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The Scattering of Slow Neutrons by Bound Protons

L Methods of Calculation
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The mathematical problem of the scattering of slow neutrons by chemically bound protons
is stated in terms of a boundary condition and its equivalent integral equation. By means of
the latter it is possible to calculate corrections to the results of Fermi which can be considered
as the first approximation to the more accurate equations. The method is applied to free
protons, and it is shown how the well-known results for this case are obtained from the more
general equations. This special case allows also an estimate (10 3) of the order of the corrections
in the case of chemically bound protons in agreement with general estimates in connection
with Eq. (8.4) of Section 7 of the present paper and the application to harmonic oscillator
binding D1ade in the succeeding paper jointly with P. .R. Zilsel. The corrections discussed
are greater than the inaccuracies of the boundary condition formulation- which are of the
order 10 ~.

1. INTRODUCTION uaIitltles foI other palI'8 of nuclcaI particles.
As is well known, such a comparison is essential
for the field theories of nuclear particles, and it
has indicated in the past that the specifically
nuclear interactions are essentially independent
of the charge. It appeared- advisable to be
reasonably sure of the accuracy of the Fermi
correction factor in this connection on account
of its bearing on the fundamental problem of
forces between nuclear particles. An additional
incentive has been the large accumulation' of
experimental material on the scattcl"lng of 810w

neutrons by solids vrhich presents very similar
mathematical, problems. In this ease, just as in
the scattering of neutrons by protons, the nuclear
properties can be described by quantities u @which

have the sigmhcance of intercepts on the axis
~ Herbert L. Anderson, Enrico Fermi, Leona Marschall,

paper E 1, Proc. Amer, Phys. Soc. Meeting at Chicago,
June 20-22 (1946); W. H. Zinn, idem, paper E 2, Phys.
Rev. 'N, 102 (1946).
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FERMI' has given a theory of the CBect of
chemical binding of protons on their scat-

tering cross section for slow neutrons. At the
time of Fermi's work there was no necessity of
g1cat, accul acy, aIid h18 aIiswcr was generally
considered to be good enough. The advance in
experimental methods that has taken place since
makes it desirable to be able to estimate theo-
retical CGccts more accurately than previously.
The vihole CR'ect dealt vnth is of the order of a
factor 4, and it is natural, therefore, to inquire
into the accuracy of its estimates. Its knowledge
is needed in the interpretation of experimental
rmaterial on neutron-proton scattering in terms
of CKective neutron proton potentials, and the
comparison of such potentials with corresponding

*Now at Yale University.
'Enrico Fermi, Ricerca Scient. VII-II, 13 (1936). See

Eqs. (11)-(103).
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referring to the neutron-scattering nucleus dis-
tance in a graph of the product of this distance
by the radial wave function. The quantity a has
the significance of the amplitude of the scattered
wave per unit intensity of the incident wave in
a suitable normalization. The interactions of the
scattered neutron with individual nuclear parti-
cles, matter in the problem of scattering of slow
neutrons only insofar as they affect the inter-
cepts e which are therefore important nuclear
parameters. The close relationship of the present
paper to the mathematical problem of deter-
mining these parameters added to the desirability
of finding a.systematic way for the calculation
presented below.

The method consists of two steps: (a) the
replacement of the wave equation in the region
of the nuclear potential by a boundary condition
Eq. (3); (b) the formulation of the boundary
condition in terms of an integral equation, Eq.
(5). The physical justification for the boundary
condition is made in Section 3, and it is found
that the errors caused by this replacement are
negligible in comparison with all eA'ects con-
sidered here. The conversion of the problem to
an integral equation is made in. Section 4.
Fermi's approximation is discussed in Sections 5
and 6, and the reasons for undertaking the
present calculation are gone into in these sections.
In Section 7 the expressions for the "back-
ground" are transformed into forms more suit-
able for applications than the original. In Section
8, the method is illustrated by considering free
protons and seeing how the well-known answer
is verified consistently with the approximations
made.

2. NOTATION

r = (x„y, z ) =proton coordinates.
r„=(x., y„z,) =neutron coordinates.
U= U(x, y, z ) =potential energy of proton

caused by molecular binding.
r=r.—r =(x, y, z) =relative coordinates.
8„=energy of proton in a molecule in eth

excited state.
u„(r,) =characteristic function of proton in state

JErs 0

=g2/gx 2+$2/gy 2+(32/gz 2

h~ =8'/Bx~'+8'/By~'+8'/Bz~'.
6 =8'/Bx'+8'/By'+8'/Bz'

P =wave function of proton and neutron.
g(r) =potential energy of proton in the field of

the neutron; assumed to be a function of the
distance r= ~r~ only.

B=energy of system.
Sf=proton mass; the mass of the neutron is

assumed to be equal to the mass of the proton.
V=vector operator (gradient) with components

8/Bx, 8/By, 8/Bz. This is distinguished by
suffixes v, x to indicate replacement of relative
by neutron or proton coordinates. -

p =distance of the order of 3&&10 "cm beyond
which the function g may be assumed to be
zero.

a = intercept of tangent to graph of r times radial
function for proton-neutron motion plotted
against an axis of r. The intercept is by
definition positive if tangent cuts axis of r to
the left of origin.

dr =dxdyds =volume element in space x, y, s.
tRzr =dx~dyrrdsrr.

d1z =dxpdygl&p.

R = (X, Y, Z) = (1/2) (x.+x„, y.+y„, z.+z.)
=center of mass coordinates.

(A)=angular average of any quantity A over
directions of the vector r. Equal weights to all
solid angles are given in the average.

3. THE BOUNDARY CONDITION REPLACING THE
PROTON-NEUTRON INTERACTION

The wave equation will be taken to be

&&= L (&'/2~) (~.+—~.)+~+a(r) 3 (~)

in the notation just explained. It is assumed
that it is good enough to use one function g(r)
so that the discussion is applicable only to slow
neutrons since otherwise one would have to bring
in phase shifts for p and d waves which may
correspond in general to other interaction po-
tentials. The wave function g in the above
equation is supposed to correspond to a definite
value of the total spin. Different values of g(r)
are supposed to be used for the triplet and singlet
interactions. This means, of course, that the
representation of an ordinary experimental situ-
ation involves an analysis into wave functions P
such as those dealt with in Eq. (i.) with different
values of g(r). Such an analysis is well known
and is described in, most books concerned with
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the theory of nuclear physics. It will not be gone
into, therefore, at this stage.

The eigenfunctions N„describing the stable
states of a proton in a molecule satisfy the
equation

Z„u„=(—(A'/2M)A + U)u„. (1.1)

The wave function P can be analyzed into a
linear combination of the functions u„(r ) with
coefficients which are functions of the proton-
neutron distance vector r:

O'=Z 0 u (r )X (r) (1 2)

The quantities a„occurring in the above formula
are taken to be constant while the functions x„
depend only, on the relative rather than the

absolute position of the neutron with respect to
the proton.

It will be shown next by means of a few
estimates through substitution of this form of P
into Eq. (1), that for small values of the proton-
neutron distance r, the difference in the space
character of different functions x„ is negligible.
This means that in a good approximation one
will be able to describe the function f as a
product ef a function of r multiplied by a
function of r . This approximation will be used
only for values of r of the order of nuclear
dimensions. The argument for the separability
of P into two factors in this range of values of r
follows.

Substitution of (1.2) into (1) gives

O2 O2

En(+ +n)unXnun Pm&m +m+Xm+ VXm ' V wum+gXmum
2III 3f

(2)

It is understood here that the p occur only with relative neutron-proton and the u only with proton
coordinates. For a 6xed value of r, integration of the last equation over the proton coordinates
after multiplication by u„*gives

(2 1)

where the operators p stand for (fi/i) V and correspond to the usual representation of the momentum.
It is now clear that if the right side of (2.1) were absent, then inside the range of action of the nuclear
potential g, one would be dealing with separate equations for each x, and that there would exist
solutions in which only one of the a„ is distinct from zero. The states u„g„can be considered as
being uncoupled in this approximation. Further, it is readily seen that if one were to set all the
E„ in these equations equal to zero, the results of calculations on scattering would be unaffected
provided the left side of Eq. (2.1) is never used for values of r greater than the range of nuclear forces.
Within these small distances the effect of the very slight change in the value of the effective kinetic
energy E—8„—g is small, and the change in the logarithmic derivative of x„caused by 8„is negligible
at r =p. The truth of this point of view may be seen by noting that the effective kinetic energy is
affected by Z„ to the extent of, say, i0 ev while its total magnitude is of the order of i0' ev. The
effect on the logarithmic derivative rd(rX)/(rX)dr at r =p is' of the order

BZ FBr „p
(2.2)

(2.3)

where 8Ei,; is the change in the effective kinetic energy. This change in the logarithmic derivative
corresponds to a change in the intercept c in accordance with

= —(p+a) 8
FBr g-p

p+C=
FBr „~ p+

' G. Breit and E. Wigner, Phys. Rev. 49, Sj.9 (1936).See Eq. (29).
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By means of (2.2) one can transform the right side of the above equation and obtain

where

Ba p+a hZ p'p' 1
~ ~ Ii'dr,

p+6 p Zg 5 pF

p'/M =Zgi, .

(2.4)

(2.5)

ba (p+a)' 8E—1.2
6 PG Egg~

The factor (1/pF') Jo'F'dr in (2.4) is of the order of ~ since this is the value of this factor for an
interaction potential g(r) in the form of a square well. The quantity p'p'/fi' is of the order
(2s.)'(X/4)'/X'= (s/2)'= 2.5. Here X is the wave-length of relative proton-neutron motion inside the
potential well. With these approximate values one obtains by means of (2.4)

For a=20X20 "cm, p=3)&10 "cm, this relation becomes

8a/a = 108K/Z~;,
and for bZ =10 ev, E~;~= 10 Mev

8a/a —10 '.

The corresponding change in the scattering cross section is 0.002 percent and is negligible in most
problems. The magnitudes of the quantities used in the estimates just made have been such as to
give a too large rather than a too ~mall value for the effect of bB, and it may be considered justi6able,
therefore, to neglect its effect.

So far it has been shown that one has a negligible error if one neglects the difference between 8
and Z —Z„on the left side of Eq. (2.1). It is seen also that the coupling between different a„caused
by the occurrence of non-vanishing right-hand members in this equation is similarly of little conse-
quence. These terms are of the same order of magnitude as the terms just discussed and contribute
approximately the same amount to Ay„. They may usually be neglected, therefore. An exception
to this general situation occurs if one of the g„ is very small compared with some other a, or with
at least one of them. If this is the case, the right side of Eq. (2.1) cannot be neglected because it
may contribute an important part of Ax„. In order that this should take place the ratio a„/a„has
to be of the order of 10 ~, and this means that one is dealing with an unimportant part of the wave
function in the expansion (1.2). It is thus seen that for ranges of nuclear forces that are customarily
assumed it is legitimate to neglect the coupling between the a„as well as the differences between
the x„, provided, of course, one stays in the part of configuration space r (p.

This situation suggests a reformulation of the problem in terms of a boundary condition at r =0.
The quantity p is made to approacli zero. Simultaneously g(r) is varied in such a way as to keep a
at its experimental value. As the limit of p =0 is approached, the errors in the cross section assume
values much smaller than the above estimate of, 0.002 percent and 6nally approach zero. In view
of the fact that the difference between this idealized and'the more realistic original picture is negligible
for most practical purposes, the limit of very deep and narrow potential wells will be used in what
follows. This means that as r—&0 the limiting form of any x will be taken to be

(1+a/r) b,

where b is a constant. Accordingly the limiting form of P(r„, r ) for
~
r„—r

~

=r~0 will be taken to be

lime(r„, r ) = (1+a/r) f(r ). (3)
r~0

In this equation, the function f is a three-dimensional function of the proton coordinates. It is so
far an unknown function and has to be determined through the requirement that P behave properly
in other regions than those corresponding to near coincidence of the proton and neutron.
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4. CONVERSION TO AN INTEGRAL EQUATION

By means of the boundary condition (3) the problem is simp1ified through the fact that through
all of the configuration space with the exception of the three-dimensional region r =0, one may
require instead of (1) the more manageable equation

Horp =Ef,

IIo = —(h'/23I) (6 +(4)+ U(r ). (4.1)

One has to find solutions of this equation subject to the following requirements:

(a) Validity of boundary condition (3).
(b) The correct behavior of P in regions of configuration space corresponding to large values of

lr„l. In these regions one should require that the wave function be representable as the sum
of a plane neutron wave with a proton in a definite bound state plus diverging neutron waves
with the proton in different bound states.

An explicit construction of such a wave function can be made by means of the quantity

(4.2)

where
~ ' = (2M/5') (8—8 ) (4.3)

(Ho —
Z)~~ Z(r. , r„; r.', r„')D(r, ', r.')dr. 'dr„'=D(r„r, ),

where D is a so far arbitrary density function. It will be convenient from now on to employ the
abbreviation

(4.4)

Z(r„r„;r, ', r.') =Z(, ')

and to express the wave function P as

with the understanding that for real fi:, one makes z, &0, and for pure imaginary ~„ i~, is negative.
This choice of the signs for a, has as a consequence that, in Eq. (4.2), the separate terms contributing
to X are either diverging waves as is the case for real a„or else they are attenuated waves which
vanish exponentially as tr„—r.

l

—+~. The construction of the kernel Z is very similar to that
employed4 in the discussion of resonances in nuclear reactions. The especially useful property of X
is expressed by the equation

/=go(r. , r„)+) Z(, ')D(r. ', r„')dr. 'dr, '

where $0(r, r,) is the incident wave
$0 —gg, (r~)s i (9 i fv) IA.

(4.6)

(4 6')

Here u; is the eigenfunction of the proton in its "initial" state, and p; is the momentum of the
neutron in its incident condition. The form (4.6) assures the correct behavior of P for large lr„l.
The density function D has to be determined next so as to satisfy the requirements at small r.
Substitution into (1) with the aid of (4.4) shows that

(4.7)

One obtains on substitution into (4.6)

P(r„, r„) =$0—,tZ(, ')g(r')P(r ', r„')dr, 'dr„'. (4.8)

' G. Breit, Phys. Rev. 58, 506 {1940).See Eq. (13.4).
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This integral equation has been obtained without approximations from the original differential
equation. It does not involve the approximations of the shortness of the range of nuclear forces or
any of the specializations made in connection with the introduction of the boundary condition for
small r of the preceding paragraph. One could employ this integral equation if it were necessary to
take into account a 6nite range of nuclear forces. Since the arguments of the preceding paragraph
have shown that the error caused by neglecting the 6nite range is negligible for ordinary problems,
the integral equation (4.8) will now be modified so as to eliminate g(r) and to bring in instead the
intercept c.

The transformations involved in this process are described in Appendix I. It is shown there that
in the limit of a very short range of nuclear forces

gias[ r g '-ru]
t Z(, ')g(r')P( ')dr 'dr„'= —2a P, u. (r ) ~u,*(r ')f(r, ') dr, ', (4.9)

where f is that of Eq. (3). Substitution into (4.8) gives now

~igsl r~' —rp)

(1+ f )f(rr)r=r), (r„r,)+2r(r, rr. (r,)J rr,"(r,')f(r, ') dr, ', (r 0).
fr.' —r, [

(4.95)

This equation has been averaged over the directions of the small vector r because otherwise one
does not obtain a limit independent of the direction in which the point r =0 is approached. The
reason for averaging over directions is apparent also in the discussion of Eqs. (5.3) to (5.7). The
boundary condition at r—+0 is expressed directly by Eq. (4.95). It is inconvenient to leave the con-
dition in this form, however, because for r =0, the left and the right sides become infinite. Substi-
tution for f(r )j ~

r —r,
~

of its expansion in terms of the u, (r ) gives a neater result, vis.

with
f(r ) &(&(r r ))='A(r r )

(5')

In this form every term approaches a finite limit as r =
~
r —r„~ ~0. Equations (4.95), (5) amount

to three-dimensional integral equations on the function f(r ), and the problem is now reduced to
the solution of an integral equation.

It follows from the way in which Eq. (5) has been derived that the coefficient of a on its left
side should be hnite. Otherwise the equation could not hold because all other terms in it are obviously
6nite. This fact may be verihed as follows. One finds by direct calculation

~its) f'-ruj

(H0 —E)Q, u, (r.) Iu,*(r')f(r') —— —dr'=- f(r,)h(r. — r.)=
i

r' —r„I 22rM

It will now be noted that the multiplication by U which is contained in H0 Eon g, on the left—
side of Eq. (5.1) cannot introduce a () function unless the 8 function should be a part of the g, ,

It is clear, however, that for a regular f the 1) function is not a factor in f The 8 f.unction on the
right side of Eq. (5.1) has to arise therefore through the application of the Laplacian operators in H0,
The combination of these that occurs is

h'
—-- (22) +6,) = ——5—2' 3II 4M

(5.2)

where the last term represents the Laplacian with respect to the center of mass coordinates of the
proton and neutron. Only the first term on the right side of Eq. (5.2) has anything to do with the
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right side of Eq. (5.1) so that the coefficient of 1/r in Q, can be readily ascertained. It is thus found
that

P, of (5.1) =1/2r+

where the remaining terms indicated by dots do not give rise to the singularity. Comparison with
Eqs. (4.95), (5), (5.1) shows now that the coefficient 2 in the numerator under the integral sign in

Eq. (5 ) is just right to cancel the singularity in 1/r. That this is the case will also be verified in
the'course of applications of the integral equation.

The integral equation (5) will now be derived without the use of the contraction of range pro-
cedure. The employment of the interaction potential g(r) will be replaced by the requirement that
the s part of the wave function is of the form (1+a/r)f everywhere except at r =0. The wave function
rP can be analyzed in spherical harmonics Yi, of the angular coordinates of r as follows:

(5.3)

Here r, R are the relative coordinates and the coordinates of the center of mass, the functions yL
are regular everywhere, while C 0 is not regular at r =0. There is no assumption involved in expressing

P in the form (5.3). For any fixed R, P is a function of r only, and if r is fixed in addition, then
one has a function of the angular coordinates of r which can be expanded in terms of the spherical
harmonics Fr,. averaging Eq. (5.3) over angles one finds, of course,

Q(R —r/2, R+r/2)) =C0(R, r) (5.31)

It has been assumed that the functions sr, (L, =1, 2, ) are regular everywhere so that as r is
made to go to zero, the limit of any yL is the same independently of the direction from which the
point r =0 is approached. The function CI), on the other hand, is assumed to be such that

limLC»(R, r) —C (R)(1+a/r)] =O. (5.32)

The assumptions just made about Co and qr are what replaces the employment of g(r) in the original
wave equation (1). In Eq. (5.32) the function C (R) is independent of r as is indicated by the notation
used.

It must now be explained that to a sufficient approximation for small values of r,

Q(R —r/2, R+r/2)) ={/(r„—r, r„))=Q(r„r +r)). (5.33)

In fact, according to Eq. (5.3),

(5.34)

Since there is only s scattering, the functions q L for small r vanish as rL or faster. The occurrence
of r/2 in the combination r„—,r/2 in qi, brings in a dependence on the direction of r in addition
to that included in VL. Expanding the qL in Taylor's series, one obtains terms vanishing at least
as fast as r'. Such terms will not matter in the statement of a boundary condition such as (5.32)
because they disappear from P as r approaches zero. One is concerned, therefore, only with

(Co(r„—r/2, r)) = (1+a/r)(C ([ r„—'r/2 ())
=(1+~/) {~(r.)+("/»(~ ~/»:)+
= (1 ya/r) LC (r„)y(r'/24) aC (r.)+ ].

(5.35)

In the condition expressed by Eq. (5.32), it does not matter, therefore, whether one averages over
angles with fixed center of mass coordinates or whether one keeps the neutron coordinates fixed,
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averages over angles of r, and then makes r„approach R. The same holds for r . Combining this
result with the consideration of the ppz, which was mentioned right after Eq. (5.34), one may restate
Eq. (5.32) in the form

If now f is defined by

limtg(r, r, +r)) —(1+a/r)C(r )]=0.

y(rr, r„)=Pp(r„r„)+2ag„

(5.4)

(5.5)

where P, is as in Eq. (4,9), then simply as a matter of rearranging terms

4 =4p+B+af(r )/r, (5.51)

with B given by Eq. (5 ). Averaging (5.51) over angles in order to substitute into Eq. (5.4) one
has to consider first of all the term Pp. One has for it

(fp(r ~,i r.+r)) =Pp(r, r.) + (r'/6) fh.if (r., r„)]r„=..+ (5.52)

(5.6)(1+a/r)C(r ) =fp(r, r )+a(B)„p+af(r )/r+0(r),

so that in (5.4) one may replace this term by fp(r, r ). Substituting all terms that matter into
(5.4) one has finally

where 0(r) designates terms of order r Ident. ifying coefficients of-equal powers of r in Eq. (5.6)
one has

C =f; C (r.) =Pp(r„r.)+a(B)„=p. (5.7)

These two equations are equivalent to Eq. (5).
It has thus been shown that the boundary condition statements of Eqs. (5.32), (5.4) require the

validity of the integral equation (5) if it is assumed tha, t f can be expressed in the form obtained
by substituting for the integral on the right side of Eq. (4.8) its limiting form as in Eq. (4.9). The
limiting contraction process has dropped out of the picture. Its only remnant is the suggestion of
a possible form for P, and this suggestion is not necessary since one can show that (B)„p is a well
defined quantity as will be seen in connection with Eq. (6.1).

S. COMPARISON WITH FERMI'S EQUATION

In the present paragraph a comparison with Fermi's equation' will be made from the point of
view of expressing the quantities occurring in one in terms of those occurring in the other. The
numerical comparison is postponed until formulas for the evaluation of quantities occurring in
Eq. (5.1) are wo'rked out.

Combining Eqs. (4.8), (4.9) one obtains

g LKs 1
1' g —fy ~j

P=|Ip+2a P, u, (r,) tu, *(r,')f(r, ') dr '. (6)

It follows from this and Eq. (5.1) that

(Hp E)y= (ah'/sM) —f(r.)b(r. -r„) (6.1)

This relation has some similarity to Fermi's equation:

(H, Z)p = (ah'/prM) P—bs(r. r.), — (6.2)

where P is the average of P over positions of the neutron within a sphere of radius R for fixed proton
positions. The radius R is supposed to be large in comparison with nuclear dimensions and small in
comparison with the size of the molecule. The delta function on the right side of Eq. (6.2) is first
introduced by Fermi in such a way as to have a constant value within the sphere of radius R and
so that its integral through the spherical volume is unity. In the applications of the equation Fermi
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replaces the function bs by Dirac's 5 function, and the function P on the right side of his equation
he replaces by the incident wave in the spirit of Born's approximation.

Comparison of the exact equation (6.1) with Fermi's approximation (6.2) shows some points of
similarity and also an obvious dilference. Eq. (3) shows that f(r ) is approximately Fermi s P:

(6.3)

It follows, therefore, that if one is interes(ed only in the scattering, then, to within the limits of
validity of (6.3), the Eqs. (6.1) and (6.2) are nearly equivalent because for the calculation of the
scattering the distinction between P and P on the left side of the two equations is immaterial. One
may look, therefor, at Eq. (6.1) as a substantiation of the approximate validity of Fermi's method
of calculation. One sees further that if Fermi's equation is used not exactly but in Born's first ap-
proximation and with the replacement of b~ by Dirac's 8, then the only error involved is that of
approximating f(r ) by the incident wave. Equation (5) shows that f(r ) is only approximately
equal to $0 and that more accurately one should add to Po the term in a on the left side of (5). This
term will be referred to as the "background" for the following reason. It arose as the difference
between the term in 2a on the right side of Eq. (4.95) and the quantity af/r. The term in 2a is,
according to Eqs. (4.8), (4.9), equal to f—$0 and represents, therefore, the effect of the diverging
waves emanating from the source density f in the vicinity of r=0. A part of this term represents
af/r. The excess over this is the "background" term.

Disregarding the "background" term there is no difference between the results obtained here
and Fermi's method in Born's first approximation. The validity of Fermi's result is, on the other
hand, no better than that of Born's first approximation as may be seen by noting that

11+- (f(r-)«-= I
1+

4s-R' 0 4 r) 4 2R
(6.4)

and that calculation with Fermi's Eq. (6.2) in the second Born's approximation would bring in
terms having an order of magnitude relative to the zeroth of u divided by the linear molecular
dimensions.

6. SIMPLIFIED EXPLANATION OF FERMPS EQUATION

The end result of Fermi's averaging of the wave equation is the replacement of the nuclear inter-
action potential g(r) by an interaction energy

Up=0 (r)R)
For R slightly greater than p this quantity is large in the region r &R. The introduction of Vp

is then not of much use and would even lead to erroneous results for scattering if one used Fermi's
equation (6.2) exactly. In fact, the law in accordance with which V& and R should be varied together
in order to obtain equivalence for scattering is much more closely U&R'=constant than VpR'
=constant, and it is the latter way of varying Vz with R that follows from Eq. (7). This way is
therefore not right, and one should not apply Fermi's equation in this manner. It is thus seen also
that Fermi s equation cannot give even approximately correct results for scattering if one replaces
the function bz by Dirac's b function and calculates with the resultant equation exactly. The latter
replacement corresponds to approaching the limit of R =0 in Eq. (7) which corresponds to varying
the internal phase as



which gives for F of Eq. (2.3) a limiting behavior for R&(a

(rdF) 3)a/ & 3/a[ &

cot
(Fdr)„s R . R

which is indeterminate for R—+0 while the limiting valu~ of this quantity should be

(rdF) rd(r+a) R R ( Rq

(Fdr), =s (r+a)dr, =s R+a a 4 a)
These two results are obviously inconsistent, indicating that one should only use Dirac's delta
function in Fermi's equation for'purposes of calculating the scattering to the first order of Born's
method, but that an exact solution of this equation mould lead to incorrect results. For this reason
the explanation in the present section of the paper is concerned not with the equation which Fermi
recommends for solution by the Born procedure but with the form (6.2) in which the hz function
is employed. A simpli6ed presentation of Fermi's equation is taken up next.

The radius R can be made several times a, and the potential energy Vp can thereby be made
small compared with the nuclear interaction potential g(r) and yet large in comparison with the
molecular potential energy acting on the proton. By making R su%ciently large one can make
the modification of the wave function due to the action of Vp quite gentle and keep the term of
a|t/R small compared with P. Born's erst approximation can be thus made to be a good approxi-
mation for E'q. (6.2). The margin of available orders of magnitude is not exceedingly great for this
choice of R but is nevertheless sufhcient to make this point of view have good sense. Thus, e.g. ,
one can make

R=20(A/(Mm)&c) =1.8X10-"cm,

which is reasonably large compared with the maximum value of u that comes under consideration,
vis. u=2XIO-" cm. The averaging sphere is still small in comparison with the molecular vibration
amplitude which is'of the order 10—' cm. This choice gives

3c mc' 1 510000
Vp ——— ev = —433 ev.

R 20' 3 400

The kinetic and potential energies of molecular motion are seen to be small compared with Vp
and can be neglected in the region r(R Under th. ese conditions the dependence of P on r inside
r(R is expressible as the product of a nearly constant factor and the function y. The dependence
of the latter on r is for an attractive Vp, i.e. , c&0

F=rx=const. Xsin[(M~ Ur ~/5')&r]
so that

1 3a A' M e
(rdF /F&r) s 1 —————R2=1——,

3 RMR' O' R

which is precisely the value needed to join on smoothly to the function Ii =r+0, for r&R. In fact
for the latter

(rdF+/F+dr), s =R/(R+a) =1 a/R+— P.2)

If Ur is repulsive rather than attractive, the sign of the terms in 1/R in hot jt of the above expres-
sions is changed, and the internal function can be still joined smoothly to the external one. It is
seen, thus, that the potential energy Ur is such that for R&&a the solution of Eq. (6.2) gives the
correct value of rdx/xdr. Within the limitations already discussed this equation must give, therefore,
the solution of the problem.



SCATTERING OF SLOW NEUTRONS

It has been noted above that the margin available for the choice of R is not very great. The
question naturally arises as to the order of precision of calculations that assume the validity of
Eq. (6.2) which has been seen to imply the possibility of choosing R so that it is both large in com-
parison with the range of nuclear forces and small as compared with molecular dimensions.

y. Tm mszoRMxTIoms oz THE swcKGRouND

In order to estimate the accuracy of the calculation, one h'as to know the coefficient of u in Eq. (5).
For this purpose it will bs transformed into a different form. By means of Eq. (1.1) one obtains

~ixsf r~—r~) ) & &t'zzsI f'—r~) h2
~

&izx~J r' —rz J

~t u, *(r')f(r') dr' — f(r') U(r')u, '(r') — —dr' —— —
~

f(r') -—h—u,*(r')dr', (8)
fr' —r,

f
E, ~ fr' r„—

] 2MB, ~ (r' —r„/

and one further has for any regular q (r)

(6+i~')zz(r)dr = —4zrs (0).
r

s'(r) =f(x)u, (r)

(8 1)

and combining Eqs. (8), (8.1) one obtains

2 sise I r w' —r, I

Q, u, (r )~ u, *(r ')f(x ') dx '=(2siz'/M)f(r )P, u.*(r )u, (r )/8, +other terms. (8.2)

By means of a similar transformation one finds

f(r-')
P, u, (r )~ u, *(x„') dr '=(2sh'/M)f(r„)P, u, *(r„)u,(r )/E, +other terms. (8.3)

In Eqs. (8.2), (8.3) the first term is the same. This term approaches f(r )/r for small r If, the. refore,
one subtracts (8.3) from (8.2), the resLilt is free of the term in 1/r It is thu. s found that

u (x ) p si~slr —rg} u, (r,) t
e'"'~' ''

~ —1
&(r., r.) =~K. —

~ f(x) u, *(r)dr+Z. —'Z, ~ Ir r, l

-' &, ~ Ir-r.
l

h2

X f(r)u, ~(x) U(r)+ L2p'f(r) yu, (r)+u, "Af(r) J dr. (8.4)2'
The behavior of the first term in this formula will now be discussed. One finds by straightforward
calculation that

where
[6 —(2M/h') U(r )jX=—4mb(r„—r )

X= (2s h'/M) P, u,*(r„)u. (r.)/E, .

It follows, therefore, that for small r =
~
r, —r„~X behaves as 1/r. For large r and fixed r, the quantity

X vamshes much more rapidly than 1/r on account of the rapid decrease of the u, (r ). In (8.4)
the hrst term contains on performing the summation contributions of the order

(M/2s-5')Ef/~r —r ~'

for small value of ~r —r
~

modified by the presence of the exponentials. This term has, therefore,
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the approximate magnitude

23IIB
(r-) (8.5)

where I&l is a mean length at which the changes in f and in the exponentials containing e, decrease
the integrand appreciably in comparison with the approximation just mentioned. This length is
roughly of the order of 1/I&, where R is a mean value of e, and the length is, therefore, of molecular
dimensions. The energy of the neutron enters, therefore, in comparison with the centrifugal barrier
for molecular dimensions, and besides one, has the factor f/R The.refore, one expects the order of
magnitude of the effect of the background on the cross section to be 10 " cm/10 ' em=0. 001,
which amounts to a tenth of a percent.

Another convenient form is found by introducing the quantity

F(r., r') =P u, (r ) ,u*(r')e-'~& 'ee'&'"',
e=o

(8.6)

where Eo is the lowest E,. One verifies readily that

I A.+ (2M/5') [Bo—U(r.)J I F=BF/B~,
and one obtains

where

2(s.)'r'*

.[F(r, r') —g u, (r )u,*(r')e '~&e e»'»'jdr (8.8)
e=o

f, =u, (r )u,*(r')e'" ~"-"~/~r' —r„&, (8.9)

which is useful for the evaluation of 8 (Cf. Appendix II). This transformation is especially con-
venient for Z =ED. It can be employed also for other values of Z. In applying Eq. (8.8), one repre-
sents the collection of terms due to the —1 in the numerator of Eq. (5') as

1 t
"exp( —r'/4r)

d7.
27[' ~0

(8 9')

It is found then that in the limit of r = 0, the two definite integrals over v entering the representation
of J3 combine to give a convergent integral. In evaluating 8 for F)FD the number o in (8.8) must
be chosen so as to make Z, &Z &8,+&. The terms g, o'f, represent the effect of the diverging waves.

8. FREE PROTONS

The equations will be illustrated first in the case of free protons. There might be reasonable
doubt. regarding their applicability because the free protons recoil and the proton waves have
sources of diverging waves on a par with the neutron waves. These sources are not obviously present
in Eq. (6), however.

The protons will be quantized in a fundamental volume with a periodic boundary condition.
The wave function fo will be taken to be

Po=e"o", ko=&po/&

corresponding to the collision of neutron and proton waves of unit amplitude. The momentum
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of the 1nc1dent neutrons ls po. TlM plopel funct1ons fol tIM protons ale

u, (r.) = V—&e*'""~, lt, =y./k, (9.1)

where V is the fundamental volume. In the usual manner the summation over s &» be replaced by

(9.2)

One has thlls for the slim that is mnMplled bp 2Q on the right of Eq. (6)

p I Llr(r —r')+ltor'+(ko' —k') &
(
r' —r. ( j)dr'dk,

8x'~ ~
(9.21)

vrhere in accordance with the convention that has been followed for x one must set

(k, -k)&= ~(k, -k)~~ (k, &k)
(ko' —k')&='~(k' —k')&~ {k)ko}.

The quantity needed for the integral equation is

sinkr
&Q.)= ~ ~ exp Ii[lt(».—r')+amor'+(ko' —k'):~ r' —r„~]Idr'dk.

8x'& & kr(r' —r. (

(9.22)
(9.23)

(9.24)

On 1ntroduclng I =r —1y Rnd 1ntegl'Rtlng over d1rect1ons of .1 one 6nds

eeoc" t» "sin(kr) sin(~ lro —lt~ r")
&Z*)= - expt ~(ko' k')~r" $-dr" dlt,

2w' ~ ~0 kr)lto —lt(
(9.25)

ance integration Over dllect1ons of k gives

&Z.) =
Qgskozy rs o0 p cl

(1/r") sin(kr) sin(kor") sin(kr")-exp fj(kP —k')&r" }dr"dk.
x kot 0 0

It will be noted that the integrals over r" converge and that the integrations can be performed
6rst over r" by straightforward calculation.

L'(k

goo
= (i/4) (1/r) f sinAqr+sinAqr —sinAir —sinA4r )dr (9.27)

with
Ay=&+kg —k; Ay= g ko+k;—
Aa= 4 +ko+k; A4= 4 —ko —k;

{k0'—k') &.

Contributions to the imaginary part are present only if 100k. For this reason A I, A~, A. q are positive, .

while A4 is negative in Eq. (9.27). The right side of (9.27) becomes si/4 and

1—Coskot'IP &Q ) =ie"0'" =ie'"« k, /4
2k '
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Similarly one obtains

eikofv pa k+kp - eikorv
p kpprpy

R.P.(P,) =
l sinkr log dk = sin(kpr) —

)
1—

27rkpr p 2koro 2r & o )'
and in the limit of r =0, and r'„= r„one has from Eqs. (9.3), (9.4)

a(B)„o——iakpe'"" /2. (9.5)

Here use was made of the fact that one may keep either r or r„6xed in the averaging over directions
of r as has been explained in connection with Eq. (5.34). One may replace, therefore, the r„ in Eqs.
(9.3), (9.4) by r .

In the above calculation one has introduced into the calculation of 8 the approximate value of
f Pp w—hich follows from (5) if one neglects a(B), i.e. , if one solves (5) by iteration. On account of
Eq. (9.5) the corrected value of f is

f(r )=(1+i kap/2)e" 'p (9 6)

The asymptotic behavior of the angular average over directions of r is

(f),~ (1+ikpa—/2) (1+a/r) e'"", (9.7)

which can be compared with the exact value following from

according to which

sin(kpa/2)
P=Pp(r. , r„)+e'"pR giko(r+c) /2

kpr/2
(9.8)

sin(kpa/2) a sinkpa/2
(lP),=p -I+ e'"""(1/ryikp/2) = e*'"o I'— +coskpa/2 =(1+ikpa/2) (1+a/r). (9.8')

kp/2 r kpa/2

It is seen from Eq. (9.8) that the wave function is not quite of the form 1+a/r The de. viations
from this form are seen, however, to be of the order ko'a', which is a very insignificant factor for
thermal neutrons.

It is satisfying that to the order kpa there is agreement between (9.8 ) and (9.7). While even the
terms in ikpa/2 affect the cross section only by the insignificant factor 1+kooao/4, it is satisfactory
to have the phase of the scattered wave correct to the order kpa/2.

The agreement between (9.7) and (9.8) is seen to be no worse than the assumption that the factor
1+a/r represents correctly the variation with r of the s part of f at small r. The exact dependence
is of the type

tanka a—(sinka coskr+coska sinkr) coska 1+
kr ka r

The deviations from the assumed form are themselves representable by correction factors 1+k'a/3,
and there is no apparent reason for expecting the agreement to be closer than that found.

If one makes a calculation for the cross section along standard lines with Po in place off in Eq. (6),
then one finds without difficulty that the differential cross section per unit solid angle in any given
direction when corrected for the factor 1+ko'a'/4 is

e.= (4a'+ko')p, /po.

The last correction goes outside of the limits of accuracy of the method and does not represent an



improvement over the simpler result

a —4a'p, /po,

since this correction is given by the factor

sin'koa/2.

If all the corrections obtainable from the equations were as small as that just discussed, there would
be no purpose in presenting the equations. It is found, however, that the actual correction factor
involves the ratio of a to molecular dimensions to the 6rst rather than to the second power and is
not negligible, therefore.

A general idea of what one may expect can be obtained by considering the background for free
protons as made of two parts, one of which comes from the region k, &ko, and the other from k, &ko.
The evaluation can be carried out by means of Eq. (9.4) by replacing the integral by

k+ ko cosk01'
sinkr log dk= LC—Ci(2kor)+log2kor) j+—sin(kor)—

~no k —ko r r

smkof
Si(2kor) (9.9)

C= 0 5772. - . =Euler-Mascheroni constant

t 'sing cosg
Sf(x) =

I du; C~(x) = — ~

By means of the above Eq. (9.9), one finds on substitution into Eq. (9.4) and on passing to the
limit of r~0

and one has similarly

(1 koq
R I'.( P ) e'""I .———),

k&kO

(10.1)

It is seen that the singularity in 1/r is contributed by the region of high k as could be expected since
the representation of the g function in Eq. (6.1) is impossible without the extension of the sum over
the eigenfunctions to those of inhnitesimal wave-length. It is seen also that there are two real contri-
butions to a(B), one of amount

—ako/n =part of (8),=0 for k) kg, (10 2)

and another of equal and opposite amount which comes from k&ko. The effect of each of these
parts on f is of the order of a fractional change of amount 2a/Xo, where Xo is the wave-length of the
incident neutron which is of the order 10 ' for I ev neutrons, and 10 ' for 100 ev neutrons. hen
the protons are chemically bound, the balance of the contributions from k&ko and k &ko is upset,
and there is a residual effect which can be expected to give changes in the scattering cross section
« the order of tenths of a percent, since the molecular energies are of the order of 0.5 ev or 0.2 ev.

The evaluation of the background for neutrons having very small energies incident on harmonically

bound protons is made in the next paper in this issue. 5 The results agree with the estimates made

here in Section 7 above.

' G. Brcit and p. R. Zilse1, phys. Rev, Vl, 232 (1947),
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APPENDIX I

Derivation of Eq. (4.9)

Substitution of Z into the left side of Eq. (4.9) by means of Eqs. (4.2), (4.5) gives

2+35 p gieej r,—rv'l

tK(, ')g(r')p( ')dr 'dr„'= g, ~I u, (r )u,*(r,')f(r„')
~

g(r')x(r')dr' dr. ' (I, 1)

where the replacement
t(r., r„) -f(r.)x(r)

has also been made. The latter involves the harmless approximations which have been justified in
connection with Eqs. (1.2), (2.1), and (3).This discussion showed that to a very good approximation

—~+g(r) x(r) =O.
M

(I, 3)

As the range of nuclear forces p contracts in the process discussed for Eq. (3), one can make it small
enough, for any pre-assigned r ', r„, so as to have

fr.' —r, )))p.

When this condition is satisfied, one can set

where

p gimme j rv-rv' j ~iaej ry—r~

g(r') x(r') dr' — .I
fr„—r„'j fr.—r.'J

I=~ g(")x(r')«',

(I, 4.1)

(I, 4.2)

and the employment of Eq. (I, 3) in the above formula gives

(I, 4.3)

In the calculation just described a appears as the value of r'dx/dr at the ou—ter boundary of the
region where g(r) 00. Substitution of (I, 4.3) into (I, 4.2), of the latter into (I, 4.1), and of the
r'esult into (I, 1) yields Eq. (4.9) of the text.

In the above discussion no account was taken of the region in which (I, 4) is not fulfilled. As p
approaches zero, the volume of the part of the space r ' in which (I, 4) does not hold also approaches
zero, and the contribution to the sum on the right side of Eq. (4.9) due to an individual term is
of the order

2~p'u, *(r„)f(r„). (I, 4.4)

This is true only for terms with suEFiciently low s. For high s, the strongly negative numbers if',
make the contributions smaller. The series consists of terms like (I, 4.4) up to the point where

~
s„~

is of the order 1/p. The sum on the right side of Eq. (4.9) contains thus

joel &/p

2 u.(r-)u.*(r)=D(lr. —r I)
e~0

(I, 4.5)
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which is an approximation to the 6 function and divers from the 6 function by being distributed
through a volume of approximate linear dimensions p. The whole sum on the right of Eq. (4.9) is
thus of the order f(r )/p, if r = ir —r„i is of the order p on account of (I, 4.4), (I, 4.5), which has
to be true in order to cancel the term in 1/r on the left side of Eq. (4.95). In the description of the
behaviour of the sum which has just been considered, the quantity p has no direct significance as
the range of nuclear force, but can be made equal to it if desired. It is thus seen that the contribution
to the sum owing to the region ~r, —r,

~
is quite large for (r —r, ) (p and cannot be said to be

negligible everywhere. It is also seen, however, that on account of (I, 4.5), this contribution is very
much smaller if ~r —r„~ )p, because the D function in (I, 4.5) is concentrated mainly in a region
having linear dimensions p.

In spite of the fact that the contributions to the sum in (4.9), caused by the region inside a sphere
of radius p, are responsible for the term f(r )/p, when, ir —r„~ = p, the contraction procedure makes
it possible to make p small enough so that for a given ~r —r„~ one can satisfy (I, 4).

APPENDIX II

Derivation of Eq. (8.8)

For real values of i'., one can represent the quantity f, which is defined by Eq. (8.9) as

f, = [~,(r )ii,*(r')/2gp&])t r & exp f
—

(
r„—r'( /4r —[ii, ( rIdr.

v~0
(II, 1)

This formula can be verified as follgws. The factor in (8.9) which multiplies the product of N. and
m, * will be temporarily denoted by g, . One can define g, by

(h.+ ii.m) g, =0, (I I, 1.1)

and the requirements: (a) g,~0 for r„~~; (b) g, approaches ~r„—r'~ ' as a limit for ~r. —. r'~ —+0.
It is seen that

14=(1/2~') " r 'exp[ —lr —r'I'/4r —l~ I'rj&.
0

(II, 1.2)

has the property (II, 1.1) of g,
oo

(6„+Kg )kg = (1/2s'&) ~
—

I r &exp[ -I r~ —r'
I
'/4r

I
~,

~

'T Id T
df'

(II, 1.3)

and is, therefore, zero unless ~r. —r
~
=0. In the latter case the right side of (II, 1.3) is infinite.

It is also clear from the form of (II, 1.2) that Ii, has the same asymptotic forms at small and at
large distances as g, . It follows that

(II, 1.4)

as can be verified by integration of (II, 1.2). Substituting (II, 1.2) for g, in Eq. (8.9) of the text
one obtains Eq. (II, 1) for f, This transf. ormation applies only for ~, (0 because if it:, is real, then f.
is an outgoing wave. Equation (8.8) now follows by straightforward substitution of (II, 1) for
s-r+j., o+2,


