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The cross section for the excitation of molecular vibration by electron impact is calculated
for two cases: (1) On the assumption that a molecule interacts with an electron through the
oscillating electric moment arising- from the vibration, the cross sections of excitation and
deexcitation are of the order ¥2-107% cm? where y-10718 c.g.s. unit is the matrix element of the
electric moment associated with the vibrational transition. (2) For optically inactive vibration,
an approximate estimate of the cross section in the case of the H; molecule is made by the
method of distorted wave. The cross section is of the order 0.5:10718 cm? for electrons of
a few volts. These results are compared with the experimental results on the probability of

electron energy transfer to molecular vibrations.

ROM many experiments on the energy loss

of electrons in passing through a gas, there
seems to be evidence for a considerable prob-
ability for the exchange of energy between an
electron and the vibrational motion of a mole-
cule.!~? Thus it was found by Harries that about
1 percent of the collisions of 5.2-volt electrons
with nitrogen molecules results in the excitation
of one vibrational quantum, while for carbon
monoxide it is 3.3 percent.! Ramien found that
about 2 percent of the collisions of 7-volt elec-
trons with hydrogen molecules result in the
excitation of one vibrational quantum.? While
the theoretical method for the calculation of the
probability of such energy transfers is well
developed, no calculation seems to have been
carried out. In an early paper, Massey has
treated the problem of elastic scattering of fast
electrons by H,; molecules by Born’s method,*
and in a later paper the same author has cal-
culated the cross section of the excitation of the
rotational state of a symmetrical top having a
permanent electric moment M=x-10"18 c.g.s.
unit.® It was found that this cross section is of
the order x%-107'®* cm? for slow electrons. The
result, however, is valid only when M<h?/8n%me
or x<1, a condition not met by most actual
molecules. The purpose of the present work is to

1'W. Harries, Zeits. f. Physik 42, 26 (1927).

2 Ramien, Zeits. f. Physik 70, 353 (1931).

3 For references to the work of Bailey and others,, see
Mott and Massey, Theory of Atomic Collisions (Oxford
University Press, New York, 1933), p. 217.

4H. S. W. Massey, Proc. Roy. Soc. A129, 616 (1930).

8 H. S. W. Massey, Proc. Camb. Phil. Soc. 28, 99 (1932).

make some estimates of the probabilities of
excitation of molecular vibrations by electrons.

I. EXCITATION OF OPTICALLY ACTIVE VIBRATION

To calculate the probability of energy transfer
between the vibration-rotational motion of a
molecule and an electron, it is necessary to know
the law of interaction between them. A rigorous
theory should consider the interactions between
the electron and the nuclei and electrons in the
molecule; but such a theory would involve very
complicated, if not unmanageable, calculations.
As an approximation, we shall, following Massey,’
replace the actual molecular field by one which
is caused by the electric moment of the molecule.
On this assumption, the interaction may be
regarded as the sum of two parts, namely, the
interaction between the electron and the per-
manent moment, and the interaction between the
electron and the electric moment due to the
vibration of the molecule. The Hamiltonian of
the system: molecule-+electron is, on neglecting
the coupling between vibration and rotation,

Hsz(le Xg, °t ')+HT(01 Xy (0) +HE(R1 ®7 q))
+V(X1: X2y ] 07 Xy @ Ry ®y q))i

where the X'’s are proportional to the normal
coordinates of vibration, ¢, x, ¢ the Eulerian
angles defining the orientation of the molecule,
and R, O, & the polar coordinates of the electron.
For definiteness, consider a symmetrical rotator
and let x be the angle defining rotation about the
figure axis. If the molecule has a permanent
moment I along the figure axis and if we confine
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ourselves to the excitation of a parallel vibration
X, i.e., a vibration whose change of electric
moment 4 ;X ; is along the figure axis, we have

V=V VI,

where

(4
VI =—Ez-{cosz9 cos®+sind sin® cos(p— @)},

((1)

A,X.;e
V=3, Vi=Y; - {cos? cos®

+sind sin® cos(¢—®)}.J

This assumed form for the interaction V' may
perhaps be justifiable for large distance R but
certainly becomes inadequate for close approach
between the electron and the molecule.

The Schrédinger equation

H\I'(le XZy "',01 Xy @y R! ®1 @)=E\I/ (2)

can be solved by the usual method of expressing
¥ as a sum of products of the vibrational, rota-
tional, and the electronic wave functions

2 Yo (Xy, X, o0 )

vyve - JKM

"I/JKM(0: X ﬁa) 'F”I”?"'JKM(Ra ®v CI)), (3)

V=

where the v's are the vibrational quantum
numbers and Yo02(X;, X3, - - +) is the solution of

Hu'//vlvz"‘(Xl, X, + - )=Eow--, (4)

where E, is the energy of vibration of the
molecule. Yorvg--+(X1, Xo, -+ +) is the product of
the wave functions ¢+, (X;) of the normal vibra-
tions. Ysrm(?, X, @) is the solution of the equa-
tion of a symmetrical top

Hrxu(d, x, 0) =Esgmbixu (5)

87im

[v2 +k§,ooo]‘Fo,0oo = "
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where
2

seal 0= (5 )}

On substituting (3) into (2) and making use of
(4) and (5), one obtains the following equations
for the Foue---7JkM(R, O, ®)

Ergu=

8wim
(E —Ev _EJKM)]Fvlvz' . ~JKM(R, @, ‘I’)

h2

g

87im

= X V(vwe: -« JKM;v'v - - - T K' M)
vy'v' - J'K'M’ h?

« Foyvg «+ 'J’K'M’(R, @, ‘13) (6)
where
V(vi've -+, JTK'M'; vy« », JKM)

* *
=f¢vx’v2’---ll/J'K'M(VI+ VI oyeg- -
XYsxudX1 - -dX d cosddxde.

Now on account of the properties of the functions
1P"‘l"‘l"'()(ly X, -+ ) and ‘pJKM(ﬂ: X ¢)) the ma-
trix element VI(vy/vy'- - -, ' K'M'; v+ - -, JKM)
vanishes unless v,/ =1y, v’ =12, -« 0,/ =0,, J'—J
=0, 1, K'=K, M'—M=0, +1. The matrix
element V(v/vy'---, J'K'M'; vwe---, JKM)
vanishes unless one, and only one, of the v/,
v’, +--v,/, say v/, differs from v; by 1, and
J'—J=0, £1, K'—K=0, M'—M=0, x1. In
the following, we shall denote by v; the vibra-
tional state =0, 2.=0, --.9;,,=0, v;=v;
%i41=0, - -+, v,=0, and write

V(1 JK'M'; 0, TKM)
= V(0,0, -+, 150, -+, TK'M;
0,0, -+ -0, - -0, JKM),
kesricar = (12/87%m) (E — Evi— E ).

The system of Eqgs. (6) becomes

[V1(0:,000; 0,100) Fo;100+ V7(0,000; 0,101) Fo01

+ VI(O;OOO; 0,10— I)FO,'IO —1+Z]‘{ V,'”(O.‘OOO; 1,'100)F1j100

+ V71(0,000; 1,101) F1.014 V#1(0,000; 1,10 —1) F1j10-1} 7,
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[v2 +k§,~100]Foaoo =
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[ V7(0:100; 0,000) Fo000+ V7(0,100; 0;200) Fo,200

4+ V11(0,100; 0201) Fo201+ VI1(0,100; 0,20 — 1) Fo,20 —1
+3>{ V#(0,100; 1,000) F1,000+ V;#1(0,100; 1,200) Fi1 200
+ V#(0,100; 1,201) F1 201+ V;#£(0,100; 1,20 —1) F1;20 -1} ],

2 8rim
[ V241,000 ] F1,000 =

h?

™)

[ V7(1,000; 1;100) F1z00+ V7(1,000; 1,101) F1,101

+ VI(].,,OOO, 1110—' 1)F1i10—~1+ V,-"(liOOO; 01-100)F0i100

+ V.71(1,000; 0,101) Fos014 V,;71(1,000; 0,10 —1) Fo,;10—1]]

2

2
[V2+ k1100 | F1500 =

hZ

[ 7%(1,100; 1,000) F1000+ VZ(1,100; 1,200) F1.200

+ V1(1,100; 1,20 — 1) Fi,201+ V7(1,100; 1,20 — 1) F1,20 —1
+ VAT(1,100; 0,000) Fo,000+ V7 (1,100; 0,200) Fozz00
4 V11(1,100; 0,201) Foe01+ V,71(1,100; 0,20 — 1) Fo;20 —1]].

We shall now assume that

a=8mrmeIMN /K1,

Bi=8m*meAd ;X (0, 1)/h*K1, @®)
where A4.X;(0,1) is the matrix element of the
electric moment associated with the vibrational
transition v;=0<v;=1. On writing M =x-10718
and 4,X,(0, 1) =y;-1078 c.g.s. unit, the relations
(8) become

<1, 1. (8)

On this assumption, the system of Egs. (7) can
be solved by successive approximation. For
definiteness, consider an electron impinging on
the molecule in the ground state (0,0, - - -, 0,0, 0)
so that the wave function of the electron is
Fooo0. It is seen from (7) that Fo;i00 would be of
the order aFo000; F1;00 of the order 8:Fo.000 and
F1000 of the order af;Fo.000. Thus

w2m

[V2+k200] Fii100 = —— [ VA¥(1,100; 0,000) Fosooo

hZ
—+terms of the order o3 Fo000 and «B2Fo,000, (9)

which reduces, on neglecting small quantities of

higher order, to

[ve+ ki,‘lOO] Fi00= (87%m/h?)
X VI(1;100; 0,000) Foo0. (9')
Now
ViI(1; 100; 05 000) (R/, ©, ')
=¢A,X 0, 1) cos®’/V3R".

If in the zeroth approximation we represent
Fo00 of the incoming electron by a plane wave
Fo,000(R, O, ) =exp(tkn- R), the asymptotic ex-
pression of Fi00(R, O, ®) is

2rmeA ;X ;(0, 1) etk110B
V3h? R

Fi300(R, O, ®) ~

X f eikn—k1;100m0) - B'd R’ c0s@’d cos®'d P,

where 7, #; are the unit vectors along the direction
of -the incoming and the scattered electron,
respectively. A little calculation gives for the
total cross section for the simultaneous excitation
of the vibrational and the rotational state the
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expression

2732 1
Qua00(k) = i

k+ k100
—In
k* k—kuo

(10)

as a function of the initial kinetic energy
E=h%?/8x*m of the electron.

For the de-excitation or quenching process
(15 100)—(0;, 000), we represent the incoming
electron by a plane wave Fi;o00=exp(tkn-R) and
calculate Fowo00 in (7). The cross section can be
shown to be

2m82 1 kitk
Qo,000(k) = i it

. n
k ki—k

(11)

where (h?/8n?m) (k.2 — k?*) = € is the energy trans-
ferred to the electron. It is seen that Qis00(k)
and Qooo(k) satisfy the relation

ee/kT f vaolooo(v)~ f@dv= f ’ 2Q15100(v) - f(v)dv,
0 (

2¢/m)}

as required by the principle of detailed balancing.
v is the velocity of the electron and f(v) is the
Maxwell velocity distribution function.

For the excitation process v;, J, K, M—v;+1,
J+1, K, M, a little consideration shows that
the same expression (10) holds, except for a
numerical factor of the order unity. The cross
section for the excitation of the vibrational state
alone would be of the order o282 times Q1100(k).
This is rather a consequence of the special form
(1) which we have assumed for the interaction V,
and perhaps not much weight should be attached
to it.

For a linear molecule, a little calculation
shows that entirely similar results hold. Thus
for the simultaneous excitation of -a parallel
active vibration and rotation v, J, M =0,0,0
—1, 1, 0, the total cross section is given by (10)
with the subscripts 1,100 replaced by

‘Ui,J, M=1i, 1,0.

In Fig. 1, Qia0o0 and Qo0 are plotted as
functions of the initial kinetic energy of the
electron in units of ¥2-10~1% cm? for a vibration-
rotational transition for which the energy trans-
fer is 0.1 volt, corresponding to a frequency of
~800 cm™. For a vibration with 4:X(0, 1) ~0.1
X 10718 c.g.s. unit, the cross sections are of the
order 10717 cm? for slow electrons.
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-\ Qo000

QHOO in y2-|O"5cm2
(4]
T

Qi 100
1 1 1 1 1 1 1 L 1 1 1 L

1.0 2.0 ev
ENERGY OF IMPINGING ELECTRON

F1a. 1. Cross sections as functions of the energy of imping-
ing electron.

A few words may be said concerning the
validity of (10). For molecules having no per-
manent moment such as CO;, CS,, CoHs, C;0s,
CH,, CCly, etc., V=0 and the condition for the
validity of (10) is Bik1 or 4:X:(0, 1)<1078.
From absorption coefficient and infra-red dis-
persion measurements for such molecules as COs,
estimates of the effective charge in the relation
A:X 0, 1) =effective charge Xchange in nuclear
distances lead to values which are of the order
of one electronic charge.® As the change in
nuclear distances is small compared with the
interatomic distances and hence <10~% cm, it
follows that 4 .X (1, 0) <1078, although accurate
values for 4:X4(1,0) are not readily available.

For molecules with a permanent electric
moment, the condition for the validity of (10)
is seen from (9) to be y<1 and x*~y. Thus (10)
will be a good approximation when applied to
CO for which x=0.11. As the gas kinetic cross
section for electrons in CO is ~3X107'¢ cm?,
Harries'! observation mentioned before would
lead to a value ~1X1077 for Quo. On the
assumption (1), this value of Quo would cor-
respond to a value 0.1X107'8 for the change of
the electric moment due to the vibration of CO.
This value is entirely reasonable, although it
must be pointed out that the assumption (1)
fails to account for the observed excitation of
vibration of such molecules as Hz and N, since
for optically inactive vibrations, the above
theory would predict zero cross section. In deal-
ing with these cases, the assumed form (1) for V
is obviously inadequate. Also, for most molecules,

6 Cf. J. H. Van Vleck, Quantum Theory of Electric and
Magnetic Susceptibilities (Oxford University Press, New
York, 1931), §15.
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x is of the order unity and the approximation

made in obtaining (10) can no longer be jus-:

tified.

II. EXCITATION OF OPTICALLY INACTIVE
VIBRATION

In treating the problem without the assump-
tion (1), it is necessary to solve the Schrédinger
equation of the electron in the field of the nuclei
and the electrons of the molecule. It is at once
obvious that the mathematical calculations in-
volved would be very lengthy even for the
simplest of molecules, namely, hydrogen. In the
following, we shall make some rough estimates
in the case of hydrogen. It is reasonable to
suppose that for other molecules, the essential
feature is the same and results of similar order
of magnitude would be obtained, although there
is a great difference in mathematical complexity.

Let us denote the coordinates of the impinging
_electron by the subscript 1 and those of the
molecular electrons by 2 and 3. Let 7, p be the
distances of an electron from the nuclei @ and b,
p be the nuclear separation, and ¢, ¢ be the
polar angles of the line of nuclei. The Hamil-
tonian of the system : molecule+telectron is

H=H,(rs, ps, 13, p3) +H,(p) +H,(3, ¢)
+H{(r1) + V(r1, p1, 112, 713)

where H, is the Hamiltonian of the molecular elec-
trons in the field of the fixed nuclei; Hx(p) is the
Hamiltonian corresponding to the vibrational
motion of the nuclei; H,(d, ¢) is the Hamiltonian
of the rotational motion of the molecule; H(ry)
is the kinetic energy part of the impinging elec-
tron, and V is the interaction

11 1 1
V=e?<——————+——+—-)‘

1 p1 Tz 713

(12)

The solution of the equation
(H,+H,+H,)¥'=E"¥°
may be approximated by

\1'0(721 Do 13, D3y 0, 9, 9’)
=Yn(r2, D2, 73, P3) “¥o(p) -V (9, ©)

where ¥ (9, ¢) is the rotational wave function
of a linear molecule; y,(p) the vibrational wave
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function ; and ¢, is the electronic wave function
containing the nuclear distance p as a parameter.
For the normal T state, ¢, can be taken to be
that given by Wang

Yo=C? exp[ —5u(r2+ps) J+exp[ —Fu(rs+p2) ],
C=(Gw2r(1+571,
S=143up+u2p?/12)% >,
w=2Z/ay, Z=1.166.

To solve the equation
(He+Hy+H,+H(n)+V)¥=EV,

we proceed by the usual method of expressing
¥ as a sum of products

\I’= Z ¢n(72y P?y 7’3! P3)

nvJ M
Yo(p) Yom(S, @)« Frosar(ry), (13)

the sum being taken over all the electronic,
vibrational, and rotational states %, v, JM. On
writing

bwsst = (87%m/12)(E— En—Ey—Esa), (14)

the equations for the F,,su(71) are

2
[Vz_*’kanM:anvJM(Tl) = (87['2’”’1//}52)
> VYT M noJM)(r1) - Furyraarr (15)

n'v'J M’

where
V' v, M ;n,v, TM)= fslfn'*%'*lI/J'M'*

X Vb s udr.drsd pd cosdde.

The equation for Fyggo is, for example,

I:V2+k:ooo]Foooo(7' 1) = (8x*m/h?)
X [ V7(0000; 0000) (71) - Foooo(71)
+ V(0000; 0010) (1) Fooro(71) + - - -
+ V(0000; 0100) (1) Fowoo(71)
+ 7(0000; 1000) (1) Fiooo(r1)+---] (16)

where the Fooo, Foroo, €tc., are given by similar
equations. The possibility of solving this system
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of equations by successive approximation de-

pends on the smallness of certain matrix elements
of V compared with others. Consider first

Vi= flllo* (raparsps) Vipo(raparsps)dradrs

e? e—krL ury e—kP1 upL
)
1+S 71 2 Pl 2

161r62C2\/S
Lt O3 (1,1

"12

X e~ bt 2dpy

17

Evaluation of the integral on the right leads to
a very lengthy function in r; and p:. Reference
to Massey's work shows that the contribution of
this term to the elastic scattering cross section
is small in the limiting cases of fast electrons
and of zero scattering angle.? For the purpose of
making a rough estimate only, we shall neglect
this term in the following.

For matrix elements of V with respect to the
normal and an excited electronic state, general
considerations lead one to expect
V0, v, IM;n,v, TM)

LV(,v, JM;0,v, JTM). (18)

To calculate the matrix elements of V with
respect to the rotational states

Vo=V (0, J'M'; 0, JM)
ES
= fll/J'M'(z’, o) Vivou (3, o)d cosdde, (19)

let us take the direction of the impinging electron
as the polar axis of the angles ¢ and ¢ so that

ri*=7"+(3p)?+rp cosd,

(20)
p2=72+(3p)2—rp cosd,

where 7 is the distance of the colliding electron
from the center of the molecule. Since V; does
not depend on ¢, and since the transformation
of ¢ into #—¢ leaves Vi unchanged, it follows
that

Va(0, J'M'"; 0, JM)=0 unless M'=

and

J'—1=0, 32, 44, (21)
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Integration over ¢ in (19), when V, does not

-vanish, will be very complicated on account of

the dependence of 7; and p; on ¢ in (20); but
again as an approximation, we shall replace this
averaging of Vi over all orientations of the
molecule by taking a central field

_ e—“(1+—) (22)

Finally, consider the matrix element
V', o', M ;n,0, J, M)

appearing in (15). On writing p=po+£ where
£/pe<k1, one has

Va(p) = Va(po) + (%1:3) p0£+ ...

V2(0, 00; 0, 00) =

so that
(0, 1, 00;0, 0, 00)

0V, £
=po(——) [wr©-nwa
dp / po po
-o(2) ()
p0 PO 4:7I'2MV

Now for hydrogen, po=0.75X10"8 cm, »=4270
cm~ so that

Ve
po(—-—) =0.427/(0, 0, 00; 0, 0, 00),
dp /m

1 h 3
_ ) =1/9
47!'2MV
and
v(0, 1,00;0,0,00) ~0.05V(0,0,00;0, 0, 00). 23)
In general,
Vin,o', JM;n,v, LM)
<LVn,v, IM;n,v, JM), v #v. (24)

On considerations of (18), (21) and (24), we
need only consider terms containing Foooo,
Foozo, F0042, etc., in (16) The term

v (0, 0, 00; 0, 0, 00) Foo00

represents the distortion of the electron wave by
the molecular field, while the terms in Foozo,
Foouo, €tc., represent the effect of the inelastically
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scattered waves on the elastically scattered wave.
As a further approximation, we shall neglect the
latter effect and (16) becomes

[V + k:ooo:l Foon(r) = (8x*m/h?)

X V(0, 0, 00;0, 0, 00)(r) Foono(r). (25)
The equation for Fyg(7) is
L2+ koun ] Fowo(r) = (Sx%m/ 1)
X[V(0, 1, 00; 0, 0, 00) Foooo(7)
+7(0, 1, 00; 0, 1, 00) Fo, ,00(r)+---] (26)

in which we have neglected again terms con-
taining (0, 1, 00; 0, 1, JO) where J=2,4,6, - - -.
The method of solving these equations is well
known.” Thus

Funo(r) =3 (2n-+1)ireimL, () Pu(cosd)  (27)
n=0
where L,(r) is that solution of
( dLn) [ 2 8rim
0000 —
1'2 dr
n(n+1)
X (0, 0, 00; 0, 000) () — ]L,,=0 (28)
7

which is finite at the origin, and 7, is deter-
mined by V(0,0,00;0,0,00) and k%2 and is
given approximately by

47rém

= — f (0,0, 00; 0, 0, 00) (r)
2%
X (——Z) L (1) Tnys(kr)rdr
" (29)

4rdm
~—

f‘” V(0, 0, 00; 0, 0, 00)(r)
° X[ wa(br) Jrdr
which is valid if 5, is small. Calculation gives
4n2me?

=MI1“[1+(%)2]+T1@1/27)2}’ (30)

and for electron energy of 2.5, 5, 10 volts,
70=0.43, 0.53, 0.65,

" Mott and Massey, reference 3, Chaps. II and VI.
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respectively. For these low energies, 7 is neg-
ligibly small.

The solution of (26), which can be put, on
account of (23) and the expansion of V, about
po given before, in the form

[V + koo — (82m/12) V(0, 0, 00; 0, 0, 00) ] Foxo(r)
= (87*m/h?)0.05V (0, 0, 00; 0, 0, 00) Fooro(?), (31)
has the asymptotic form
0.05 X 27m etkoroor
Foro(r) ~ . f‘J(r’, T—0)
n? 4
- V(0, 0,000, 0, 00) (") Foooo(r")dr"  (32)

where
F(r, d) = i (214-1)3te:L2,(r) Pi(cos?) (33)
1=0

is the solution of the homogeneous equation ob-
tained from (31) by equating the left-hand side
to zero, and

cos® =cosd cos?’ +sind sind’ cos(p— ¢').

On carrying out the integration in (32), one
obtains

e"’°°1°°'|’ 0.05X2rm
Fomo(?’ ) ~ I.
4

o §<—1)"<2n+1>

Xeitmtin) P, (cosd) f V(0, 0, 00; 0, 0, 00) (*")
0

X L,(r") £n(r’)r’2dr’].

As the 7, are small according to (29), the con-
tribution to the cross section from these har-
monics is small so that the differential cross
section for the excitation of the vibrational state
by one quantum is

0.05 X 8w*m
—————f 17(0, 0, 00; 0, 0, 00) ()

2.

X Lo(r) £o(r)ridr/| .

Now for electrons of about 10 volts and vibra-
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F16. 2. Total cross section as a function of the energy
of impinging electron.

tional quantum Av=~0.5 volt, k2= Fkgoe?*~ko10s? SO
that Lo(7) £4(7) can be replaced approximately by
| Lo(r) |2 By (29),

8mPmk
- e f V(0, 0, 00; 0, 0, 00) () Lo(r) Lo(r)r2dr
0
“4rdm p
~—— f (0, 0, 00; 0, 0, 00)
0

X | Ti(kr) |*rdr = no().

C. K. WU AND S.

C. CHAO

The total cross section is then

2 k0100

0.05
Qowoo(k) = 41r(-k—‘ 71702(73)- (34)

In Fig. 2, Qoo is plotted against the energy of
the impinging electron.

According to the calculated cross section, since
the gas-kinetic cross section for electrons in H,
is about 10716 cm?, one would expect about % of
a percent of the collisions between electrons of
a few volts and H; to be inelastic, resulting in
the excitation of one vibrational quantum. This
is to be compared with the value ~2 percent
found by Ramien for 7-volt electrons.? Con-
sidering the many simplifying approximations
made in the calculation, one may perhaps feel
that the calculation does give the correct order
of magnitude for the cross section of such
processes.
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1. Huggins’ relation between the force constant and the interatomic distance is modified so
that the constants are now characteristic of the molecular period. 2. The new relation predicts
the interatomic distance from the force constants of a diatomic linkage with an accuracy
slightly better than Huggins' original relation. 3. Various aspects of the new relation are dis-

cussed.

UGGINS! has shown that by assuming a
modified Morse potential - function for a
diatomic linkage in the form

U = e—2(R—R1) — C’e—a'(R—Re)’

(1)
he was able to obtain a relation between the
interatomic distance R, and the force constant
K. as

2.303 K.

R,=R;s— log—————. (2)
a a?—aa’

! M. L. Huggins, J. Chem. Phys. 3, 473 (1935); 4, 308
(1936).

He then determined the constants ¢ and Rj,
semi-emperically, so that for certain groups of
molecules ¢ is a group constant and Ry an

TasLE I. Values of 4, B, and a for various molecular

periods.
Molec-
ular A in Relation K, in dynes/cm ain 108
period 108 cm™! B Rein 10~8 cm cm-!
00 —1.78 7.11 logKe= —1.78Rs +7.11 4.10
01 —1.356 7.17 logKe= —1.356R.+7.17 3.12
02 —1.17 7.16 logKe= —1.17Rs +7.16 2.69
11 -—1.83 8.28 logKe= —1.83R. -+8.28 4.21
12 -—2.00 8.97 logKe= —2.00R, +8.97 4.61
22 —1.10 7.71 logKe= —1.10R, +7.71 2.53




