and opposite
phases. More explicitly the effective scattering
strength of a given element is proportional to

in which g, is the fractional abundance of the ith
isotope, and 0.,' is its scattering cross section.
The contribution from isotopes with opposite
phases tend to cancel one another. The presence

of isotopes may also add a diffuse background to
the inelastically scattered radiation.

. 11. It should be emphasized that the present
paper does not contain a discussion of the co-
herent inelastic scattering of neutrons from
crystals. This type of scattering actually can be
very important in practical cases and can alter
some of the qualitative viewpoints which were
obtained.

We are indebted to our colleagues, L. Borst,
S. M. Dancoff, E. P. Wigner, E.0.Wollan, W. H.
Zachariasen, and W. H. Zinn for many interest-
ing discussions of this topic.
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A magnetic lens which will focus charged particles entering its aperture parallel to the axis

can be constructed in the form of a toroidal winding. For an air'or iron core toroid, the cross

section of the winding is parabolic. If partial iron filling is used, trapezoidal or rectangular
cross sections may be employed to produce sharp focusing. The focal length is proportional to
the particle momentum, and hence a telescope of this type is.also a spectrograph. By using

coincidence counters and anticoincidence guard counters for observations, a collimating tube
effect can be obtained, permitting full use of the properties of the telescope lens without a
background due to particles- which do not pass through the lens. There are some advantages
to an installation in a deep shaft in the earth having two lenses. With such a device charged and

uncharged components can be studied separately.

INTRODUCTIO N

S a consequence of Maxwell's equation

curl II=4mi,

it is dear that the magnetic field strength inside

a long straight solenoid is uniform over the cross
section of the solenoid, regardless of the shape of
the cross section. If the solenoid is formed into
a toroid, H varies inside the cross section as 1/r,

' regardless of the"shape of the cross section of the
toroidal winding.

If a'toroidal coil is to serve as a lens to focus

a parallel beam of particles of like energies and

e/m through the point I' (Fig. 1), it is necessary
that the radial momenta imparted to the par-

ticles increase directly as r. This. can be accom-
plished in either of two ways.

(1) Air core toroid. Since in an air core toroid
the field varies as 1/r, the width of the cross
section must increase as r', in order that the time
in which a particle is accelerated radially may
compensate the decrease in field strength and
yield a radial impulse which is proportional to r.
This leads to a toroidal lens having the parabolic
shape shown in Fig. 1.

(2) Toroidal lens containing iron. If iron is

distributed inside the toroid, and the iron is

regarded as being transparent to the particles,
several choices of lens design are possible. In this
case we must deal with the continuous magnetic


