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The Scattering of Slow Neutrons by Bound Protons
II. Harmonic Binding —Neutrons of Zero Energy
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The cross section for scattering of very slow'neutrons by elastically bound protons is calcu-
lated by means of the method described in the preceding paper. The results are expressed
in terms of.a correction factor to be applied to Fermi's factor 4. .According to Eq. (5) of the
present-paper this correction factor is 1+16aJ/2r& with J defined by Eq. (6) which is suitable
for numerical work. The results of numerical calculations for the effects of anisotropy in
molecules with axial symmetry are presented in Fig. 1 which has to be used with Eqs. (6.2),
(6.3) of the text. For scattering by the H&O molecule the correction to be applied to Fermi's
result is only ~.3 percent of the final value. Fermi's method is very accurate in this case.

1. INTRODUCTION AND NOTATION

HE method of the preceding paper' is here applied to the calculation of the scattering cross
section for neutrons having zero energy from protons bound in molecules by simple harmonic

oscillator forces. The Ii transformation of the background term' is used to reduce the computation
of the background to the evaluation of a definite integral by numerical quadrature. It is found, in
agreement with order of magnitude considerations discussed in the preceding paper, that Fermi's
factor 4, representing the increase in the scattering cross section caused by chemical binding, is
accurate to within a few tenths of a percent, and the value of the correction factor is worked out
in the last section of this paper. The notation is as in' with the addition of the following symbols:

@=constant having dimensions of length defined so that radial wave function is of the form
const. (1+a/r) for small proton-neutron distances r.

0,„0.„, n, =elastic binding constants of proton in molecule.
g=x/n. ; g=y/ ni =s/n,

H ($) = ( )"e&'(d/—dg) "e &'= Hermite polynomial of degree I
g, =exp( —2r/ ')n; q„=exp( —2r/a„'); g. =exp( —2r/a. 2).

4T =4r+n '(1—g ') etc.
Q= l+(1—s ')/25.

The potential energy binding the proton in the molecule is taken as

k' (x' y„' s'j
&(r-) =

~ —;+,+
2M Ln,' n„' n, ' &

for which the characteristic frequencies are

2m v, =5/Mn. ', etc. ,
so that the energy levels are given by

I', = L(2~,+1)/a,2+(2m„+1)/n„'+(2e.+1)/n. 'j&'/2~

and the proton eigenfunctions by'

N. (r) =QLn, 2~n. !~&] &H .(x/a. ) exp( —&'/2n*')

(1.2)

(1.3)

*Now at Yale University.' G. Breit, Phys Rev 7'], , 215 {1947).This will be referred to as I in the text. Formulas occurring in I will be refers'ed
to by prefixing the roman numeral I ahead of the number of the formula.

~ In this paper the symbol H always stands for the product over x, y, s.
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with

H„($) =Hermite polynomial. (1.4)

The following notation will be used

$=x/n. , q=y/ n„, I =z/u, (1 5)

The complete wave function of the system is given by Eq. (I, 6) with f given by (I, 5) and 8 by
(I, 5').

2. CALCULATION OF THE BACKGROUND

Equation (I, 5 ) can be evaluated by means of the transformation (I, 8.8). The firstapproximation
to f is fp, and the solution of Eq. (I, 5) by iteration leads, therefore, to an integral in which f is

replaced by Po in (I, 5'). In the present case, with 8=Zo and uo given by (1.3), one can replace $0 by

f= «xpt (8+—n'+0)/23 (2)

Putting H„($) =(—)"exp(P)(d"/dP) exp( —P) in (1.3) and substituting into Eq. (I, 8.6) one has

expL(e+ e')/2j
F(r, r') = P~ ~, ~. g (8'"~/clP~cl&'"~) expL —P —&" 2n, r/—n, ']

~.2"*kg!m
(2 1)

The summations in (2.1) can be performed by expressing the exponentials containing —P —$'""by
means of Fourier-integrals. One obtains

00

exp( —P) = ' exp(ice g co'/4)dc0, —
2x& ~

and thus
00 oo

exp( —P —$")=—t I exp[i (co /+ co' $') —(c0'+ s&'2) /4]d(gd(o'.
4m

Putting
II = exp( —2r/u '), cI„=exp( —2r/u„'), cI, = exp( —2r/n, 2),

one obtains the auxiliary formula

(2.2)

g exp( 2nr/u'—)(cl'/cl jcl$')" exp( —t2 —$")/2"(n!) = I",
n~0 ." " (cI/2)"

(—axe')" exp/i(cg(+co'g') —((v'+co'2)/4]dcvdco' (2 3)

QO

~
QQ

exp ti (cv &+co' g') —4c (sP+ c0"+2clrac0') t d(ed co'.

The subscript x has been dropped for n, n, and g so as to simplify the notation,
The integrations over co, co can be carried out by transforming the homogeneous quadratic form

in cd, au' in the exponent of the last form of (2.3) to a diagonal form. It is thus found that

~*=(1—Q*') 'expt —Le+8' —2&kej/(! —&') t

Comparing (2.1) and (2.3) one sees that

~= II expL(8+5")/2 j~./'(~'n*),
so that

e pt(e+e')/2 —(e+t"—29*le)/(I —&') t
Z(r, r') =—ll

n. (1—cI.')&

(2.4)

(3)
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It follows from Eq. (I, 8.8), on noting that Z=ZO, and thus setting o =0, that

2 exp(iz,
l
r„—r'l) —1 1

P u.(r.)u,*(r') =—,~ exp( —lr„—r't'/4r)F(r. , r')dr —b(r.—r')/l r, —r'l
J

exp{ —($.'+P)(1+g,')/2(1 g—,')+2g, f.g'/(1 —q.') } 8(r.—r')=(1/-)" n
J0 s &n.(1—g.') &

exp( —
l
r„—r' l'/4r)

X-- dr (3..1)

where 1/l r„—r'l is represented as

(1/2s ) Lexp( —lr„—r't'/4r)/r ]dr.

Putting (3.1) and (2) into (I, 5') and performing the integration over r' it is found that

B(r, r ) =(8/vr&) f(r,) {g(4T) & exp {—(x„—II x,)'/4T, }—exp( —
l
r„r t'—/8r)/(8r)&}dr (3.2)

0

with
4T, =4r+n, '(1 —

g '). (3.25)

The limit of (3.2) as r„—+r is independent of the angle (r„r ) so that the averaging process required
for Eq. (I, 5) reduces, to

B(r, r,) = (8/7r)f(r ) ~ {g(4T) &exp{ —(1—g,')~,2/4+, }—(8r) &}dr.

In the calculation leading to this equation it was assumed that f can be replaced by a constant
multiple of u0. This is justifiable only if the molecule is originally in its lowest state, if the neutrons
have a very low energy and if a is sufficiently small to make aB small compared with f The la.tter
assumption is justified a posteriori by the smallenss of the effect of B.

3. THE SCATTERING CROSS SECTION

For zero energy neutrons the amplitude of the scattered wave is proportional to

Jt u&*(r')f(r')dr'.

f is given by (I, 5) with B from (4), in which f is taken as f=go up-—
Thus,

uo (r )f(1 )dr
J luo(r ) I'l I+8n/s~ { «dr «dr'= 1+(8a/s'&) J(n„~„,n,).

E. ) (5)

The square of this factor, i.e. , the quantity 1+16@7/s, is the correction factor for the cross section.
The quantity J occurring in this formula is.given by

J( On„, n, ) = {QL4r+2u.'(1 —g.)]-&—8r &}dr
0

as is found by performing the integration over r'.
The integral occurring in Eq. (6) has been evaluated numerically in a few cases, and the results
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Fio. 1, Plot of a&I(a) vs. a, Curve A is drawn
through points computed by means of Eqs. (6),
(6.1). Curves B are the asymptotic forms given
by Eqs. (6.3), (6.4). The ordinate of the graph
can be used for the computation of the correction
factor of Eq. (5) by means of Eqs. (6.1), (6.2)
with a defined by Eq. (6.3).
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are plotted in Fig. 1. In this figure the ordinate is the quantity

nII(n) = a&J(1, 1, n) . (6.1)

The asymptotic forms of this quantity for large and for small 0. are indicated on the graph, and
their derivation is described in the Appendix. By means of the graph one can evaluate J for any
harmonic oscillator with axial symmetry by means of the following formula

The ordinate plotted is

The asymptotic forms of J are

J(n., n. , n.) = I(a,/n. )/n, .

n I(n) = n.~a.iJ(a., n. , n.); n = a./n.

(6.2)

(6 3)

where

J(n„n„ag) I&/a, +2'I2/ng = 0.0485/n, +0.1526/n„' (n«1);

J(n„n„n,) I2/n, +2'/a, =0.1079/n, +0.0970/n, ; (a))1),
(6.4)

(6 5)

(6.6)

Q= 2+(1—s ')/2t. (6.7)

The two asymptotic branches extrapolate to nearly the same value for an harmonic oscillator with
spherical symmetry and agree rather well with values computed directly by means of Eqs. (6), (6.1).

4. APPLICATION TO THE WATER MOLECULE

In order to apply the present theory, the mass of the proton will be considered to be small in
comparison with the mass of the molecule. One has then

6.39X10-"cm

t (&~)-3I

where the subscript ev indicates that the electron volt is the unit of energy. For H20 Slater' lists
the following frequencies:

(ev) = 0.443 0.462 0.248

' J. C. Slater, Introduction to Chemical Physics (McGraw-Hill Book Company, Inc. , New York, 1939), p. 146.
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which correspond to
(cm) =9.6X10 " 9.4X 10-~0 1 28X10 '.

The values given by Herzberg4 are in essential agreement with the above. The lower frequency and,
therefore, the higher o. corresponds to a vibration roughly at right angles to the other two. The value
of n./n, is 1.35. According to Fig. 1 the anisotropy has no important effect in this case. The values
of a for singlet and triplet scattering are aq=1.92X10 " cm; ag= —0.584&10-" cm. For singlet
scattering the correction factor is

192X10 "
1+0.82 = 1.0015.

1 o6X10 '

The square of this factor matters for the scattered intensity. There is thus a correction of about
0.3 percent for the expected scattered intensity in the singlet state. Since slow neutrons are mostly
scattered in the singlet state, this is the approximate magnitude of the correctiori for very slow
neutrons.
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APPENDIX

Asymptotic. Forms for I(a)

The consideration will be carried out for n«1. It follows from Eqs. (6), (6.1) that

I(a) = J(1, 1, n) =
I

IP-', +(1/4r)(1 —e ')] 't'-', +(n'/4r)(1 —exp( —2r/n'))g~ —1}(8r) &dr. (A, 1)

The integral will be represented as

with
I(n) =~(n)+&(n)

f'Xa2
A(n)= ' dr, B(n)= ' dr,

Jo ~ Na2

(A, 1.1)

(A, 1.2)

where the integrand is the same as in (A, 1).The number X is chosen so as to satisfy the requirement

(A, 1.3)

In the limit Of. =0 both of these requirements can be satisfied perfectly in the sense that N can be
made to approach ~ while Xn' approaches zero. Integral A(a) can be transformed through the
introduction of the variable

(A, 1.4)

On account of the second condition (A, 1.3) the quantity e "can be expanded by Taylor's series,
and the contributions to the integral form a rapidly converging series. Keeping the 6rst two terms
of the expansion one has

2N

~( )= " (1/16 ) I(1+ '5/4)t:l+(I — ')/253~ —1}ed(

The discussion of the contribution of the term in n'P/4 will be postponed. It will be shown later
that its contribution to A approaches zero as 0. approaches zero. Only terms that do not approach

' G. Herzberg, Infrared and Raman Spectra (D. Van Nostrand Company, Inc. , New York, j.945), p. 161.
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zero with 0, will be kept. One has thus

1 ( ~" pq 1 1 —er'~
A(a)-

I

— ~

I
-+ —1 +dg

16a 4&0 & g~) 2 2$
(A, 2.1)

The 6rst integral will be kept in the above form. The second can be estimated as follows

00

——~' (2 -1-2-'V') V'«=-
160. 8a(2N)&

(A, 2.2)

The right side of (A, 2.2) becomes infinite for a=0 on account of the second condition (A, 1.3).
The omitted terms, however, are of order X—4 '. They can be made to approach zero by requiring

X'o.')& i. (A, 2.3)

This means that X should be made to approach more strongly than 0. & which can be done con-
sistently with the second condition (A, 1.3). Any dependence between a ' and a & is satisfactory.
With this additional restriction on Ã it suffices to consider only the right side of (A, 2.2).

ln the evaluation of 8 one makes use of the smallness of a'/v«1/Ã. At the lower limit of integration

n' (-+—(1 —e p(-2 / '» =-2'I 1 — -+ (A, 3)
2 4v. 4X )

The omission of further terms here is justifiable because 8 turns out to be of the order 1/(Ãa')& so
that (A, 2.3) will make negligible the term in 1/(4X) which has just been omitted. One obtains by
means of (A, 3)

1 l' r" r~.'i 1 1 --i 2 —2:
&(a) —

~
II

—~'
~

—+—(1 —e ")—1 —1 r 'dr+ (A, 3.1)
16 (&o &0 i 2 4r 16(Na')'*

The right side of the above relation contains J"P '. Its contribution is estimated by expanding the
brace in a Taylor series. It is found to be —(Xa') &/16 which vanishes on account of the second con-
dition (A, 1.3).

Adding 8 to A the last term in (A, 3.1) is canceled by (A, 2.2). The integral Ii of Eq. (6.5) of the
text arises from (A, 2.1), the integral I2 of Eq. (6.6) from (A, 3.1) and one obtains

Ii(a)
I(a) +2&I2(a),

which is equivalent to
J(a., a.a.) -Ii/a. +2'Ig/a.

on account of Eq. (6.2). This, together with numerical evaluations of Ii, Iq gives the first line of
Eq. (6.4).

It remains to explain the legitimacy of neglecting the term in a'g/4 in Eq. (A, 2). This term con-
tributes to I(a) the amount

r'~ 1 i —e &

8' -+
64~o

The integral converges near )=0. The L $ has the value 1 for )=0, and its value decreases to about
for large $. The contribution is, therefore, less than

~2K

(2&a/64) ) +ig $ = (24/64) (2N) &

0

which vanishes as Xa'. The explanation of the first line of Eq. (6.4) has now been completed. The
second line is obtained by very similar reasoning.


