
PH YSICAL REVIEW VOLUME 71, NUMBER 3 FEBRUARY 1, 1947

Qn a General Condition of Heisenberg for the S Matrix

S. T. MA

Institute for Advanced Study, Princeton, Net Jersey

(Received October 18, 1946)

It is shown that the S matrix for an attractive exponential potential, which possesses re-

dundant zeros, does not satisfy a general condition of Heisenberg. To insure the validity of
Heisenberg's condition, we introduce the supplementary condition that the interaction poten-
tial should vanish for large distances from the scattering center. It is shown that the S matrices
for the attractive, exponential and the Coulomb potential cut oQ' at a large distance R give
correctly both the eigenvalues of energy and the asymptotic behavior of the wave functions
for the s states in the limit R~ ~.

~u„(r) ~'dr =1,
Jp aJ p

u~*(r)u~. (r)dr = 8(k —k').

~ W. Heisenberg, Zeits. f. Physik 120, 513 and 673 (1943)
Heisenberg's third and fourth papers on the S matrix have
not yet been published. I am indebted to Professor Pauli
for communicating to me some results in the fourth paper.

~ W. Pauli, Meson Theory of Nuclear Forces (Interscience
Publishers, Inc. , New York, 1946), p. 49.

'C. Mgller, Danske Vid. Sels. Math. -fys. Medd. 23,
No. 1 (1945); 22, No. 19 (1946).

1. INTRODUCTION

ECENTLY Heisenberg' has proposed a new
formulation of the quantum theory which

deals exclusively with such physical quantities
as are directly observable, namely, the discrete
energy values of stationary states of closed

- systems, and the asymptotic behavior of wave
functions at infinity in collision processes. These
physical quantities are determined by Heisen-
berg's S matrix, which plays the same funda-

mental role in Heisenberg's new scherrie as the
Hamiltonian and wave equation in the current
scheme of quantum theory. It is possible to
derive from the current scheme of quantum
theory certain general properties of the S matrix,
such as the unitary property' and the relativistic
invariance, ' which can be taken over into the
new formulation of the quantum theory.

The determination of closed stationary states
from the S matrix has been investigated by
Heisenberg and Manlier. For the following investi-

gation it is sufhcient to state Heisenberg's result
'for the s states of a particle under the action of a
central force. Let u„(r) and uz(r) be, respectively,
the radial wave functions of the discrete and the
continuous energy states, normalized according
to the equations

These wave functions satisfy the completeness,
relation

P„u„*(r)u„(r ) +J
t uq*(r) uA(r )dk = 8(r —r ). (1)
0

The asymptotic expressions of these wave func-
tions for large distances are

u„(r) c„(2s)—& exp( —
~
k„~ r),

ug(r) (2/s) & sin[kr+ b(k)],

(2)

(3)

where c„is a constant and 8(k) is the phase of uq.

Making use of the general relations

and
S(k) =exp[2ib(k) ]

S*(k)S(k)=1,
(4)

(~)

Heisenberg obtained from (1)—(3) the following
general relation for a large value of r.

S(k).exp(ikr)dk = P„~c„~'exp( —
) k„~ r). (6)

The closed discrete states can be determined

by analytic continuation from the real to the
complex values of k. If S(k) decreases sufficiently
rapidly for large values of

~

k ~. , the left-hand. side
of (6) is equal to 2vri times the sum of the residues
of S(k) exp(ikr) at the poles of S(k) in the upper
half of the complex plane. Identifying the dis-
crete states with these poles, Heisenberg obtained

~c„~ '=2mi[ResS(k)]s„

For the S matrices such that the relation

S(k)S(—k) =1 (8)

in the complex plane can be derived by analytic
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2. REDUNDANT ZEROS

As recently reported, ' the S matrix for an
attractive exponential field presents a new fea-
ture in the eigenvalue problem. For the s states
of a particle of mass ns in the potential field

V(r) = —Vg exp( —r/a), (10)

where Vo and a are positive constants, the wave
equation takes the form

—(k'/2m) (d'u/dr'+ k'u) + V(r)u = 0. (11)

The solutions of Eq. (11) for a positive value of
energy are the Bessel functions

where
J~;,Ln exp( —r/2a) j,

p = 2ak, n = 2a(2m Up) &/k.

The wave function which vanishes at the origin is

ui(r) =i(2') —
&~ I'(~p+1)/J;, (n)

~

X I J „(n)J;„$n exp( r/2a)5—
—J;,(u)J;,$a exp( —r/2a) jI, (12)

the normalization constant being chosen such
that the asymptotic expression of Eq. (12) for
large r, namely,

u~(r)-i(2~) '~ I'(ip+I)/J, ,(n)
~

continuation of the unitary condition (5) for real
values of k, the poles of S(k) in the upper half-
plane have corresponding zeros in. the lower half-
plane. Hence, when the poles and zeros are on
the imaginary axis,

/~. f'= —2~K(dS/d /k f) —Ii. lg
' (9)

This relation expressing the absolute magnitude
of c in terms of S(k) can also be directly derived
by a method of Kramers' without using (6). We
shall see below that there are cases in which (9)
is satisfied but (6) is not satisfied.

The wave function corresponding to a zero k„of
Eq. (15) is'

u„(r) =c (2s) 'I'(~ p ~+1)(2/n)~~"'

XJ ~~~[Lee exp( —r/2a)]. (16)

The absolute magnitude of the constant c„ is
given by Eq. (9) with S given by Eq. (14), as
can be directly verified from the normalization
condition.

The second condition

r( —iPp+I) = ~

is satisfied by values of p such that

'p=~p~=1, 2, 3 ".

(17)

(18)

The wave functions Eq. (12) corresponding to
the eigenvalues of Eq. (18) vanish identically.
The zeros given by Eq. (18) can be regarded
as redundant. We shall denote in the following
the values of p and k corresponding to the
redundant zeros by p„and k„, respectively.

3. VALIDITY OF HEISENBERG' S
GENERAL RELATION

Let us now study Heisenberg's general rela-
tion, Eq. (6), as it applies to the Smatrix for the
exponential potential. The integral

is of the form of Eq. (3). Comparing Eq. (12)
with Eq. (3) and making use of Eq. (4), we see
that

J;,(n) I'(ip+1) (nq
S(k) = '

.
~

—
~

. (14)
J;p(n)F( i p—+1) (2)

S(k) vanishes when J;,(n) vanishes or I'( ip—+1)
is infinitely large. Now J,,(n) has no zeros in the
lower half-plane of k except those on the imagi-
nary axis. ' Hence the first condition is equivalent
to

Ji.i(~) =o

J-'.(~) (~/2)"

I'(ip+1)
exp( —ikr)

S(k) exp(ikr)dk

J'.(~) (~/2) *'

I'( —ip+1)
exp(ikr) (13) in (6) can be evaluated by contour integration.

4 H. A. Kramers, Hand- und Jahrbuch d. Chem. Physik
i, 312 (1938).

5 S. 'T. Ma, Phys. Rev. 69, 668 (1946).

Gray, Mathews and MacRobert, Besse/ Functions (The
Macmillan Company, New York, 1931), p. 88.

7H. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 111
(1936).
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We have

if we put
S(k) =h,,(n)/A;p(n)

J,( )=( /2) X„( )/r(P+1).
Now A„(n) approaches the value 1 as p tends to
infinity through a sequence of numbers not con-
sisting of negative integers. Hence if X tends to
infinity through a sequence such that

~ p ~
is not

integral

lim ~t S(k) exp(ikr)dk = lim " exp(ikr)dk
K~ao K~oo J

S(k) exp(ikr)dk=lim S(k) exp(ikr)dk
K~oo g

+2si P Res[S(k) exp(ikr) 7, (19)

where C denotes a semi-circle of radius X above
the real axis, having its center at the origin, and
the summation extends over all the poles in the
upper half-plane. Equation (14) can be written
in the form

It can be easily shown from (14) that

(dS/d
i
k

i );i(„.„i)0, (21)

so that the second sum over the redundant
eigenvalues is smaller than zero. Comparing Eq.
(20) with Eq. (6) we see that Heisenberg's gen-
eral condition is not satisfied by Eq. (14).
It has recently been proposed by D. ter Haar' to
make use of Eq. (21) for discarding the, redun-
dant zeros.

This example raises a question of the validity
of Heisenberg's relation, Eq. (6). Heisenberg' s
derivation outlined in Section 1 holds good only
if the difference between the exact wave function
ui(r) and its asymptotic expression Eq. (3) is
small in comparison with the wave function
u„(r). This is not the case with the exponential
potential, however, as can be seen from Eqs.
(12), (3), and (2).

We can see how the difficulty of redundant
eigenvalues arises from the approximate treat-
ment by evaluating the integral

since r &0. Therefore

ts 00

exp(ikr)dk =2s.b(r) =0
up*(r) ug(r') dk

~o

S(k) exp(ikr)dk = 2vri P Res[S(k) exp(ikr) ]
=P.fc.f'exp( —fk„/r) oo

~
oo

J' u~*(r)ui, (r')dk
J f(k; r, r')dk, (22)('dS$

exp( (k, (r) (20).
where

for the exact wave function (12). From Eq. (12)
we have

f(k; r, r') = (2s) '
I r (ip+1)r( ip+1)/—J,,(n)J „(a)}IJ;,(n) J;,(n) J,,[n exp( r/2a) ]—

XJ—;,[n exp( r'/2a)] —J;,(n) J —;,[n exp( '—r/2a)]J;, [n exp( r'/2a)]}. (23)—
(

Now the integral of f(k; r, r') taken round the semicircle C referred to above has the limit

lim f(k; r, r')dk= (2s)—
'~ Iexp[ik(r' —r)]—exp[ik(r'+r)]}dk

K~oo

= S(r' r) f(r'+r) =—S(r' —r) .(24)—.
Hence

~" f(k; r, r')dk=b(r' r)+2si g—Resf(k; r, r') (2~)

But at the poles where 1'(ip+1) = ~ the residue vanishes. Hence

2si g Resf(k; r, r') = i P [ResJ,,(u) ']r(ip—+1)I'(—ip+1)J;,(a)
XJ;,[n exp( r/2a)] J—;,[n exp( —r'/2a)]

= —Q„u„'(r)u.(r')
~ D. ter Haar, Physica, in the press.



so that

ui*(r)ug(r')dk = 8(r' —r) —g u„~(r)u„(r'),

which is just Eq. (1). In spite of the factor 1'(ip+1) in the integrand of Eq. (22) the summatioii
in the 6nal result extends only over the true eigenvalues. The above calculation may be taken to
be a direct verification of the completeness relation. For large distances r and r', we have, by Eq. (2)

ug (r)ug(r') dk = 5(r' —r) —(2~r) ' Q ~

c }
' exp[ —

} k„~ (r+ r') 7. (26)

In the approximate treatment, however, we have

up*(r)ui, (r')dk = 6(r' —r) —(2~)-')' S(k) exp[~k(r+r') 7dk

= b(r' r) ——(2~)-' g „~c„~ ' exp[ —
}k

~

(r'+r') 7

~ Q„ResIS(k) e px[ k~(r+r')7},)p, ),

which has an additional term corresponding to the redundant zeros.
This discussion shows the necessity of introducing a supplementary condition for the validity of

Heisenberg's general relation. Ke can take for the supplementary condition the condition that the
potential V(r) should varush for large distances from the scattering center, because under such a
condition the wave function uq(r) is equal exactly to the expression (3) for large distances and
therefore Eq. (6) holds with certainty.

4. POTENTIALS CUT OFF AT A LARGE DISTANCE

Mglller has investigated the exponential potential (10) cut off at a large distance R, i.e. , the potential

V(r) = —Vo exp( —r/a) (0 &r &R)
=0 ( r &R). (27)

The wave function ui, (r) is now given exactly by (3) when r &R, and, except for a constant factor,
given by (12) when r &R. The requirement of continuity of uq(r) and its derivative at r =R gives

J „(n)J;,~i[n exp( —R/2a)7+ J;,(a)J;, i[a exp( —R/2a)7
S(k) = —exp( —2ikR) J;,(a)J;p i[a. exp( —R/2a) 7+J,,(n)J;,+i[n exp( —R/2a) 7

For large values of
~

k
~

in the upper half-plane of k such that 2a }k } is not an integer,

J;,+,[a. exp( —R/2a) 7 I'(ip) (nq '
S(k) exp(ikr) —exp[ik(r —2R)7

J',, i[u exp( —R/2a)7 I"(ip+2) 42)

(28)

Xexp( —R/a) exp[ik(r —2R)7,

»m
~ S(k) exp(ikr)dk

K~oo j
vanishes for r&2R. ' In accordance with the general discussion of Section 1 the eigenvalues of k
are the values of k in the lower half-plane satisfying the equation S(k) =0 or by Eq. (28)

J;,(n) J;,+i[a exp( —R/2a)7+ J,,(n)J;, i[n exp( —R/2a)7=0,
Whittaker and Watson, Modern, ANalys~s {Cambridge University Press, New York, 1927), p. 115.

(29)
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an equation first obtained by ter Haar. Equation (29) reduces to Eq. (15) when R~~. Thus the
redundant zeros no longer appear if we cut off the potential at a large distance R and subsequently
make R tend to infinity after the eigenvalues have been determined from the S matrix.

Though the potential (27) becomes the potential (10) when R becomes infinitely large, the expres-
sion (28) goes over to (14) only when the imaginary part of k lies between +1/2u. Above this region
S(k)-+ ~ and below this region S(k)-+0.

This is not the case, however, with the derivative of S with respect to
f
k

f
at a point where (29)

is satisfied. At such a point

dfkf

dp
I J-'~(n) J'~+i[a exp( —R/2a) ]+Ji~(n) J-'n-i[n exp( —R/2a)] }

dfkf dp
ex—p( 2i—kR) J;,(a)J;, i[n exp( —R/2a) 7+J;,(n)J,,+i[a exp( —R/2a) ]

But for large values R

fJ;—(n) J;,+i[n exp( —R/2a) ]} 0,
dp

d dJ;,(n)
f J;,(n)J,, i[a exp( —R/2a)]} J g, i[nexp( —R/2a)],

dp dp

J—jp(n) Jgp —1[a exp( —R/2a)]+ J;,(n)J;,+i[n exp( —R/2a)] J;,(n) J;, i[n exp( —R/2a)],

so that

dS dJi,( ) nJ;p i[n exp—( —R/2a)] tt'n) "& I'(ip) dJ;,(a)—exp( —2ikR) —
f

—
f J;,(a),

J-', (a)J;,—[n exp( —R/2o)] & 2& I'( —ip)

which is just the derivative of Eq. (14) with
respect to

f
k f, whether the imaginary part of k

is smaller or larger than —1/2n. From, Eq. (9)
we see that the expression c exp( —

f
k„

f
r) repre-

sents the correct asymptotic behavior of the
wave function for all the discrete states as R—+ ~.
Now we have seen above that Eq. (28) tends to
Eq. (14) as R~n for real values of k corre-
sponding to positive energy states. It follows
therefore that the S matrix for the cut-off expo-
nential potential gives the correct asymptotic
expression of the wave function for all the s
states in the limit R—+ ~.

It is of interest to observe that for large values
of R Eq. (28) differs very little from the expres-
sion

S(k) = —exp( —2ikR)

J;,(n)J;, i[n exp( —R/2u)]X, , (30)J;,(n) J';, i[n exp( —R/2a)]

quite different from that of Eq. (28) when k is
complex. This example shows that the analytic
continuation in the eigenvalue problem has to
be carried out with great caution.

A somewhat different situation occurs in the
case of the Coulomb potential cut off at a large
distance R. As shown by Manlier, we have for
the s states

I'(1+i/ak)
S(k) (2kR)-"I's

I'(1—i/ak)
(31)

where e is a negative constant for an attractive
field. The eigenvalues are determined by the
poles where

I'(1+i/ck) = n,

from which we have

i/uk= n(e=—1, 2, 3 ).
In the vicinity of the point k =1/ilaw,

when k is real; but the behavior of Eq. (30) is' S(k) (—1)"+'(2kR)'"[I'(m+1)] 'k/(k —1/ani)
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As R-'+~, S(k) tends to ~ or 0 according as k
is above or below the real axis, and Ic„l-+~.
The expression * Note added in proof.

The eigenvalues given by Eq. (18) are redundant be-
cause they are not given by the current scheme of quantum
theory. They appear only when we determine the eigen-
values from the expression of S(k} given by Eq. (14)
without considering the behavior of the wave function in
Eq. (12). Dr. D. ter Haar has recently informed me that
according to a recent investigation of R. Jost, it is not
sufficient to discard the redundant zeros in. all cases on
the basis of the inequality (21). It should be noted that
the conclusion of the present paper, namely that Heisen-
berg's general condition given by Eq. (6) is not satisfied
by the expression of S(k) given by Eq. (14), is independent
of the sign of inequality (21), and therefore holds even
when the sign of (21) is changed.

l~-I exp( —I4l&) =(2~I& I)'(2&l& I)"

XF(I+1)-' exp( —
I k„ I 2), (33)

however, gives just the asymptotic value of N,„(r)
at r=R, as can be seen from the well-known
expression for the radial wave function of the s
states

~ (r) =&„«xp(—l&. lr)1- '(21&.lr),

Hence by Eq. (7) %'here
&-= I:(2 I

&.I)'(&—~) t/»(~')'J'
I ~-I'=2~I &. I (2~ I@I)'"I:i'(~+&)]-' (32)

and I.„' is an associated Laguerre polynomial. *
I wish to express my sincere gratitude to

P10fessol Pauli fo1 his advice OQ th18 %'ork.
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Some years have passed since the appearance of Dirac's striking interpretation of the
Heisenberg-Schroedinger parallelism in the equations of motion, and yet it appears that there
still remain obscure points which have led to misunderstanding. Although the Schroedinger
method suffices to deal with many practical problems, the Rexibi1ity of the Dirac-Jordan
representation theory, aside from its intrinsic unity and beauty, recommends it to general

theoretical investigation. The present paper considers the. invariant form of the equations of
motion in relation to the Schroedinger-Heisenberg pictures of quantum mechanics insofar as the
latter refer to the "pictured" intrinsic motion of states (vectors) and observables (Hermitian

operators). The discussion is divided roughly into 5-sections: Operator and Vector Transforms,
Contact Transformations, Heisenberg-Schroedinger Operators, Equations of Motion and
Invariant Properties, and the Density Operator and Operator Spur. Where possible, quasi-

geometrical diagrams are given to illustrate the relation and transition between the several

"pictures of the motion, "

Notation:t

e, g, q, etc. (boldface type) =operators.

I) =state or coordinate vector in Hiibert space.

(I = l)*=adjoint vector.
I),= transformed vector.

(I el) =(I .e I) =general matrix element.
ln'), a' prototype eigenvector and eigenvalue belonging to operator e.

A. OPERATOR AND VECTOR TRANSFORMS

HEN two dynamical variables e, and e
are related by an equation of the form

e, =UOU ', (1)

then we say that c~ 18 the transform of c unde1

the similarity or collineatory transformation

t The notation here is that used in the author's forth-
coming book on I'ertlrbgtion Cukulus and Representation
Theory.


